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Abstract. A conjecture of Dehornoy claims that, given a presentation of an
Artin-Tits group, every word that represents the identity can be transformed
into the trivial word using the braid relations, together with certain rules
(between pairs of words that are not both positive) that can be derived directly
from the braid relations, as well as free reduction, but without introducing
trivial factors ss

−1 or s
−1

s. This conjecture is known to be true for Artin-
Tits groups of spherical type or of FC type. We prove the conjecture for
Artin–Tits groups of sufficiently large type.

1. Introduction

Let Γ0 be a labelled finite complete simplicial graph with vertex set S, edge
set E and label map m : E → N≥2 ∪ {∞}. The associated Coxeter graph Γ is then
obtained from Γ0 by removing edges labelled by 2, and unlabelling edges whose
label is 3. One associates with Γ0 an Artin–Tits group (also known as Artin group),
denoted by A(Γ0) (or by A(Γ)), defined by the following Artin group presentation:

〈

S

∣
∣
∣
∣
∣
∣

sts · · ·
︸ ︷︷ ︸

m

= tst · · ·
︸ ︷︷ ︸

m

; s, t ∈ S and m({s, t}) = m 6= ∞

〉

.

For instance, if Γ0 is a complete graph with all edges labelled with ∞, then Γ
is equal to Γ0 and the group A(Γ) is the free group on S. Alternatively, if all the
labels in Γ0 are equal to 2, then Γ is completely disconnected and the group A(Γ) is
the free abelian group on S. More generally, considering graphs Γ0 whose labels are
2 or ∞ only, one obtains the so-called right-angled Artin groups (RAAG for short),
which are the object of numerous articles. Finally, starting from any (undirected)
Dynkin diagram and replacing doubled and tripled edges by edges labelled by 4 and
6, respectively, one obtains a Coxeter graph and therefore an Artin group, which
is helpful in the study of the associated Coxeter group and the associated Hecke
algebra. For instance, if Γ is an unlabelled line and S has cardinality n, then A(Γ)
is the braid group on n+ 1 strings.

So, the family of Artin groups contains various groups that are of interest. In
the present article, we mainly focus on Artin groups where all the labels in Γ0 are
either equal to ∞ or greater or equal to 3. These groups are called large type Artin
groups and have been considered by various authors [1, 2, 3, 10].
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Artin groups are badly understood in general and few results are known. For
instance, the word problem is an open problem for Artin groups, although it has
been solved for particular subfamilies, including all those introduced above. In
general, starting from a finite presentation of a group, there is no general strategy
to solve its word problem. From the finite presentation, we can always derive a finite
number of elementary transformations on words (that replace some factors of words
by other words – see the Preliminary Section 2.1 for the definition of a factor), each
of which transforms any word to which it applies into another word with strictly
shorter length. And, whenever a sequence of such transformations is applied to
an input word w, because the sequence of word lengths is strictly decreasing, this
process must stop after at most |w| such elementary transformations. Where the
group presentation is hyperbolic, the resulting word is the empty word if and only if
the initial word represents the identity element of the group. So, using the bound on
the number of possible successive elementary transformations, one gets a solution
to the word problem. But, when the group presentation is not hyperbolic, there
must be representatives of the identity element that are not reduced by the finite
set of transformations to the empty word, and hence the process does not solve the
word problem.

Unfortunately, except in the case of free groups, Artin groups are not hyperbolic
as they contains copies of Z2, so the approach above does not work to solve the
word problem in Artin groups. However, one might expect that an alternative
family of elementary transformations could lead to a solution to the word problem
for any Artin group. It is natural to look for a solution with a set of elementary
transformations on words that do not increase length. For instance, the solution to
the word problem obtained in [14] for right-angled Artin groups can be seen as a
special example of this strategy.

Definition 1.1. For a finite presentation 〈S,R〉, we define special transformations
on finite words on S ∪ S−1 as follows:
- type 0 (resp. ∞): Remove (resp. insert) some pair s−1s or ss−1, where s is a
letter of S,
- type 1: Replace some factor v by u, or v−1 by u−1, where u = v is a relation of R.

Since the presentation is finite, the set of special transformations is finite. But
note that, throughout the paper, we shall abuse notation and consider relations
u = v and v = u to be the same relation, and hence, in particular, we shall also
consider that there are four (rather than two) type 1 transformations associated
with each relation u = v.

From now on, for a setX of types of transformations on words, we write w X
 R w′

if w can be transformed to w′ using transformations of type X . Thus, for a group G

with finite presentation 〈S,R〉 and for every word w on S ∪ S−1, we have

(1.1) w
0,1,∞

 R ε ⇐⇒ w = 1,

where ε is the empty word and w is the image of w in the group G. Of course here
we do not get a solution to the word problem as long as we do not have a bound on
the length of the path from w to ε using relations of types 0, 1,∞ — such a bound
does not exist in general. If one wants to obtain a set of elementary transformations
that do not increase the length then it is legitimate to include transformations of
type 0 or 1, whereas transformations of type ∞ have to be avoided. Clearly if

w
0,1

 R ε then w = 1 but the converse is not true in general, nor in the special case
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of Artin group presentations (see [8] for an example). It is therefore natural to
address the question of whether one may add some other special transformations
to obtain an equivalence for all Artin groups. Two partial results on that direction
appear recently in the literature [8, 10].

In [10] a family of elementary operations, called of type β, is introduced. A special
case of the main result proved in [10] is that for any Artin group presentation 〈S,R〉
of large type and for every word w on S ∪ S−1, we have

(1.2) w
0,1,β

 R ε ⇐⇒ w = 1.

The type β operations do not increase the length, and so this leads to a solution of
the word problem. However type β operations are not finite in number (even if for
a given length only a finite number of them can be applied) and given a word, it
is not easy to detect where a type β transformation can be applied. Moreover, as
shown in [10], one cannot expect that the above equivalence holds for every Artin
group.

Now comes the crucial point. In [8], some special transformations of type 2
are introduced, falling into two types called type 2r (“type 2-right”) and type 2l
(“type 2-left ), which allow some limited substitution using unsigned words. These
are defined as follows:

Definition 1.2. Let G = 〈S,R〉 be a group, and suppose that u = v is a rela-
tion in R, between two positive words u, v. Suppose that u can be written as a
concatenation u1u2 and v as a concatenation v1v2. Suppose that w is a word over
S ∪ S−1. We define a transformation that replaces a factor v−1

1 u1 of w by v2u
−1
2

to be of type 2r (“type-2-right”), provided that both v1 and u1 are non-empty, We
define a transformation that replaces a factor v2u

−1
2 of w by v−1

1 u1 to be of type 2l
(“type-2-left”), provided that both v2 and u2 are non-empty.

Basically, the rules of type 2 are those directly derived from braid relations for
which the left hand side of the rule is unsigned. Note that in the special case where
all four of u1, u2, v1, v2 are non-empty, the associated transformations of types 2l
and 2r are inverse to each other.

Example 1.3. Consider a dihedral Artin group with S = {s, t} and ms,t = 3.
Then the transformations

s−1t−1s → ts−1t−1 and t−1s−1t−1s → s−1t−1

are both of type 2r, the first one with u1 = s, u2 = ts, v1 = ts and v2 = t, and the
second one with u1 = s, u2 = ts,v1 = tst and v2 empty. Then, the reverse of the
first,

ts−1t−1 → s−1t−1s

is type 2l, but the reverse of the second,

s−1t−1 → t−1s−1t−1s

is not of type 2l.

It is immediate that the set of transformations of type 2 is finite, and therefore

so is the set of transformations of types 0, 1 or 2. Moreover, it is clear that w
0,1,2

 R

ε implies w = 1. The reader may wonder why operations of type 2 should be
considered of special interest. The explanation comes from the case of spherical
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type Artin presentations (that is, those based on finite type Dynkin diagrams, and
so in particular all braid groups).

In this case, w
0,1

 R ε ⇐⇒ w = 1 does not hold,but w
0,2

 R ε ⇐⇒ w = 1 does [8].
Further, in such a group, a sequence of operations of types 2r (resp. 2l) and 0
allows one to transform any (unsigned) word w into a word of the form w1w

−1
2

(resp. w−1
1 w2) for which w1, w2 are positive words with no common right (resp.

left) divisor in the associated Artin-Tits monoid. (See [8] and Propositions 2.6 and
2.8 below.)

The result we are going to prove here is

Theorem 1.4. For every sufficiently large Artin-Tits presentation 〈S,R〉, and any
word w ∈ S ∪ S−1,

(1.3) w
0,1,2

 R ε ⇐⇒ w = 1

Our definition of sufficiently large type for an Artin-Tits presentation is taken
from [11]; note that this definition includes all presentations of large type.

It is conjectured in [9, Conj. 3.28] that the equivalence of Theorem 1.4 holds for
all Artin-Tits presentations. The conjecture is repeated in [8, Conj. 1.6], where it
is proved for Artin-Tits presentations of spherical and FC types.

Definition 1.5. A finite presentation 〈S,R〉 of a group G satisfies Property H if

the equivalence w
0,1,2

 R ε ⇐⇒ w = 1 holds for every word w on S ∪ S−1.

So, we can rephrase [8, Conj. 1.6] as a claim that PropertyH is satisfied by every
Artin presentation, and Theorem 1.4 as a verification of that claim for any Artin
presentation of sufficiently large type. The conjecture was already proved in [8] for
spherical type Artin groups, and then more generally for all Artin groups of FC
type, and so all right-angled Artin groups. But most Artin groups of sufficiently
large type (and in particular those of large type) are not of FC type, and so are
not covered by the results of [8]; so certainly our result provides a new family of
Artin groups for which the conjecture is valid. We prove the result for groups
of sufficiently large type as an extension of the result for groups of large type,
recognising that the first of those two classes of groups can be built out of the
second in the same way that the groups of FC type can be built out of the groups
of spherical type; so this part of our proof follows the proof of [8]. In order to obtain
their result for Artin groups of FC type, the authors of [8] proved that a stronger
but more technical property, namely Property H# (defined in [8]), is satisfied by
Artin groups of spherical type. We will prove that this property holds for Artin
groups of large type. Then, combining this result with [8, Prop. 2.14] we will derive
the following.

Theorem 1.6. Let T be the family of those Artin-Tits presentations (S,R) for
which every connected full subgraph of the Coxeter graph Γ without an ∞-labelled
edge is either of spherical type or of large type. Then every presentation (S,R)
in T satisfies Property H# and (therefore) Property H. Hence, for every word w

on S ∪ S−1,

w
0,1,2

 R ε ⇐⇒ w = 1.

The reader should note that transformations of type 2 can increase the length of
words and therefore our result does not lead directly to a solution to the word prob-
lem. However, whenever we can prove a bound on the maximal number of iterations
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of special transformations we can derive a solution to the word problem. We might
expect that such a bound could be found in all cases, even if a general argument for
that remains to be found. The main argument of our proof will consist of a proof
that that any transformation of type β can be decomposed as a sequence of type 2
and type 1 transformations. The remainder of this article is organised as follows.
Section 2 is devoted to the proof of Property H for Artin-Tits groups of large type,
stated at the end of the section as Corollary 2.21. Section 3 considers Artin-Tits
groups of sufficiently large type. Those groups are introduced at the beginning
of Section 3, and characterized in Section 3.1 as a particular class of Artin groups
closed under amalgamation over standard parabolic subgroups. Property H# is de-
fined in Section 3.2, and Proposition 3.4 [8, Proposition 2.14] is stated, which will
be used to extend the proof of Property H# for large type groups to a larger class
of Artin-Tits groups, which (according to the given characterization) must include
all those of sufficiently large type. Section 3.3 introduces the machinery of critical
factorizations and critical sequences of transformations for large type groups from
[10]. Section 3.4 is devoted to the proof that Artin groups of large type satisfy
Property H#, and the final section, Section 3.5, to the proofs of Theorems 1.6
and 1.4.

2. Property H For Artin-Tits groups of large type

In this section we prove that Property H holds for Artin-Tits group of large
type. Throughout this section, we fix a Coxeter graph Γ. We denote by Γ0 the
associated labelled full simplicial graph, as defined in the introduction. We assume
that the associated Artin-Tits group is of large type; recall that this means that
any edge label is either infinite or at least 3. In order to prove the result, we start
with the crucial notion of a critical word introduced in [10]. As before, by S we
denote the set of vertices of Γ

2.1. Preliminaries. We start with some terminology. Let S be a finite set. We
denote by (S ∪ S−1)∗ the set of words on S ∪ S−1. A word w on S ∪ S−1 will
be called positive if it is written over S. It will be called negative if it is written
over S−1. A signed word is a word that is either positive or negative. Some words
are neither positive nor negative; when this is the case, we say that the word w is
unsigned. We denote by w−1 the word that is the formal inverse of w. If G is a
group generated by S, a element g of G will be called positive (relative to S) when
it possesses a positive representative word over S.

A word v on S ∪ S−1 will be called a factor of a word w if the word w can be
decomposed with w = w1vw2 for some words w1, w2.

A word w is called freely reduced if it does not contain a factor of the form either
ss−1 or s−1s for some s in S. Equivalently, w is freely reduced if no operation of
type 0 can be applied.

When x and y are two words and m is a positive integer, we denote by [x, y, j〉
the word xyxy · · · obtained as the alternating concatenation of the words x and y

that concatenates j words, the first being x. Hence [x, y, 5〉 = x[y, x, 4〉 = xyxyx.
Similarly we denote by 〈y, x, j] the word · · · yxyx obtained as the alternating con-
catenation of the words x and y, that concatenates j words, the last being x. So
〈y, x, 6] = yxyxyx. In particular [x, y, j〉 = 〈y, x, j] or [x, y, j〉 = 〈x, y, j] depend-
ing on whether j is odd or even. For instance, [x, y, 5〉 = xyxyx = 〈y, x, 5] but
[x, y, 4〉 = xyxy = 〈x, y, 4].
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Finally, we say that a positive word is square-free if it does not contain a factor
of the form ss for any s in S. Now, for a word w, we denote by p̃(w) the length of
the longest square-free positive factor of w. Similarly we denote by ñ(w) the length
of the longest negative factor of w whose formal inverse is square-free.

2.2. Dihedral Artin-Tits groups. In the case where Γ has only 2 vertices s, t,
the associated Artin group A(Γ0) is called a dihedral Artin group. Indeed, in the
case where m = m({s, t}) 6= ∞, if one adds the relations s2 = 1 and t2 = 1 to
the presentation of A(Γ0), then one obtains the associated Coxeter group. On
the other hand the obtained presentation is the one of a dihedral group of order
2m. In particular the latter group is finite. Following [12], for a word w we set
p(w) = min(p̃(w),m) and n(w) = min(ñ(w),m).

In order to state the next result, let us introduce a restricted version of the
operation of type 2.

Definition 2.1. For a finite presentation of a group 〈S,R〉, we define special trans-
formations of type 2⋆ on words on S ∪ S−1 to be special transformations of type 2
for which, following the notation of Definition 1.2,
- in type 2r with w = w1v

−1v′w2, the word v is the greatest left common factor of
the words vu and vw−1

1 and the word v′ is the greatest left common factor of the
words v′u′ and v′w2;

- in type 2ℓ with w = w1vv
′−1

w2, the word v is the greatest right common factor
of the words uv and w1v and the word v′ is the greatest right common factor of
the words u′v′ and w−1

2 v′.

Example 2.2. Consider a dihedral Artin group with S = {s, t} and ms,t = 4.

Consider the word t2sts−1t. Then, we have t2sts−1t
2

 R t2t−1s−1tstt, but this
transformation is not of type 2⋆ because v = st; uv = stst and w1v = t−1tst. So
the word tst is a greater common right divisor of uv and w1v than v. However,

ttsts−1t
2⋆

 R ts−1tstt. The reader should note that in both cases the last letter
of w1 is t, but in the first case tv is square-free, whereas in the second case tv is not.

For the remainder of this section, we assume that Γ0 has only 2 vertices s, t (so
S = {s, t}), and set m = ms,t. So the group A(Γ0) is a dihedral Artin group. We
set

Ω(Γ0) =
{
w ∈ (S ∪ S−1)∗ | w is freely reduced withmax(p(w), n(w)) < m

}

The reader should note that the definition of Ω(Γ0) ensures that operations of types
0 or 1 cannot be applied to words in Ω(Γ0); only operations of type 2 can apply.
Moreover, if w belongs to Ω(Γ0), then p̃(w) = p(w) and ñ(w) = n(w).

For a non-empty word w in Ω(Γ0), we define the ⋆-decomposition of w to be the
unique sequence (v1, . . . , vk) of non-trivial words such that w = v1 · · · vk and each
factor vi is the maximal square-free signed left factor of the word vi · · · vk.

Proposition 2.3. Let w be a non-empty word that belongs to Ω(Γ0), and denote by
(v1, · · · , vk) the ⋆-decomposition of w. Assume that the word w′ is obtained from w

by an operation of type 2⋆. Then, w′ belongs to Ω(Γ0) too. Moreover, there exists a
subscript i such that the ⋆-decomposition of w′ is (v1, · · · , vi−1, ui, ui+1, vi+2, · · · , vk)
and the 2⋆-operation transforms w into w′ by replacing the factor vivi+1 of w by
the word uiui+1.
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Proof. Since the Artin group is assumed dihedral, the set R consists of a single
relation [s, t,m〉 = [t, s,m〉. Write w = w1w2w3 and w′ = w1w

′
2w3, where w′

2 is
the factor of w′ obtained from the factor w2 of w by applying an operation of type

2⋆. We have either w2 = v−1v′ or w2 = vv′−1. In the first case, w′
2 = uu′−1

where vu = v′u′ is the unique relation in R. In the second case, w′
2 = u−1u′ where

uv = u′v′ is the unique relation in R.
Assume the first case. The arguments for the second case are similar and left to

the reader. We can assume without restriction that v = [s, t, j〉 and v′ = [t, s, ℓ〉 for
some j, ℓ < m. Then vu = [s, t,m〉 and v′u′ = [t, s,m〉. Since the words v1, · · · , vk
are signed words and any word vivi+1 is either unsigned or not square-free, there
has to exist a subscript i so that v−1 is a right factor of vi and v′ is a left factor of
vi+1. Now the operation that transforms w into w′ is not just of type 2 but actually
of type 2⋆. This imposes v−1 = vi and v′ = vi+1. For a in S = {s, t}, denote by â

the other letter of S. Denote by a and a′ the last letter of v and v′, respectively.

Then, the first letter of u is â and the last letter of u′−1
is (â′)−1. Denote by c the

last letter c of w1, that is, the last letter of vi−1, and by d the first letter of w3,
that is, the first letter of vi+2.

The only cases where w′ could not be freely reduced would be if either c = â−1

or d = â′. If c were equal to â−1 then we would have vc−1 = [s, t, j + 1〉 with
j + 1 ≤ n(w) < m. so, vc−1, that is, vâ, would be a common left factor of vw−1

1

and vu, contradicting the fact that the transformation is of type 2⋆. So c 6= â−1.
Similarly, d 6= â′. Hence, w′ is a freely reduced word.

We prove now that max(p(w′), n(w′)) < n. This will imply that w′ belongs to
Ω(Γ0). Assume that one of the words [s, t,m〉 and [s, t,m〉 or their inverses is a
factor of w′. Since w belongs to Ω(Γ0), this word cannot be a factor of w1 or of
w3. On the other hand, it can not be a factor of w′

2. Then that word has to either
overlap w1 and w′

2, or to overlap w′
2 and w3. In the first case, it has to contain the

word câ as a factor, which implies that c = a. In the second case it has to contain
the word d−1â′ which implies that d = a′−1. Either of these would contradict that
fact that w is freely reduced. We deduce that max(p(w′), n(w′)) < m, and hence
w′ belongs to Ω(Γ0).

From c 6= a and d 6= a′−1, we further deduce that neither vi−1â nor u′−1
d

can be a square-free signed word. Hence (v1, · · · , vi−1, u, u
′−1

, vi+2, · · · , vk) is the
⋆-decomposition of w′. �

From Proposition 2.3 we deduce that

Corollary 2.4. Assume that A(Γ0) is a dihedral Artin group. Then, Ω(Γ0) is
closed under the operations of type 2⋆. Moreover, if w,w′ belong to Ω(Γ0) then

w
2⋆

 R w′ ⇐⇒ w′ 2⋆

 R w.

2.3. Normal decomposition. In the previous section we have seen that, in the
case of a dihedral Artin-Tits group, the set Ω(Γ0) is closed under operations of type
2⋆. Here we study the connected components of Ω(Γ0) under the 2⋆ operation.

Proposition 2.5. Assume that A(Γ0) is a dihedral Artin-Tits group. Assume that
w and w′ belong to Ω(Γ0), then,

w
2⋆

 R w′ ⇐⇒ w and w′ represent the same element in A(Γ0).
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To prove this result we use the fact that dihedral Artin-Tits groups are contained
in the more general family of spherical type Artin-Tits groups. We recall that an
Artin-Tits group is of spherical type when its associated Coxeter group is finite,
which is the case for dihedral Artin-Tits groups with m < ∞ as explained in the
previous section. The crucial argument is the following.

Proposition 2.6. [5] Let A(Γ0) be a spherical type Artin group, and let g ∈ A(Γ0).
Then there exists a unique pair of positive elements (g1, g2) such that (1) g = g1g

−1
2

and (2) whenever h1, h2 are positive elements with g = h1h
−1
2 , then there exists a

positive element h with h1 = g1h and h2 = g2h.

The above decomposition g1g
−1
2 is called the left normal decomposition of g.

The following is an immediate consequence of the above proposition.

Proposition 2.7. Assume that A(Γ0) is a spherical type Artin group. Let g belong
to A(Γ0). Assume that (w1, w2) is a pair of positive words so that w1w

−1
2 is a

word representative of g. Denote by g1 and g2 the (positive) elements of A(Γ0)
represented by w1 and w2 respectively. Then, the following are equivalent:

(1) g1g
−1
2 is not the left normal decomposition of g,

(2) there exist two distinct words w and w′ so that w1w
−1
2

1

 R w
0

 R w′.

Using this property, we can deduce the following.

Proposition 2.8. Let A(Γ0) be a dihedral Artin-Tits group, and suppose that w ∈
Ω(Γ0). Denote by g the element of A(Γ0) represented by g and by (g1, g2) the pair
of positive elements of A(Γ0) corresponding to the left normal decomposition of g.

Then, there exists a pair of positive words (w1, w2) so that the words w1 and w2

represent g1 and g2, respectively, and

w
2⋆

 R w1w
−1
2 .

Proof. Let (v1, . . . , , vk) be the ⋆-decomposition of w. Say that the pair (i, j), with
i < j, is an inversion of the word w if vi is a negative word whereas vj is a positive
word. Denote by Inv(w) the number of inversions of the word w.

Assume first Inv(w) = 0. Then there exists an index i such that v1 · · · vi is a
positive (or empty) word and vi+1 · · · vk is negative (or empty). Since w ∈ Ω(Γ0),
it follows (immediately from the definition of Ω(Γ0)) that no operation of type 1
or 0 can be applied to w. Hence, we deduce from Proposition 2.7 that the words
v1 · · · vi and (vi+1 · · · vk)−1 represent g1 and g2, respectively.

So now suppose that Inv(w) 6= 0. Then there exists an index i such that vi is a
negative word whereas vi+1 is positive. By definition of the decomposition v1 · · · vk,
an operation of type 2⋆ can be applied to w to replace the word vivi+1 by the word
uiui+1 for which vi+1u

−1
i+1 = v−1

i ui is the unique relation in the presentation of the
group A(Γ0). We obtain the word w′ = v1 · · · vi−1uiui+1vi+2 · · · vk . By Proposi-
tion 2.3, the word w′ remains in Ω(Γ0) and (v1, . . . , vi−1, ui, ui+1, vi+2, . . . , vk) is
the ⋆-decomposition of w′. It is immediate that Inv(w′) = Inv(w) − 1. Repeating

the argument, we deduce there exists a word w′′ in Ω(Γ0) such that w 2⋆

 R w′′ and
Inv(w′′) = 0. Denote by (u1, . . . , uk) the ⋆-decomposition of the obtained word
w′′. By the first case, there exists an index i such that the words u1 · · ·ui and
(ui+1 · · ·uk)

−1 represent g1 and g2, respectively. This proves the proposition. �

We can now prove Proposition 2.5.
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Proof of Proposition 2.5. Assume that w and w′ belong to Ω(Γ0).

Certainly if w 2⋆

 R w′, then w and w′ represent the same element in A(Γ0).
Conversely, assume w and w′ represent the same element g, and denote its left

normal decomposition by g1g
−1
2 . By Proposition 2.8, there exist positive words

w1, w
′
1, w2, w

′
2 so that (a) w1 and w′

1 represent g1; (b) w2 and w′
2 represent g2; (c)

w
2⋆

 R w1w
−1
2 and w′ 2⋆

 R w′
1w

′−1
2 .

From (c) and Corollary 2.4 we have w′
1w

′−1
2

2⋆

 R w′. By (a), (b) and [13], we have

w1
1

 R w′
1 and w2

1

 R w′
2. Since w and w′ belong to Ω(Γ0), the words w1w

−1
2 and

w1w
−1
2 must too, by Corollary 2.4, and hence no non-trivial operations of type 1

can be applied to them or to their factors. Hence, w1 = w′
1 and w2 = w′

2. It follows

that w 2⋆

 R w1w
−1
2

2⋆

 R w′. �

2.4. Critical words. For all of this section, we assume that A(Γ0) is a dihedral

Artin group with S = {s, t} and m = ms,t 6= ∞. Set ∆ = [s, t,m〉 = [t, s,m〉. Then,

∆s±1 = δ(s)
±1

∆ and ∆t
±1

= δ(t)
±1

∆, where δ is the permutation of S defined by

δ(s) = s∆,δ(t) = t∆, acting as the identity when m is even, and swapping s and t

when m is odd. The map δ naturally extends to a involution δ on (S ∪ S−1)∗ such

that for every word v on (S ∪ S−1)∗ one has ∆v = δ(v)∆.
We recall that for a group G generated by a set S, a geodesic word representative

of an element g is a representative word of g over S ∪S−1 that is of minimal length
amongst the representative words of g. Given an arbitrary Artin-Tits group, it is
an open question to obtain an algorithm that for each word returns a geodesic word
representing the same element. However, in the case of dihedral Artin-Tits groups,
and in the more general case of Artin-Tits groups of large type, a positive answer
has been obtained in [12] and in [10], respectively.

More precisely, it is proved in [12], in a dihedral group AS , a freely reduced
word w over s, t is geodesic if and only if p(w) + n(w) ≤ m. In addition in [10,
Section 2], the authors introduced the notion of critical word. A critical word may
be signed or unsigned; for now we restrict to unsigned critical words.

Definition 2.9. Assume A(Γ0) is a dihedral Artin group. A freely reduced un-
signed geodesic word w with p(w) + q(w) = m is called an unsigned critical word if
either

w = [x, y, p〉 w′ [z, t, q〉−1

or

w = [x, y, q〉−1 w′ [z, t, p〉

with {x, y} = {z, t} = S, p = p(w) and q = q(w).

Obviously the conditions p(w) = p, n(w) = n impose some restrictions on the
word w′.

Recall that [x, y, p〉 = 〈x′, y′, p] where {x, y} = {x′, y′}, and that [z, t, q〉 =
〈z′, t′, q] where {z, t} = {z′, t′}. Now, let w = [x, y, p〉 w′ [z, t, q〉−1 be a word over
(S ∪ S−1) such that p+ q = m. One has

w = [x, y, p〉w′ [z, t, q〉−1 = 〈x, y, q]−1 ∆w′ [z, t, q〉−1 = 〈x, y, q]−1 δ(w′)∆ [z, t, q〉−1

= 〈x, y, q]−1 δ(w′) 〈z, t, p]
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Set

τ
(
[x, y, p〉 w′ [z, t, q〉−1

)
= 〈x, y, q]−1 δ(w′) 〈z, t, p];

then one has τ(w) = w. So, w is unsigned and geodesic if and only if τ(w) is.
Moreover, w is an unsigned critical word with p = p(w) and q = q(w) if and only if
τ(w) is an unsigned critical word with p = p(τ(w)) and q = q(τ(w)). In this case,
we also set

τ
(
〈x, y, q]−1 δ(w′) 〈z, t, p]

)
= [x, y, p〉 w′ [z, t, q〉−1.

Then τ is an involution over the set of unsigned critical words.
The above is proved, together with other properties of critical words in [10,

Proposition 2.1]. From those properties we shall also need the following, in Sec-
tion 3.4:

Lemma 2.10. Assume that A(Γ0) is a dihedral Artin group with generating set
S = {s, t}. Let w be an unsigned critical word. The rightmost letter of w is s±1 if
and only if the rightmost letter of τ(w) is t∓1.

Lemma 2.11. Assume A(Γ0) is a dihedral Artin group with generating set S =

{s, t}. Let w be an unsigned critical word. Then w
2⋆

 R τ(w).

Proof. The words w and τ(w) are unsigned critical words. In particular p(w) +
q(w) = m with p(w) 6= 0 and q(w) 6= 0. So w is a freely reduced word so that
p(w) < m and q(w) < m, and hence w belongs to Ω(Γ0). But τ(w) is also a
reduced word with p(τ(w)) = p(w) < m and q(τ(w)) = q(w) < m, and hence

also τ(w) belongs to Ω(Γ0), too. Since τ(w) = w, Proposition 2.5 proves that

w
2⋆

 R τ(w). �

In [10], the authors also introduced a notion of a positive (resp. negative) critical
word. If A(Γ0) is a dihedral Artin group with generating set S = {s, t}, a positive
word w with p̃(w) = p(w) = m is called critical if it has the form [x, y,m〉w′

or w′〈m,x, y] with {x, y} = {s, t} and p(w′) < m. Similarly a negative word w

with ñ(w) = n(w) = m is called critical if it has the form form [x−1, y−1,m〉w′

or w′〈m,x−1, y−1], with {x, y} = {s, t} and n(w′) < m. Further, the definition
of τ can be extended to that of an involution on critical words that maps each
positive, resp. negative critical word to another positive resp. negative critical
word representing the same group element. More precisely, if w = [x, y,m〉w′ is a

positive critical word, then [x, y,m〉w′ = δ(w′)〈x, y,m] = δ(w′)〈y, x,m]. Only one
of the two words δ(w′)〈x, y,m] and δ(w′)〈y, x,m] has different last letter from w. If
w′ is not empty it is also the only one of these two words that is critical. We define
τ(w) to be this word. We define τ(w) for a negative critical word w = w′〈x, y,m]
in a similar way. It is easy to see that τ remains an involution.

It is straightforward to prove the following, and so we omit the details:

Lemma 2.12. Assume that A(Γ0) is a dihedral Artin group with generating set

S = {s, t}. For any positive or negative critical word w, w 1

 R τ(w).

We now define the special transformation β in the case of dihedral Artin-Tits
groups:

Definition 2.13. Assume that A(Γ0) is a dihedral Artin group with generating
set S = {s, t}. Let τ be the above involution on the set of critical words. We define
special transformations of type β on words on S ∪ S−1 as follows:
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type β : Replace some factor w with τ(w), where w is a critical word.

From this definition and Lemmas 2.11 and 2.12, it follows:

Lemma 2.14. Assume that A(Γ0) is a dihedral Artin group with generating set
S = {s, t}. For any two words w,w′, one has

w
β

 R w′ =⇒ w
1,2⋆

 R w′.

Proposition 2.15. [10, Sec. 2] Assume that A(Γ0) is a dihedral Artin group. Let
w be a word over S ∪ S−1. Then there exists a geodesic word w′ such that w = w′

and
w

0,β

 R w′.

Proof. The result follows immediately from [10, Lemma 2.3], from which we deduce
that if w is freely reduced but non-geodesic then it must possess a critical word w1

as a factor, and then the word w′ obtained from w by replacing the factor w1 with
τ(w1) is not freely reduced. So a combination of free reduction and at most one
type β transformation reduces w to w′. �

Combining Lemma 2.14 and Proposition 2.15 we get the following corollary.

Corollary 2.16. Assume that A(Γ0) is a dihedral Artin group with S as generating
set. Let w be a word over S∪S−1. There exists a geodesic word w′ such that w = w′

and
w

0,1,2⋆

 R w′.

Transformations of type 2⋆ are special cases of transformations of type 2 and
the unique geodesic representative word of 1 is the empty word ε. Therefore as a
consequence of the above corollary, we recover :

Corollary 2.17. [8] Assume A(Γ0) is a dihedral Artin group with S as generating
set. Let w be a word over S ∪ S−1. Then,

w
0,1,2

 R ε ⇐⇒ w = 1

2.5. The case of large type Artin-Tits groups. Our objective here is to prove
the following result, which is a special case of Theorem 1.4.

Proposition 2.18. Assume A(Γ0) is an Artin group of large type with S as
generating set. Let w be a word over S∪S−1. There exists a geodesic word w′ such
that w = w′ and

w
0,1,2⋆

 R w′.

The proof is similar to the proof of Corollary 2.16; it follows from a combination
of Lemma 2.19 below (a straightforward extension of Lemma 2.14) and results from
[10], as we now describe.

Assume that A(Γ0) is a Artin group with S as generating set. By [15, 13], the
subgroup generated by any subset T of S is canonically isomorphic to the Artin-
Tits group associated with the full subgraph of Γ0. These subgroups are called the
parabolic subgroups of A(Γ0). So, if T = {s, t} with ms,t 6= ∞ then the parabolic
subgroup generated by T is a dihedral Artin group . We can define the family of
(signed or unsigned) critical words of A(Γ0) as the (disjoint) union of the sets of
(signed or unsigned) critical words of all dihedral parabolic subgroups of A(Γ0).
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The involution τ is still well defined on this set, as are the associated operations
of type β on words over S ∪ S−1. So, the statement of Lemma 2.14 extends to the
framework of Artin groups of large type.

Lemma 2.19. Assume that A(Γ0) is an Artin group of large type. For any two
words w,w′, one has

w
β

 R w′ =⇒ w
1,2⋆

 R w′.

In the next section, we shall need the notion of rightward critical sequences from
[10]. But we postpone the explicit definition of these to Section 3.3. For now, all
we need is the following associated result, derived from [10, Proposition 3.3]

Lemma 2.20. Assume that A(Γ0) is a Artin group of large type with S as gen-
erating set. Let w be a word over S ∪ S−1. If the word w is not geodesic then it
can be transformed into a word that is not freely reduced by a sequence of special
transformations of type β.

With Lemma 2.19 at hand, Corollary 2.21 follows immediately.

Corollary 2.21. Assume that A(Γ0) is a Artin group of large type with S as
generating set. Let w be a word over S ∪ S−1. Then,

w
0,1,2⋆

 R ε ⇐⇒ w = 1

Thus Property H is verified by Artin-Tits groups of large type.

3. Sufficiently large Artin-Tits groups

Our objective is now to prove Property H for the family of sufficiently large
Artin-Tits groups, which we define in this section. Our strategy is similar to the
one used in [8] to prove property H for Artin-Tits groups of FC type. Namely
we prove that a stronger property H# holds for large type Artin groups and then
extend it to sufficiently large Artin-Tits groups using amalgamation.

3.1. A characterization of Sufficiently large Artin-Tits groups. Sufficiently
large Artin-Tits groups were introduced in [11], with the definition expressed in
terms of the Coxeter graph. Here we obtain a characterization that proves that
these groups are built out of large type Artin-Tits groups and finite rank free
abelian groups. We first recall the original definition of sufficiently large Artin-Tits
groups.

Definition 3.1. [11] Assume that A(Γ0) is an Artin group with Coxeter graph Γ.
We say that A(Γ0) is sufficiently large if the full subgraph on any triple of distinct
vertices of Γ is either completely disconnected, or of large type, or contains an edge
with a label ∞. In other words, if s, t, u are three distinct vertices with ms,t = 2
and ms,u 6= 2,∞, then mt,u = ∞.

From this definition we deduce that

Proposition 3.2. The family of sufficiently large Artin-Tits groups is the smallest
family of Artin-Tits groups closed under amalgamation over a standard parabolic
subgroup, and which contains finitely generated free Abelian Artin-Tits groups and
large type Artin groups.
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Proof. First, it is immediate from the definition that every standard parabolic
subgroup of a sufficiently large Artin-Tits group is also sufficiently large.

Now, assume that AS is a sufficiently large Artin-Tits group, and denote by S

its generating set. If there is no ∞-labelled edge, then either ms,t = 2 for all pairs
s, t in S, or there is no pair s, t in S so that ms,t = 2. So AS is either free abelian or
of large type. Assume there exist s1, s2 in S so that ms1,s2 = ∞. Then, it is well-
known that AS is canonically isomorphic to the amalgamated product A1 ∗A1,2

A2

where A1, A2 and A1,2 are the standard parabolic subgroups of AS generated by
S \ {s1}, S \ {s2} and S \ {s1, s2}. This proves by induction on the number of
∞-labelled edges that sufficiently large Artin-Tits groups belong to the smallest
family of Artin-Tits groups closed under amalgamation over a standard parabolic
subgroup and which contains finitely generated free Abelian groups and Artin-Tits
groups of large type. Conversely, assume that A1, A2 are two Artin-Tits groups ,
generated by S1 and S2 respectively ,with a common standard parabolic subgroup
A1,2 generated by S1,2 = S1 ∩ S2. Denote by Γ1 and Γ2 the Coxeter graphs of A1,
A2, respectively. Then the group A1 ∗A1,2

A2 is the Artin-Tits group whose graph
is obtained by glueing Γ1 and Γ2 along the common subgraph generated by S1,2,
and adding an ∞-labelled edge between each pair s, t of vertices so that s lies in
S1 \S1,2 and t lies in S2 \S1,2. Therefore, if A1, A2 are sufficiently large Artin-Tits
groups, so is A1 ∗A1,2

A2. �

3.2. The property H#. From the previous section, sufficiently large Artin-Tits
groups are built out of large type Artin-Tits groups and free abelian groups through
iterated sequences of amalgamations. So it would be natural to try and prove that
sufficiently large Artin-Tits groups satisfy Property H via a proof that when two
group presentations satisfy Property H and they can be amalgamated in a proper
way then the obtained group presentation also satisfies Property H . However,
unfortunately, there is no clear reason why this should be true. However the article
[8] introduces a stronger property than Property H , namely Property H# . And
in that article it is proved that the above strategy can be applied to Property H#.
This is the way that Property H is proved to be satisfied by FC type Artin-Tits
groups. We follows the same approach here to prove that Property H is satisfied
by sufficiently large Artin-Tits groups.

If H is a subgroup of a group G, we call an H-transversal of G any subset
of G that contains exactly one element from each left-H-coset, and in particular
contains 1. If AS is an Artin-Tits group generated by S, then we call an S-sequence
of transversals any sequence (T (S′))S′⊆S for which the set T (S′) is aAS′ -transversal
of AS , for each S′ ⊆ S.

Definition 3.3. Assume that (S,R) is an Artin-Tits presentation and T is an
associated S-sequence of transversals. We say that (S,R) satisfies Property H#

(with respect to T ) if, for all S′, S0 ⊆ S and any word w over S ∪ S−1, setting
S′
0 = S′ ∩ S0, the following relation is satisfied:

w ∈ AS′ ⇒

∃v ∈ (S′ ∪ S′−1
)∗, ∃u ∈ (S′

0 ∪ S′
0

−1
)∗ (w

0,1,2

 R vu and v ∈ T (S0).

Roughly speaking, this property says that for every parabolic subgroup AS0
of

AS , there is an AS0
-transversal T (S0) of AS , so that one is able to find the decom-

position of any element g as the product of its transversal representative and an
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element of AS0
. Moreover, this can be done at the level of the word representatives,

using operations of type 0, 1, 2, only. Finally when the element g, itself, belongs
to another parabolic subgroup AS′ then the two obtained representative words of
the decomposition can be written over S′ ∪ S′−1. This imposes in particular the
condition that the restriction of T (S0) to the elements that belong to AS′ provide
an AS0∩S′-transversal of AS′ . Considering the case where S′ is the empty set, we
get the first part of the following proposition

Proposition 3.4. [8, Proposition 2.14] Let (S,R) be an Artin-Tits presentation.

(1) If (S,R) satisfies Property H#, then (S,R) satisfies Property H.
(2) Assume S = S1 ∪ S2. Set S1,2 = S1 ∩ S2. Denote by A1, A2 and A1,2 the

parabolic subgroups of AS generated by S1, S2 and S1,2, respectively and by
(S1, R1), (S2, R2) and (S1,2, R1,2) their Artin-Tits presentations. Assume
that AS = AS1

∗AS1,2
AS2

and (S1, R1), (S2, R2) and (S1,2, R1,2) satisfy

Property H#. Then (S,R) satisfies Property H#.

We shall use Propositions 3.2 and 3.4 in the final section to deduce Theorems 1.4
and 1.6 from Proposition 3.12, which proves Property H# for Artin-Tits groups of
large type, together with the same result for finite rank free Abelian groups. Since
finite rank Abelian groups are all of spherical type, and hence covered by the results
of [8], we focus now on the case of large type Artin-Tits groups.

3.3. Critical sequence. In order to prove Property H# for large type Artin-Tits
groups, we have first to find a S-sequence of transversals. The key argument turns
out to involve critical factorizations and associated critical sequences of transfor-
mations, which we have already mentioned, and for which we now need a definition.
We recall the notion of a critical word from Section 2.4. Our definition of a critical
factorization is taken from [10]. Roughly speaking a critical factorization of a word
is more-or-less its expression as a concatenation of critical words with one letter
overlaps.

Definition 3.5. Assume AS is an Artin-Tits group. Let n be a positive number,
and suppose that w is freely reduced.

(1) We define a critical factorization of w of length 1 to be an expression of w as
a concatenation αv1β of (possibly empty) words α, β and a critical word v1,
and call v1 the critical factor of that factorization. A critical factorization
of length 1 is considered to be both rightward and leftward.

(2) For n ≥ 2, we define a rightward critical factorization of w of length n

with critical factors v1, . . . , vn to be an expression of w as a concatenation
αv1 · · · vnβ, where v1 is critical, and, where s is the last letter of τ(v1) (as
defined in Section 2.4), the words sv2, v3, . . . , vn are the critical factors of
a critical factorization of length n− 1 of the word sv2v3 · · · vn.

(3) For n ≥ 2, we define a leftward critical factorization of w of length n

with critical factors v1, . . . , vn to be an expression of w as a concatenation
αvn · · · v1β, where v1 is critical, and, where s is the first letter of τ(v1) ,
the words v2s, v3, . . . , vn are the critical factors of a critical factorization of
length n− 1 of the word vnvn−1 · · · v2s.

Note that a word w might admit many critical factorizations, both rightward
and leftward, and that we do not require the subwords α, β of w to be non-empty.
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It is convenient to extend our definition of τ so that it can be applied to the
sequence of critical factors in a critical factorization.

(1) We define the image τ(v1, . . . , vn) of the sequence of critical factors of a
rightward critical factorization to be the n-tuple (v′1, v

′
2, . . . , v

′
n). where v′1

is the maximal proper prefix of τ(v1), and (v′2, . . . , v
′
n) is the image under

τ of the sequence of critical factors (sv2, . . . , vn) of sv2 · · · vn.
(2) We define the image τ(v1, . . . , vn) of the sequence of critical factors of a

leftward critical factorization to be the n-tuple (v‘1, v
′
2, . . . , v

′
n). where v′1

is the maximal proper suffix of τ(v1), and (v′2, . . . , v
′
n) is the image under

τ of the sequence of critical factors (v2s, . . . , vn) of vn · · · v2s.

We shall need the following later.

Lemma 3.6. Assume that AS is an Artin-Tits group. If (v1, · · · , vn) is the se-
quence of factors of a rightward critical factorization, then so are both (v1, . . . , vk)
and (svk+1, . . . , vn), for any 1 ≤ k < n, where s is the final letter of the last term
of τ(v1, . . . , vk).

Proof. This follows from the definition. We leave the details to the reader. �

Definition 3.7. Where a freely reduced word w admits a (rightward or leftward)
critical factorization of length n, with critical factors v1, . . . , vn, the sequence of n
critical transformations that leads to the replacement of the (rightward or leftward)
concatenation of the critical factors by the (rightward or leftward) concatenation
of the terms in the sequence τ(v1, . . . , vn) is called a critical sequence of transfor-
mations. That sequence is called rightward critical or leftward critical depending
on whether the factorization is rightward critical or leftward critical.

We shall need the following result, derived from [10, Proposition 3.3] and [11,
Proposition 3.2 (2)].

Proposition 3.8. Let AS be an Artin-Tits group of large type. Suppose that w is
freely reduced over S ∪ S−1, representing the group element g ∈ AS.

(1) If w is not geodesic then w admits a rightward critical factorization of
the form αv1 · · · vnβ, with β non-empty, and application of a single right-
ward critical sequence of transformations transforms w to a word w′ =
αv′1 · · · v

′
nβ that is not freely reduced. Specifically, the last letter of v′n is the

inverse of the first letter of β.
(2) Suppose that some lexicographic ordering has been chosen for S ∪S−1, and

that wg is the minimal representative of g, with respect to the shortlex order
on words

If w is not equal to wg, then some finite combination of rightward and
leftward critical sequences of transformations together with free cancellation
(after each rightward sequence) transforms w to wg.

We shall also need the following corollary later.

Corollary 3.9. Assume that AS is an Artin-Tits group of Large type, and that

w,w′ are two geodesic representative words of the same element. Then w′ 1,2

 R w.

Proof. Set g = w = w′, fix an ordering of S ∪ S−1, and let wg be the unique mini-
mal representative of g with respect to the associated shortlex ordering on words.
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Proposition 3.8 ensures that a combination of leftward critical sequences of trans-
formations transforms each of w,w′ into wg; hence a sequence of transformations
of type β (according to Definition 2.13) transforms w and w′ into wg, and therefore
w into w′. The result now follows by Lemma 2.19. �

3.4. The S-transversal for large Type Artin-Tits groups. With the notion
of critical sequence at hand, we can now introduce an S-transversal for a large type
Artin-Tits group and prove that Property H# holds for Artin-Tits group of large
type.

To verify that the set we define does give an S-transversal, we shall need the
following.

Proposition 3.10. Assume that AS is an Artin-Tits group of large type. Suppose
that S0 ⊆ S and g ∈ AS. Then

(1) Choose h ∈ AS0
to satisfy the equation g = g0h, where g0 is a minimal

length element of gAS0
. Let w0 and z be geodesic representative words of

g0 and h, respectively. Then w0z is a geodesic representative word of g.
(2) The left coset gAS0

contains a unique element of minimal length.

Proof. Let g0, h, w0, z be as specified in (1). It follows from the convexity of par-
abolic subgroups of Artin groups (proved for large type Artin-Tits groups in [10],
then more generally in [6]) that z is a word written over S0 ∪ S−1

0 . Since w0 and z

are freely reduced words, w0z must also be freely reduced; for otherwise w0 has a
proper suffix over S0 ∪ S−1

0 that freely cancels with a proper prefix of z, and hence
a proper prefix of w0 represents a shorter element of gAS0

than g0.
So now suppose that w0z is not geodesic. Then by Proposition 3.8 w0z admits

a rightward critical factorization αv1 · · · vnβ = αvβ such that the last letter of
the concatenation of the terms of τ(v1, . . . , vn) freely cancels with the first letter
s of the non-empty word β. Since w0 and z are geodesic, clearly vs cannot be a
factor of either. If v were a suffix of w0, then we could replace that suffix by the
concatenation of the terms of τ(v1, . . . , vn) to get a new choice of w0; but then we
would have free reduction between w0 and z. We deduce that v must overlap w0

and z.
Now, if for some k < n the first k terms of the critical factorization were within

w0, then by Lemma 3.6 those terms would give a critical factorization of a factor
of w0, and replacing them by the terms of τ(v1, . . . , vk) would give us a different
minimal choice for w0. With this choice, Lemma 3.6 now implies that w0z would
admit a rightward critical factorization with critical factors tvk+1, . . . , vn, where t

is the last letter of the concatenation of the terms of τ(v1, · · · , vk). Hence we can
assume that the first term v1 of the sequence overlaps both w0 and z.

Suppose now that v1 involves generators s1 and t1. Let s1 be the rightmost letter
of v1. Then we know that s1 is within z, so s1 ∈ S0 ∪ S−1

0 . But since v1 is not a
subword of z, we see that t1 6∈ S0 ∪ S−1

0 .
Let t be the generator immediately to the right of v1 in z (we know there must

be such a generator even when n = 1, since β is non-empty). Then, by Lemma 2.10,
t1 is the name of the generator at the end of τ(v1); so either t1 = t±1 (when we
have a free reduction), or t1 is the name of a generator in v2, which is a subword
of z. Either way t1 ∈ S0, and so we have a contradiction.

So all cases lead to a contradiction. We conclude that w0z must be a geodesic
representative word of g.
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So (1) holds. Now, (2) follows immediately. For if g1 is another element of
gAS0

, then g1 = g0h1 for some non-trivial h1 ∈ As0 , and so g0 has a geodesic
representative of which w0 is a proper prefix. �

Corollary 3.11. Assume that AS is an Artin-Tits group of Large type. For S0 ⊆ S,
Denote by T (S0) the set of elements of AS that are of minimal length in their left
AS0

-coset. Then, the sequence (T (S0))S0⊆S, is a S-sequence of transversals.

Proof. That each T (S0) is a left transversal follows immediately from part (2) of
Proposition 3.10. And 1 ∈ T (S0) is immediate since the element 1 is minimal in its
left coset AS0

. �

Proposition 3.12. Let AS be an Artin-Tits group of Large type. Then AS satisfies
the Property H#.

Proof. Let (T (S0))S0⊆S be the S-sequence of transversals defined in Corollary 3.11.
Choose subsets S0, S

′ of S, and let w be a word with w ∈ AS′ . Choose g0 in T (S0)
and h in AS0

with w = g0h, and let w0 and z be geodesic representative words of
g0 and h, respectively.

Since h ∈ AS0
, the convexity of parabolic subgroups ensures that z is written

over S0∪S−1
0 . By Proposition 3.10, the word w0z is a geodesic representative word

of w, and so is written over S′ ∪ S′−1
. Hence, w0 is written over S′ ∪ S′−1

, and z

is written over S′
0 ∪ S′

0
−1

, where S′
0 = S′ ∩ S0. So, in order to prove that Property

H# holds for AS , it remains to prove that w
0,1,2

 R w0z.
By proposition 2.18, there exists a geodesic representative word w′ so that

w
0,1,2

 R w′. It remains to show that w′ 1,2

 R w0z. Since w′ and w0z are two ge-
odesic representative words of the same element, this follows immediately from
Corollary 3.9. �

3.5. Proof of Theorems 1.6 and 1.4. We are now almost ready to prove The-
orem 1.6. Using Proposition 3.4, we deduce the result from Proposition 3.12 by
induction on the number of edges labelled with ∞ in the Coxeter graph. We need
a preliminary result

Lemma 3.13. Let (S1, R1) and (S2, R2) be two Artin-Tits presentations that satisfy
property H# with S1 ∩ S2 = ∅. Set

R1,2 = {s1s2 = s2s1 | s1 ∈ S1; s2 ∈ S2}

Then, the Artin-Tits presentation (S1 ∪ S2, R1 ∪R2 ∪R1,2) satisfies property H#.

Note that in the above lemma, the Artin-Tits group AS1∪S2
associated with the

presentation (S1∪S2, R1∪R2∪R1,2) is isomorphic to the direct product AS1
×AS2

.

Proof. Let (T (S1,0))S1,0⊆S1
, be a S1-sequence of transversals and (U(S2,0))S2,0⊆S2

,
be a S2-sequence of transversals. For S0 ⊆ S1 ∪ S2, set

V (S0) = {g1g2 | g1 ∈ T (S0 ∩ S1); g2 ∈ U(S0 ∩ S2)}.

Since AS1∪S2
is the direct product of AS1

and AS2
, it immediately follows that

(V (S0))S0⊆S , is a S-sequence of transversals.
Let S′ be a subset of S. Set S′

1 = S1 ∩ S′, S′
2 = S2 ∩ S′, S′

1,0 = S1 ∩ S′ ∩ S0 and

S′
2,0 = S2 ∩ S′ ∩ S0. Let w be a word in S ∪ S−1 so that w belongs to AS′ .
Since the latter group is the direct product of AS′

1
and AS′

2
, there exists a unique

pair (g1g2) so that w = g1g2 with g1 ∈ AS′

1
and g2 ∈ AS′

2
. Note that for any two
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words w′, w′′, any s1 in S1 and s2 in S2, and ε, τ ∈ {±1}, any transformation from
w′sεis

τ
jw” to w′sτj s

ε
iw” is an elementary transformation of type 1 or of type 2, since

s1s2 = s2s1 belong to R1,2 Therefore, there exist w1 in S1∪S−1
1 and w2 in S2∪S−1

2

so that w
1,2

 R w1w2. This imposes w1 = g1 and w2 = g2.
Since (S1, R1) satisfies property H#, there exist v1 ∈ (S′

1 ∪ S′
1
−1)∗ and u1 ∈

(S′
1,0 ∪ S′

1,0
−1

)∗ so that w1
0,1,2

 R v1u1 and v1 ∈ T (S1,0). Similarly, there exist v2 ∈

(S′
2∪S′

2
−1

)∗ and u2 ∈ (S′
2,0∪S′

2,0
−1

)∗ so that w2
0,1,2

 R v2u2 and v2 ∈ T (S2,0). Thus,

we get w
0,1,2

 R v1u1v2u2. By the same argument as before we have u1v2
1,2

 R v2u1 and

w
0,1,2

 R v1v2u1u2. The word v1v2 lies in (S′ ∪S′−1
)∗ and by definition of V (S0), the

element v1v2 belongs to this transversal. Finally, the word u1u2 lies in (S′
0∪S

′
0
−1

)∗.
Hence, Property H# holds for the presentation (S1 ∪ S2, R1 ∪R2 ∪R1,2). �

Proof of Theorem 1.6. Recall that T is the family of those Artin-Tits presentation
(S,R) whose Coxeter graph Γ satisfies the property that every connected full sub-
graph without an ∞-labelled edge is either of spherical type or of large type. For
(S,R) in T , we denote the number of edges labelled with ∞ in the associated graph
by d∞(S,R). Let (S,R) belong to T and denote by Γ its Coxeter graph. As an-
nounced in the introduction of this section, we prove the result by induction on
d∞(S,R).

If d∞(S,R) = 0, then T is a union of connected Coxeter graphs of spherical type
or of large type. Since Property H# holds for both types (see [8] for the spherical
case), by Lemma 3.13, (S,R) satisfies Property H#.

Now assume d∞(S,R) ≥ 1. Let s1, s2 belong to S so that ms1,s2 = ∞. Set
S1 = S \ {s2}, S2 = S \ {s1} and S1,2 = S \ {s1, s2}. Consider (S1, R1), (S2, R2)
and (S1,2, R1,2), the Artin-Tits presentations associated with the full subgraphs of
Γ generated by S1, S2 and S1,2, respectively. They are the presentations of the
subgroups A1, A2 and A1,2 of AS generated by S1, S2 and S1,2, respectively, and
AS is equal to the amalgamated product A1 ∗1,2 A2. Since (S,R) belongs to T ,
the presentations (S1, R1), (S2, R2) and (S1,2, R1,2) belong to T , too. Moreover,
we have d∞(S1, R1) < d∞(S,R), d∞(S2, R2) < d∞(S,R) and d∞(S1,2, R1,2) <

d∞(S,R). So by the induction hypothesis, Property H# hold for (S1, R1), (S2, R2)
and (S1,2, R1,2). So, (S,R) verifies PropertyH# by Proposition 3.4. It also satisfies
Property H by 3.4. �

Theorem 1.4 can be deduced as an immediate corollary, using Proposition 3.2 and
the fact that every Artin-Tits presentation of large type belongs to the family T .
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