
dual-loop approach, and adequate for an LO source for an
LMDS down converter.
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1. INTRODUCTION

The emergence of dispersion management as an important
design tool in optical communication systems has led to the
development of a number of nondestructive techniques to
determine the variation of the chromatic dispersion parame-

� �ter along a fiber span. Recently, two methods 1, 2 were
Ž .developed to measure the zero dispersion point ZDP of an

optical fiber based on the modulation-instability-induced gain
at wavelengths longer than the ZDP, and on a search for the
phase-matching condition in four-wave mixing. The disper-
sion at a given wavelength is then determined from the slope
of the dispersion around the ZDP. The chromatic dispersion
coefficients can also be measured directly based on the phase

� �mismatch of four wave-mixing 3 or estimated from the
� �observed distribution of mode-field diameter 4 .

In this paper, we propose a new non-destructive technique
to measure the dispersion distribution along a fiber. The
proposed method is based on the observation that the output
pulse shape from an optical fiber for an input pulse carries
some information about the optical fiber that it passes
through. The output waveforms depends on fiber characteris-
tics such as dissipation, dispersion, self-phase modulation,
Raman effect, etc., as well as the input pulse shapes. In
general, different pulse shapes and amplitudes will carry
different information about the fiber. Using an accurate
model of light propagation in optical fibers, in principle, one
can determine these fiber characteristics from the output
waveforms. The situation is analogous to a scattering prob-
lem in which the scattering parameters are used to determine
the structure of the scattering potential. In the following, we
demonstrate that the proposed method can be used to deter-
mine the longitudinal dispersion profile of an optical fiber.
Other fiber parameters such as the Kerr constant can be
determined in a similar way.

The success of the proposed method depends on the
choice of the theoretical model. The recent success of com-
puter simulations in the study of light propagation in optical
fibers underscores the fact that current theoretical models
have captured the essential features of the propagation. For
this study, we assume that light propagation in optical fibers
is described by the modified nonlinear Schrodinger equation¨

� q 1 � 2q � 3q2Ž . � � Ž .i � f z � q q � �i�q � i� 12 3� z 2 � t � t

Ž .where q z, t is the slowly varying envelope of the electric
field, z is the the normalized distance, t is normalized time,

Ž .and � is the loss coefficient. The function f z is the profile
of the second-order dispersion coefficient, and � is the
third-order dispersion coefficient. We assume that both �
and � are unknown constants. The case in which the third-
order dispersion coefficient is also a function of distance z

Ž .can be treated in the same way as f z . It is possible to
determine both the second- and third-order dispersion varia-
tion simultaneously with the proposed method. The output

Ž .waveform q L, t at a distance z � L of an input pulse
Ž . Ž . Ž .q 0, t depends on the dispersion profile f z 0 	 z 	 L , the

loss coefficient �, and the third-order dispersion coefficient
Ž .�. In general, it is difficult, if not impossible, to invert q L, t

Ž .analytically to obtain f z , �, and � directly. Therefore, we
formulate the inverse problem as an optimization problem as
follows.
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2. DESCRIPTION OF ALGORITHM

To simplify the following discussion, we assume for the mo-
ment that both � and � equal zero. The effects of loss and
third-order dispersion will be included in the simulations. We
assume that the longitudinal dispersion profile to be deter-

Ž .mined is given by f z . The output waveform at a distanceT
Ž . Ž .z � L of an input pulse shape q 0, t is given by q L, t .T

The output waveform for the same input pulse of a trial
Ž . Ž . Ž .dispersion profile f z using Eq. 1 is given by q L, t . We

Ž .measure the deviation of q L, t from the target output
Ž .waveform q L, t using error functions of the formT

n � 
 � Ž . Ž . � 2E � Ý H q L , t � q L , t dt or E �1 j� 1 � 
 j jT 2
n �
 � � Ž . � 2 � Ž . � 2 �2Ý H q L, t � q L, t dt. The summation isj�1 �
 j jT

Ž .done over a set of n different input pulses q 0, t , j �j
1, . . . , n. The error function E measures the amplitude and1

Ž . Ž .phase difference between q L, t and q L, t , while Ej jT 2
only measures the intensity difference between the two pulses.
The essence of our method is to iteratively adjust the trial

Ž .dispersion function f z so that the error function E or E1 2
is minimized for a chosen set of input pulses. The trial
dispersion profile will then approximate the dispersion profile

Ž .of the fiber, provided that the theoretical model in Eq. 1
adequately describes light propagation in the fiber.

In the following, we assume that the dispersion profile is a
continuous function of distance. The case in which there are

Ž .discontinuous jumps in the dispersion f z , such as those
found in the dispersion maps of some dispersion management
systems, will be considered elsewhere. We can then expand

Ž .the trial dispersion profile f z as a finite Legendre series:

N

Ž . Ž . Ž .f z � f � z 2Ý  
�1

where � are Legendre polynomials of order , f are the 

coefficients of the series expansion, and N is the order of
truncation. The choice of truncation order will affect the
accuracy of the determined dispersion profile and the compu-
tational time required. We measure the accuracy of the

L � Ž . Ž . � 2dispersion profiles using 	 � H dz f z � f z . The in-f 0 T
verse problem of determining the fiber dispersion profile
from the output waveforms is now formulated as a minimiza-
tion problem of the error function E with respect to the fi 

parameters. It is assumed that 	 is minimized when E isf i
minimized.

There are many ways to solve the minimization problem.
� �We choose the conjugate gradient method 6 because of its

robustness and efficiency. The gradient of the error function
dE �df , i � 1 or 2 is given byi 

n �� q � qdE �E �E�
 j ji i i Ž .� � dt 3HÝ �ž /df �q � f �q � f�
 j  j j�1

where �E ��q and �E ��q� are the functional derivativesi j i j
of the error function E with respect to q and q�, respec-i j j
tively. The sensitivity functions � q �� f and � q��� f satisfyj  j 

Ž .the linearized version of Eq. 1 , i.e.,

�� � 2�1j,  j ,  2 �2Ž . � �i � f z � 2 q � � q �j j,  j j , 2� z 2 � t

� 2q1 jŽ . Ž .� � � z 4 22 � t

Ž .where � z, t � � q �� f . Recall that � and � are as-j,  j 

sumed to be zero in this discussion. The functional deriva-
tives �E ��q and �E ��q� depend on the choice of thei j i j

Ž .error function E , and can be determined from q L, t andi j
Ž .q L, t directly. For example,jT

�E1 � �Ž . Ž . Ž .� q L, t � q L, t 5j jT�qj

and �E ��q� can be obtained by taking the complex conju-1 j
Ž . Ž . Ž .gate of Eq. 5 . Equations 1 � 5 constitute an optimization

Ž .algorithm to determine f z . From an initial guess of theT
Ž .dispersion profile f z , we determine the output waveform

Ž . Ž .q L, t using Eq. 1 . We then determine the sensitivityj
Ž . Ž .functions � q �� f using Eq. 4 . From Eq. 3 , we calculatej 

the gradient of the error function, and hence the correspond-
ing change in the parameters f using the conjugate-gradient

� �algorithm 6 . The procedure is repeated until a given accu-
racy is reached.

3. NUMERICAL RESULTS

Ž .In practice, the target output waveforms q L, t are mea-jT
sured experimentally. However, in order to study the feasibil-

Ž . Ž .ity of the proposed method, we also used Eq. 1 with f z �
Ž . Ž .f z to generate q L, t . Figure 1 shows the dispersionT jT

profiles determined from the optimization algorithm when
Ž .f z is a constant, a straight line, and an exponentiallyT

decreasing profile. Note that a log-linear plot is used; thus,
the straight line in Figure 1 corresponds to an exponentially
decreasing profile. The solid lines represent the target disper-
sion profiles in each of the three cases. The solid circles, solid
squares, and crosses represent simulation results for � �
� � 0. All simulated dispersion profiles in Figure 1 have
	 � 10�5.f

The dispersion profiles are determined with only one
Ž .input pulse n � 1 in all cases. The input pulse shape is

Ž . �1�4 Ž 2 .Gaussian, with q 0, t � A� exp �t �2 . The initial am-
plitude A is chosen to be 1.5, and the pulse is propagated for
a distance L � 1. We have used other input pulse shapes
such as hyperbolic secant pulses. We found that simulations
using Gaussian input pulses in general converge faster than
those of the hyperbolic secant pulses. We have used a pulse
amplitude A between 0.5 and 3. For the same pulse width,
pulses with higher amplitudes are more sensitive to the

Ž .variations in f z . In other words, for the same changes in

0.1

1

0 0.5 1

f(
z)

Distance

Figure 1 Simulated results for constant, straight line, and exponen-
tial decreasing dispersion profiles. The solid lines represent the
targeted results. The solid circles, solid squares, and crosses are
simulated results when � � � � 0. The open circles are results for
� � 0.69 and � � 0. The open squares are results for � � 0.69 and
� � 1
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Ž .f z , stronger input pulses will produce larger changes in the
Ž .output pulse q L, t than those for weaker pulses. Thus, the

values of the error function which measures the difference
between the target waveform and the simulated waveform

Ž .will be larger. For example, to determine f z to an accuracy
of 	 � 10�5, E can be as large as 10�1 for A � 3, while Ef 2 2
cannot be larger than 10�7 for A � 0.5. An error bound for
E of 10�7 in the pulse profiles is, of course, impractical. The2
situation is worse when fiber loss is taken into account
because the effect of nonlinearity is weakened. A more
stringent bound for E is required for the same 	 when2 f
compared to the lossless cases. For large amplitude pulses,

Ž .depending on the initial guess of f z , the algorithm some-
times diverges or converges to a local minimum of the error

Ž .function, i.e., the algorithm gives an incorrect answer for f z
even though the error function E reaches the prescribed2
bound. Therefore, although our results indicate that a single
input pulse is sufficient to determine the dispersion profile, a
number of pulses arranged in order of increasing sensitivity is
required to determine the dispersion profile correctly.

We had used both E and E as the error functions in1 2
determining the dispersion profile. The algorithm converges
to the solution much faster when E is used because both the1
amplitude and phase information of the output waveforms
are included. The results depicted in Figure 1 are obtained

Ž .using E , i.e., without the phase information in q L, t . In2 jT
all cases, the initial trial dispersion profile is chosen arbitrar-

Ž .ily as f z � 0.2.
To include the effect of loss and third-order dispersion,
Ž . Ž .Eqs. 3 and 4 are modified accordingly to take into account

the variations with respect to the � and � parameters. The
open circles in Figure 1 are simulated results for an exponen-
tially decreasing profile with � � 0.69 and � � 0, and the
open squares are simulated results with � � 0.69 and � � 1
for the same exponentially decreasing profile. At � � 0.69,
the signal power will be reduced to 1�4 of its initial value
after propagation of a normalized distance z � 1. All other
parameters are the same as the � � 0 and � � 0 case.

For the results presented in Figure 1, we use five Legen-
Ž .dre polynomials N � 5 to determine the profiles. The spa-

tial resolution of the measurement can be improved by in-
Ž .creasing the number of modes used in Eq. 2 at the expense

of computational time. For example, we have the case where
there are small sinusoidal noise components in an exponen-
tially decreasing dispersion profile given by

Ž . Ž . � Ž . Ž .� Ž .f z � exp �� z � � sin 4� z � cos 4� z 6T

where � is the rate of decrease of the dispersion profile and
� is the amplitude of the sinusoidal fluctuation. We choose
� � 2� such that the exponentially decreasing dispersion
matches the exponentially decreasing pulse power. For � �
0.69 and � � 0.1, the truncation error is 5 � 10�3 for N � 5
and 2 � 10�6 for N � 10. Figure 2 shows the simulated
results for N � 5 and N � 10. The parameter � � 0. The
solid line represents the targeted results. The dashed line and
the dotted lines are results for N � 5 and N � 10, respec-
tively. For N � 5, it takes 6000 CPU seconds for 	 to reachf
an accuracy 6 � 10�3, while for N � 10, it takes 9000 CPU
seconds for 	 to reach an accuracy 6 � 10�4. The simula-f
tions were done on an ALPHAstation 500 workstation. We
use 512 grid points for the t-direction and 1000 steps in the
z-direction.

In real units, the pulse width required for the measure-

0.5

1

1.5

0 0.5 1

f(
z)

Distance

Figure 2 Simulated results for exponentially decreasing dispersion
profiles with sinusoidal noise components. The solid line represents
the targeted results. The dashed line represents results using five
Legendre modes, and the dotted line represents simulated results
using ten Legendre modes. The parameters � � 0.69 and � � 0

Ž . 'ment is given by � ps � 1.13 L�D , where L is the length
of the fiber span in kilometers and D is the peak dispersion
value in ps�nm � km. If L � 50 km and D 
 1 ps�nm � km,
the pulse width required is 8 ps. If the effective area of the
fiber is 60 m2, the peak power of the input pulse will be
20 mW.

4. CONCLUSION

We demonstrate that it is possible to determine the fiber
dispersion distribution using a theoretical model of light
propagation in optical fibers and an optimization algorithm.
The accuracy of the results depends on the validity of the
fiber model used. The effects of timing jitter and amplitude

Ž .jitter are not taken into account in Eq. 1 , but because of the
Ž .random nature of the jitters, Eq. 1 should adequately de-

scribe the average pulse evolution. The current model does
Ž .not include polarization mode dispersion PMD , which could

become important for fibers with large PMD coefficients. The
impact of PMD and noises in the output pulse forms on the
accuracy of the determined dispersion profiles is under inves-
tigation. The formalism presented here can be generalized to
determine other fiber parameters such as the longitudinal
distribution of third-order dispersion coefficient or the Kerr
constant.
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