Rewriting systems in sufficiently large Artin-Tits groups

Eddy GODELLE and Sarah REES


word problem, rewriting, Artin groups, Artin-Tits groups, large type


To appear in J. Alg.


A conjecture of Dehornoy claims that, given a presentation of an Artin-Tits group, every word that represents the identity can be transformed into the trivial word using the braid relations, together with certain rules (between pairs of words that are not both positive) that can be derived directly from the braid relations, as well as free reduction, but without introducing trivial factors $ss^{-1} $ or $s^{-1} s$. This conjecture is known to be true for Artin-Tits groups of spherical type or of FC type. We prove the conjecture for Artin-Tits groups of sufficiently large type. \

The preprint is available as gzipped dvi (1 kB), postscript (1 kB) and pdf files.

Alternatively, you can request a copy by e-mailing me.