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S U M M A R Y 

The ratio of the magnetic power spectrum and the secular variation spectrum measured at the 
Earth’s surface provides a timescale τsv ( l) as a function of spherical harmonic degree l. τsv is 
often assumed to be representative of timescales related to the dynamo inside the outer core 
and its scaling with l is debated. To assess the validity of this surmise and to study the time 
variation of the geomagnetic field Ḃ inside the outer core, we introduce a magnetic timescale 
spectrum τ ( l, r ) that is valid for all radius r above the inner core and reduces to the usual τsv at 
and above the core–mantle boundary (CMB). We study τ in a numerical geodynamo model. 
At the CMB, we find that τ ∼ l −1 is valid at both the large and small scales, in agreement with 

previous numerical studies on τsv . Just below the CMB, the scaling undergoes a sharp transition 

at small l. Consequently, in the interior of the outer core, τ exhibits different scaling at the large 
and small scales, specifically, the scaling of τ becomes shallower than l −1 at small l. We find 

that this transition at the large scales stems from the fact that the horizontal components of the 
magnetic field evolve faster than the radial component in the interior. In contrast, the magnetic 
field at the CMB must match onto a potential field, hence the dynamics of the radial and 

horizontal magnetic fields are tied together. The upshot is τsv becomes unreliable in estimating 

timescales inside the outer core. Another question concerning τ is whether an argument based 

on the frozen-flux hypothesis can be used to explain its scaling. To investigate this, we analyse 
the induction equation in the spectral space. We find that away from both boundaries, the 
magnetic diffusion term is negligible in the power spectrum of Ḃ . Ho wever , Ḃ is controlled by 

the radial deri v ati ve in the induction term, thus invalidating the frozen-flux argument. Near the 
CMB, magnetic diffusion starts to affect Ḃ rendering the frozen-flux hypothesis inapplicable. 
We also examine the effects of different velocity boundary conditions and find that the above 
results apply for both no-slip and stress-free conditions at the CMB. 

Key words: Magnetic field variations through time; Dynamo: theories and simulations; Core. 
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 I N T RO D U C T I O N  

he time variation of the Earth’s magnetic field originates from
an y dif ferent processes and covers a wide range of timescales. In

articular, the secular variation, which ranges from years to cen-
uries, is believed to be primarily related to the magnetohydrody-
amics in the outer core that generates the geomagnetic field. Thus
he secular variation observed at the Earth’s surface is often used to
nfer properties of the dynamo in the planetary interior (e.g. Chris-
ensen & Tilgner 2004 ). Ho wever , the form of the magnetic field
bove the core–mantle boundary (CMB) is constrained by the mag-
etic boundary conditions at the CMB. So to what extent is the time
ependence of the magnetic field inside the outer core revealed by
he secular variation at the surface? What is the role played by the
oundary conditions at the CMB? In this paper , we in vestigate these
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ssues in terms of the power spectra of the internal magnetic field
B and its time deri v ati ve Ḃ = ∂ B /∂t . 

Although geomagnetic secular variation has been recorded and
tudied since the 16th century or earlier (Jackson & Finlay 2015 ),
igh quality data has only been recently available thanks to the satel-
ite missions of Ørsted (Neubert et al. 2001 ), CHAMP (Reigber
t al. 2002 ), SAC-C (Colomb et al. 2004 ) and Swarm (Olsen et al.
013 ) that launched between 1999 and 2013. The broad global cov-
rage and long time span of the magnetic measurement provided by
hese missions, supplemented by observations from ground-based
tations, make it possible to construct accurate time-dependent mod-
ls of the magnetic field at the Earth’s surface (e.g. Lesur et al. 2010 ;
inlay et al. 2020 ; Fournier et al. 2021 ; Hammer et al. 2021 ). These
odels provide the Gauss coefficients g m 

l ( t) and h 

m 

l ( t) as well as
heir time deri v ati ves ġ m ( t) and ḣ 

m ( t) as a function of time t . The
l l 
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Gauss coefficients completely specify B above the CMB through 
the relation B = −∇V where the scalar potential V is given by 

V ( r, θ, φ, t) = r E 

∞ ∑ 

l= 1 

l ∑ 

m = 0 

(r E 
r 

)l+ 1 
P 

m 

l ( cos θ ) 

×[ g m 

l ( t ) cos mφ + h 

m 

l ( t ) sin mφ] , r � r o . (1) 

Here, ( r, θ, φ) are the standard spherical coordinates based on the 
rotation axis, r E is the mean radius of the Earth and r o is the radius 
of the outer core. P 

m 

l are the Schmidt semi-normalized associated 
Legendre polynomials of degree l and order m . It follows from 

eq. ( 1 ) that Ḃ above the outer core is fully described by ġ m 

l ( t) and 
ḣ 

m 

l ( t) . 
Magnetic field structures of different spatial scales may vary on 

different timescales. This motivates using a spectral approach in 
the study of secular variation. In terms of the Gauss coefficients, 
the magnetic power spectrum or the Lowes–Mauersberger spectrum 

(Mauersberger 1956 ; Lowes 1966 ), is defined as 

R( l, r, t) = 

(r E 
r 

)2 l+ 4 
( l + 1) 

l ∑ 

m = 0 

[
( g m 

l ) 2 + ( h 

m 

l ) 
2 
]
, r � r o . (2) 

By analogy, a secular variation spectrum is defined using the time 
deri v ati ve of the Gauss coefficients (Lowes 1974 ), 

R sv ( l, r, t) = 

(r E 
r 

)2 l+ 4 
( l + 1) 

l ∑ 

m = 0 

[
( ̇g m 

l ) 2 + ( ̇h 

m 

l ) 
2 
]
, r � r o . (3) 

From R and R sv , a spectrum of timescale can be constructed (Booker 
1969 ), 

τsv ( l, t) = 

√ 

R 

R sv 
, r � r o . (4) 

Note that τsv is independent of r . 
The spectrum R sv has been obtained for magnetic field models 

built from satellite data. A re vie w is gi ven b y Gillet et al. ( 2010 )
for earlier generations of these models. More recent results are 
reported in, for example, Holme et al. ( 2011 ) and Finlay et al. 
( 2020 ). Observational errors and influence of the lithospheric field 
mean that R sv can be reliably computed only up to about l = 17 
or so (Finlay et al. 2020 ). It is found that in this range of l, R sv 

increases with l in a manner that is compatible to l( l + 1) (Holme 
et al. 2011 ), or possibly l 2 . Most likely, R sv reaches a maximum at 
some l > 17 before decreasing at large l. The full shape of R sv is 
currently not known from observational data and the location of its 
maximum is an open question. 

Geomagnetic secular variation has also been studied using nu- 
merical models by, for example, Christensen & Olson ( 2003 ), Chris- 
tensen & Tilgner ( 2004 ) and Lhuillier et al. ( 2011b ). A common 
result of these studies is that τsv follows the power law 

τsv = τ∗ · l −γ (5) 

with the scaling exponent γ = 1 . More recent simulations (Chris- 
tensen et al. 2012 ; Bouligand et al. 2016 ) obtained the same scaling 
and Amit et al. ( 2018 ) demonstrated numerically that γ = 1 holds 
separately for the equatorial symmetric and antisymmetric parts of 
the magnetic field. On the other hand, analysis using satellite data 
gi ves di verse v alues of γ . Se veral works found v alues in the range 
1 . 32 � γ � 1 . 45 (Holme & Olsen 2006 ; Olsen et al. 2006 ; Lesur
et al. 2008 ; Hulot et al. 2010 ; Holme et al. 2011 ) but γ = 1 was also
reported (Lhuillier et al. 2011b ; Christensen et al. 2012 ; Amit et al. 
2018 ). We note that in some of the previous works, τsv is calculated 
for a given epoch while in others, its long-time average is consid- 
ered. This may partly account for the disparities in the observed 
value of γ , as discussed in Lhuillier et al. ( 2011b ) and Bouligand 
et al. ( 2016 ). 

Theoretically, Lowes ( 1974 ) proposed that R sv ∼ l(2 l + 1) R. 
This implies the scaling τsv ∼ 1 / 

√ 

l(2 l + 1) which is almost in- 
distinguishable from τsv ∼ l −1 . An argument can also be made for 
γ = 1 if one invokes the frozen-flux hypothesis and then further 
assumes the horizontal deri v ati ve scales as ∇ h ∼ l (Holme & Olsen 
2006 ; Christensen et al. 2012 ). This frozen-flux argument is meant 
only for the radial component B r of the magnetic field and τsv in 
eq. ( 4 ) is indeed fully specified by B r alone because B is constrained 
to match onto a potential field at the CMB. There is no such con- 
straint in the interior of the outer core. So it is interesting to see 
if the frozen-flux argument can be used to predict timescales of 
the dynamo in the interior, given magnetic diffusion is likely to be 
very small there. Another consequence of the magnetic boundary 
condition is magnetic diffusion becomes important in a boundary 
layer below the CMB (Jault & Le Mou ël 1991 ; Braginsky & Le 
Mou ël 1993 ). Then, is it valid to use the frozen-flux hypothesis to 
explain the scaling of τsv above the CMB? Fur ther more, if the no- 
slip condition is used for the velocity, an Ekman–Hartmann layer 
may develop. Does it play any role here? What is the dominant 
balance between different effects inside the CMB boundary layer 
and how does it lead to the scaling of τsv ? 

In addition to the scaling exponent γ , eq. ( 5 ) also introduces 
a timescale τ∗. Being interpreted as a typical secular variation 
timescale, τ∗ was used to deduce the magnetic Reynolds number 
inside the outer core (Christensen & Tilgner 2004 ), to estimate 
the predictability of the geodynamo (Lhuillier et al. 2011a ) and 
to rescale the time axis for the interpretation of simulation results 
(Bouligand et al. 2016 ). This leads to the important question of 
whether τ∗ can generally be considered as a typical timescale for 
the time variation of the magnetic field inside the outer core. 

As discussed above, all previous results are based on the Gauss 
coefficients and refer to the behaviour of the magnetic field outside 
the core. In this paper, we introduce a magnetic energy spectrum 

F ( l, r ) , a magnetic time-variation spectrum F Ḃ ( l, r ) and a magnetic 
timescale spectrum τ ( l, r ) that are defined for all regions above the 
inner core. We examine these spectra at different depth r , including 
the CMB boundary layer, using a numerical geodynamo model in 
order to shed some light on the questions raised in this section. A 

main result is that for the magnetic field components with smaller 
l, the scaling of the timescales with l at the core surface is different 
from that in the interior of the outer core. So it is generally unreli- 
able to infer typical magnetic timescales inside the outer core from 

surface observations. 

2  S P E C T R A  F O R  M A G N E T I C  F I E L D  

T I M E  VA R I AT I O N  I N S I D E  T H E  O U T E R  

C O R E  

We start by reviewing the magnetic energy spectrum previously used 
by Tsang & Jones ( 2020 ) in their study of the Jovian dynamo. For 
a given magnetic field B ( r, θ, φ, t) , the magnetic energy spectrum 

F ( l, r, t) at radius r and time t is defined by the relation 

∞ ∑ 

l= 1 
F ( l, r, t) ≡ 1 

4 π

∮ 
| B ( r, θ, φ, t) | 2 sin θ dθ dφ. (6) 

Unlike the Lowes–Mauersberger spectrum R( l, r, t) in eq. ( 2 ), 
F ( l, r, t) is defined for all r greater than the radius of the inner core. 
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he expression on the right of eq. ( 6 ) is proportional to the average
agnetic energy over a spherical surface of radius r . Loosely speak-

ng, F ( l, r, t) indicates the amount of magnetic energy residing in
he spatial scale characterized by the spherical har monic deg ree l.

e now expand B in terms of a basis set of vector spherical har-
onics 

{
Y 

m 

l ( θ, φ) , � 

m 

l ( θ, φ) , � 

m 

l ( θ, φ) 
}

(defined in Appendix A ): 

B = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

[
q lm 

( r, t) Y 

m 

l + s lm 

( r, t) � 

m 

l + t lm 

( r, t) � 

m 

l 

]
. (7) 

rom eq. (A4), q lm 

is the coefficient in the spectral expansion of B r 

hile the pair ( s lm 

, t lm 

) is related to B θ and B φ . Substituting eq. ( 7 )
nto eq. ( 6 ) yields 

F ( l, r, t) = 

1 

(2 l + 1) 

l ∑ 

m = 0 

(| q lm 

| 2 + | s lm 

| 2 + | t lm 

| 2 )(4 − 3 δm, 0 ) , (8) 

here δm, 0 is the Kronecker delta. For the rest of this paper,
e are mostly interested in the time-averaged spectrum F ( l, r ) ≡
 F ( l, r, t) 〉 t , where 〈 ·〉 t denotes the long-time average over a statis-
ically steady state. 

Next, we define the magnetic time-variation spectrum F Ḃ ( l, r ) .
rom eq. ( 7 ), we have the expansion for the time deri v ati ve of the
agnetic field: 

Ḃ = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

[
q̇ lm 

( r , t) Y 

m 

l + ̇s lm 

( r , t) � 

m 

l + ̇t lm 

( r , t) � 

m 

l 

]
. (9) 

hen in complete analogue to eq. ( 6 ), the time-variation spectrum
F Ḃ is defined by 

∞ ∑ 

l= 1 
F Ḃ ( l, r, t) ≡

1 

4 π

∮ 
| ̇B ( r, θ, φ, t) | 2 sin θ dθ dφ (10) 

nd its time average is given in terms of the expansion coefficients
n eq. ( 9 ) as 

F Ḃ ( l, r ) = 

1 

(2 l + 1) 

l ∑ 

m = 0 

〈| ̇q lm 

| 2 + | ̇s lm 

| 2 + | ̇t lm 

| 2 〉
t 
(4 − 3 δm, 0 ) . (11) 

Finally, equipped with F and F Ḃ , we construct the magnetic
imescale spectrum τ ( l, r ) as follows, 

( l, r, t) ≡
√ 

F ( l, r, t) 

F Ḃ ( l, r, t) 
, (12) 

( l, r ) ≡ 〈 τ ( l, r, t) 〉 t . (13) 

e choose to time average the instantaneous τ ( l, r, t) rather than
efining τ ( l, r ) using the time averages of F ( l, r, t) and F Ḃ ( l, r, t) .
ur results appear to be insensitive to this choice. Note that τ
enerally is a function of r . We assume the mantle is electrically
nsulating. Then by definition, F = R and F Ḃ = R sv above the CMB
nd it follows that τ = τsv and becomes independent of r for r � r o .

 T H E  N U M E R I C A L  M O D E L  

e now describe the numerical geodynamo model used in the
resent study. It consists of a spherical shell of inner radius r i 
nd outer radius r o and the radius ratio is r i /r o = 0 . 35 . The elec-
rically conducting Boussinesq fluid that fills the shell has density
( r , t) , kinematic viscosity ν, magnetic dif fusi vity η and is ro-

ating at an angular speed � about the z-axis. We consider the
ituation when convection in the fluid is driven by compositional
uoyancy due to light elements being released from the inner core
oundary. Consistent with the Boussinesq approximation, the grav-
ty g ( r ) = −( g o /r o ) r ̂  r with g o being the magnitude of g at the
MB. The density is given by ρ = ρ0 [1 − ( 
 − 
 0 )] where 
 ( r , t)

s the mass fraction of light elements and 
 0 ( t) its volume average.
he constant ρ0 is the density when 
 = 
 0 . Let ξ ( r , t) = 
 − 
 0 ,

hen the equations governing B , ξ and the velocity u are: 

∂ u 

∂t 
+ ( u · ∇) u + 2 �ˆ z × u 

= − 1 

ρ0 
∇ p ′ + 

g o 
r o 

ξr ̂  r + 

1 

ρ0 μ0 
( ∇ × B ) × B + ν∇ 

2 u , (14a) 

∂ B 

∂t 
= ∇ × ( u × B ) + η∇ 

2 B , (14b) 

∂ξ

∂t 
+ u · ∇ ξ = κ∇ 

2 ξ − S 

ρ0 
, (14c) 

 · u = 0 , (14d) 

 · B = 0 . (14e) 

n eq. ( 14a ), p ′ is a modified pressure and μ0 = 4 π × 10 −7 H/m
s the permeability of free space. In eq. ( 14c ), κ is the dif fusi vity
f the light elements and the constant S > 0 is a sink to ξ . Physi-
ally, S = ρ0 ∂
 0 /∂t is the secular rate of increase of 
 0 due to the
omogenization of light elements into its surrounding. 

At the inner boundary, u satisfies the no-slip condition. At the
uter boundary, we shall consider both the cases of a no-slip and a
tress-free condition for u . We assume it is electrically insulating
utside the spherical shell, hence B matches onto a potential field at
oth boundaries. A no-flux condition is employed for ξ at the outer
oundary: ∂ ξ/∂ r | r o = 0 . The boundary condition for ξ at the inner
oundary is set by the fact that, by definition, the volume average
f ξ vanishes. Then if we assume the release of light elements
s uniform over the inner boundar y, integ rating eq. ( 14c ) over the
omain gives 

∂ξ

∂r 

∣∣∣∣
r i 

= − S 

3 κρ0 

r 3 o − r 3 i 

r 2 i 

. (15) 

dditionally, 
∮ 

ξ sin θ dθ dφ = 0 is imposed at r = r o to fix an
rbitrary constant in ξ that would be present if flux conditions are
sed e xclusiv ely. 

To non-dimensionlize eq. (14), we use the shell thickness d =
 o − r i as the unit of length and d 2 /η as the unit of time. The units
or the fields of u , B , ξ and p ′ are η/d , 

√ 

�ρ0 ημ0 , Sd 2 /ρ0 η and
ρ0 η, respecti vel y. This gi ves the following non-dimensional form
f eq. (14): 

∂ u 

∂t 
+ ( u · ∇) u + 2 

P m 

Ek 
ˆ z × u 

= − P m 

Ek 
∇ p ′ + 

Ra P m 

2 

P r 
ξr ̂  r + 

P m 

Ek 
( ∇ × B ) × B + P m ∇ 

2 u , 

(16a) 

∂ B 

∂t 
= ∇ × ( u × B ) + ∇ 

2 B , (16b) 

∂ξ

∂t 
+ ( u · ∇ ) ξ = 

P m 

P r 
∇ 

2 ξ − 1 , (16c) 

 · u = 0 , (16d) 

 · B = 0 , (16e) 

here the non-dimensional numbers are: 

Ra = 

g o Sd 6 

r o ρ0 ηκν
, Ek = 

ν

�d 2 
, P r = 

ν

κ
, P m = 

ν

η
. (17) 
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Table 1. Parameter values used in the four simulations considered in this 
study. The parameters are defined in eq. ( 17 ) and the text below it. The last 
column shows the boundary condition for the velocity at the outer boundary. 

run Ra Ek Rm P r P m 

1 6 . 75 × 10 8 2 . 5 × 10 −5 504 1 2.5 No-slip 
2 6 . 75 × 10 8 2 . 5 × 10 −5 702 1 2.5 Stress-free 
3 1 . 625 × 10 8 1 × 10 −4 474 1 2.5 No-slip 
4 1 . 875 × 10 8 2 . 5 × 10 −5 260 1 2.5 No-slip 

 

 Figure 1. For run 1 in Table 1 : (a) a snapshot of the time deri v ati ve of the 
radial magnetic field Ḃ r ; (b) the time-averaged magnetic energy spectrum F 
in eq. ( 8 ) and the magnetic time-variation spectrum F Ḃ in eq. ( 11 ) computed 
at the CMB r = r o . 
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In these units, the magnetic Reynolds number Rm is given by the 
root-mean-squared value of the velocity magnitude | u | over the 
spherical shell. 

We solve eq. (16) numerically using the pseudo-spectral code 
developed in Willis et al. ( 2007 ). We carried out four simulations 
with the parameters given in Table 1 . Each of these simulations 
produces a dipolar magnetic field that is categorized as ‘Earth-like’ 
in Christensen et al. ( 2010 ). We use 162 to 168 grid points in the 
radial direction and the maximum degree and order in the spherical 
harmonics expansion are both between 168 and 176. Typical time- 
step used in the simulations is δt = 10 −7 . Time deri v ati ves such as 
q̇ lm 

in eq. ( 9 ) are computed using the forward difference formula 

q̇ lm 

( t ) = 

q lm 

( t + �t ) − q lm 

( t ) 

�t 
(18) 

with �t = 5 × 10 −9 . After the system reaches a statistically steady 
state, time averages are calculated over about 100–150 snapshots 
spanning about 2 magnetic diffusion times. We first focus on run 1 
which uses the no-slip condition at the outer boundary. Discussion 
on run 2 with stress-free condition at r = r o is postponed until Sec- 
tion 8 . Then in Section 9 , we compare these results with run 3 which 
has a larger Ek and run 4 which has a smaller Rm . 

F rom run 1, F ig. 1 (a) shows a snapshot of the time deri v ati ve of
the radial magnetic field Ḃ r at r = r o . Fig. 1 (b) plots on the same 
graph the two spectra F and F Ḃ at r = r o . Focusing on the large 
scales, we see that, excluding l = 0 , F ( l, r o ) is flat to a very good
approximation on the log scale, compatible with the ‘white source 
hypothesis’ at the CMB. We also find that F Ḃ ( l, r o ) ∼ l 2 at the large 
scales, compatible with satellite observations. We shall come back 
to these scalings in later sections. 

4  T H E  M A G N E T I C  T I M E S C A L E  

S P E C T RU M  τ ( l, r) 

From our simulation data, we compute the magnetic timescale spec- 
trum τ ( l, r ) as a function of l at different r . The results are plotted 
in Fig. 2 (a). Generally τ ( l, r ) decreases with increasing l for all r . 
If we consider τ ( l, r ) as the typical timescale for the temporal vari- 
ation of magnetic field structures with a spatial scale characterized 
by l, then Fig. 2 (a) suggests that magnetic field structures of larger 
spatial scales vary on longer timescales than those of smaller spatial 
scales. 

Let us now study the scaling of τ ( l, r ) with l at different depth 
inside the outer core. At the CMB r = r o , excluding the dipole, we 
find the clean po wer-la w scaling of 

τ ∼ l −1 , l � 2 . (19) 

This agrees with results from previous numerical studies but differs 
from some observational results, as discussed in the introduction. A 

more intriguing finding of the present work is that τ behaves quite 
dif ferentl y from eq. ( 19 ) inside the outer core. As r decreases, τ
starts to display different l-dependence at the large scales and the 
small scales. Fig. 2 (a) shows that while τ ∼ l −1 still holds for large 
l, τ becomes shallower than l −1 at small l, with slope closer to the 
dotted l −0 . 5 lines than the dashed l −1 lines. We denote the value of l
at which the slope changes by l τ . We find that, very roughly, l τ ≈ 13 
in all four simulations listed in Table 1 . l τ may have a different value 
for more extreme simulation parameters or in the Earth. For the main 
results of the present study, the value of l τ is not so important, it 
only marks the boundary of two different scaling regimes. 

It is interesting that the change in the scaling of τ for l < l τ occurs 
within a very thin boundary layer under the CMB. We can see in 
Fig. 2 (a) that the slope of τ for l < l τ at r = 0 . 9985 r o has already
changed to l −0 . 5 , despite it being l −1 at r = r o . Fig. 2 (b) plots τ ( l, r )
as a function of r for selected l and illustrates clearly the very rapid 
changes in the small- l modes, especially the dipole, just beneath the 
CMB. This sharp slowing down of the large-scale magnetic field 
within the CMB boundary layer as r increases leads to the simple 
po wer-la w scaling eq. ( 19 ) at the surface. For the large- l modes, 
Fig. 2 (b) shows that τ v aries onl y weakl y with r . Abrupt changes 
are also found near the inner boundary, ho wever , we shall focus on 
the interior of the outer core and the CMB, i.e. r 
 r i , for the rest 
of this paper. 

art/ggae234_f1.eps
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Figure 2. (a) T ime-a veraged magnetic timescale spectrum τ ( l, r ) , defined 
in eq. ( 13 ), at different radius r for run 1. Here, r o is the radius of the 
CMB. This shows the different types of scaling found at the CMB and in 
the interior. (b) τ ( l, r ) as a function of r for selected modes l, showing the 
sharp transition near the CMB. 
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used for the fit in each case is indicated in the figure. 
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To quantify the results described above, we perform a least-square
t of τ ( l, r ) to the power law eq. ( 5 ) at different r and we have done

his separately for small and large l. Fig. 3 plots γ ( r ) and τ∗( r )
ersus r and also gives the range of l where the fit is performed. For
he small scales l > l τ , γ ≈ 1 both at the surface and in the interior,
here ‘interior’ refers to the region away from both boundaries. For

he large scales l < l τ , γ ≈ 0 . 5 in the interior and then shoots up to
≈ 1 at the surface. Thus to a reasonably good approximation, we

ave the following hybrid scaling in the interior of outer core, 

∼ l −0 . 5 , 2 � l � 13 , (20a) 

∼ l −1 , 30 � l � 100 , (20b) 

onsistent with the scalings plotted in Fig. 2 (a). 
As discussed in Section 1 , the pre-factor τ∗( r o ) in the po wer-la w

t for the spectrum τ ( l, r o ) at the surface is sometimes taken as a
epresentative timescale of the geomagnetic secular variation. Previ-
us observational studies found 500 yr � τ∗( r o ) � 1000 yr . For our
imulation, adopting the values of magnetic diffusivity η = 0 . 723
 

2 s −1 (Pozzo et al. 2012 ) and shell width d = 2 . 265 × 10 6 m,
ig. 3 (b) shows that τ∗( r o ) ≈ 9 × 10 −3 or 2025 yr in dimensional
nit. We see from Fig. 2 that this is not representative of τ ( l, r ) at
ny l in the interior where τ ranges from 10 −5 (2.25 yr) at the small
cales to 10 −3 (225 yr) at the large scales. For comparison, the dipole
t the CMB has a much slower timescale of τ (1 , r o ) ≈ 5 × 10 −2 or
1 250 yr. 

 P O L O I DA L  A N D  T O RO I DA L  

I M E S C A L E S  

t the CMB, the poloidal part B Pol of the magnetic field matches
nto a potential field and the toroidal part B Tor vanishes. It turns out
he sharp change in the character of τ near the CMB described in
ection 4 is linked to these changes in B dictated by the magnetic
oundary condition. To see this, we introduce timescale spectra
ssociated with B Pol and B Tor and compare them with τ (which is
efined using the full magnetic field B ). 

To proceed, let us first define the time-averaged spectra 

F q ( l, r ) = 

1 

(2 l + 1) 

l ∑ 

m = 0 

〈| q lm 

| 2 〉
t 
(4 − 3 δm, 0 ) , (21) 

F q̇ ( l, r ) = 

1 

(2 l + 1) 

l ∑ 

m = 0 

〈| ̇q lm 

| 2 〉
t 
(4 − 3 δm, 0 ) , (22) 

sing the decomposition of B gi ven b y eq. ( 7 ). We also define F s ,
F ṡ , F t and F ṫ in a completely analogous manner. Then we see from
qs ( 8 ) and ( 11 ) that both F and F Ḃ can be written as a sum of three
arts: 

F = F q + F s + F t , (23) 

F Ḃ = F q̇ + F ṡ + F ṫ . (24) 

ow via the scalar poloidal potential P and toroidal potential T , B 

an be decomposed as: 
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B = B Pol + B Tor , (25a) 

B Pol = ∇ × ∇ × ( P r ) , (25b) 

B Tor = ∇ × ( T r ) , (25c) 

where r = r ̂  r . By expanding P and T in terms of the scalar spherical 
harmonics Y 

m 

l as in eq. (A5), it can be shown that: 

B Pol = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

(
q lm 

Y 

m 

l + s lm 

� 

m 

l 

)
, (26a) 

B Tor = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

t lm 

� 

m 

l , (26b) 

and q lm 

, s lm 

, t lm 

are related to the expansion coefficients of P and 
T by eq. (A6). Thus we have decomposed the expansion eq. ( 7 ) for 
B into a poloidal part and a toroidal part. It is clear from eq. (26) 
or eq. (A6) that t lm 

fully describes the toroidal magnetic field while 
the pair ( q lm 

, s lm 

) is related to the poloidal magnetic field. 
Following the same logic from eq. ( 7 ) through eq. ( 13 ), we define 

a timescale spectrum associated with B Pol as 

τPol ( l, r ) = 

〈 √ 

F q + F s 

F q̇ + F ṡ 

〉 
t 

. (27) 

Similarly, a timescale spectrum associated with B Tor is defined as 

τTor ( l, r ) = 

〈 √ 

F t 

F ṫ 

〉 
t 

. (28) 

Finally, we introduce one more timescale spectrum τr which is 
rele v ant to the radial magnetic field B r . Recall from eq. ( A4a ) that 
q lm 

is the spectral coefficient of B r . Using eq. ( A2a ) we can write 

B r ̂  r = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

q lm 

Y 

m 

l , (29) 

which is of similar form to eq. ( 26b ). Therefore we define 

τr ( l, r ) = 

〈 √ 

F q 

F q̇ 

〉 
t 

. (30) 

One may also want to define, in a similar fashion as above, a 
timescale spectrum for P . Ho wever , as sho wn in Appendix B , such 
spectrum will be identical to τr . Similarly, τTor also serves as the 
timescale spectrum for T . 

Fig. 4 plots τ , τPol , τTor and τr versus l at three different r repre- 
senting locations in the interior of the outer core, inside the CMB 

boundary layer and at the CMB. In the interior, Fig. 4 (a) shows that 
τPol and τTor essentially overlap (except at l = 1 ) and both exhibit 
the hybrid scaling of eq. (20). This suggests B Pol and B Tor , and 
consequently B , all vary with time in a similar fashion and hence 

τ ≈ τPol ≈ τTor (in the interior). (31) 

Close to the CMB, Figs 4 (b) and (c) show that τPol becomes 
steeper at the large scales l < l τ and in the end follows the single 
scaling law τPol ∼ l −1 for all l > 1 at the CMB. On the other hand, 
τTor maintains the hybrid scaling at all r . However the shape of 
τTor is irrele v ant near the CMB because B Tor diminishes and B is 
dominated by B Pol as r → r o , so the change of shape in τ follows 
closely that of τPol . And with B Tor = 0 at the CMB, we have 

τ = τPol ∼ l −1 (at the CMB). (32) 
This is illustrated in Fig. 4 (c) which shows the situation at a single 
grid point below the CMB with r = 0 . 9999 r o . We remark that τTor 

does not tend to zero as r → r o , though F t and F ṫ both go to zero 
as r → r o . This is why we cannot plot τTor at r = r o . 

We now discuss the scaling of τr . First we note that B matching 
onto a potential field at the CMB implies 

∂ ˜ P lm 

∂r 
+ 

l + 1 

r 
˜ P lm 

= 0 at r = r o , (33) 

where ˜ P lm 

is the coefficients in the spectral expansion eq. (A5) of 
P . Using the condition eq. ( 33 ) in eq. ( A6b ) links s lm 

to q lm 

at the
CMB: 

s lm 

= −
√ 

l 

l + 1 
q lm 

at r = r o . (34) 

It then follows from eqs ( 27 ) and ( 30 ) that τr = τPol at r = r o . Hence
together with eq. ( 32 ), w e ha ve τ = τPol = τr ∼ l −1 at the CMB, as 
is evident in Fig. 4 (c). Remarkably, Fig. 4 also shows that unlike τ , 
the scaling τr ∼ l −1 manifest at r = r o is actually valid for all r : 

τr ∼ l −1 ( l �= 1) for all r . (35) 

This might lead to the belief that the scaling eq. ( 35 ) at the surface 
reflects the properties of B r in the interior, and fur ther more eq. ( 35 ) 
might be explained by the frozen-flux argument outlined in the 
introduction. Ho wever , we shall see in Section 7.4 that depending 
on the velocity boundary condition, the scaling eq. ( 35 ) found at 
the surface and in the interior could have different origins. 

The above results, summarized in Fig. 4 , suggest that the magnetic 
boundary condition causes τ to change shape near the CMB. It 
eliminates the toroidal contribution to τ and constrains the poloidal 
contribution through eq. ( 34 ). As a result, τ at r = r o is generally 
unreliable for inferring timescales of the dynamics in the interior. 

By comparing τ with τr at l < l τ , we can gain some physical 
understanding of the different scaling of τ with l at different r . In 
the interior, except for ∇ · B = 0 , B r and the horizontal components 
( B θ , B φ) contribute separately to the dynamics. Since the toroidal 
potential T is related to ( B θ , B φ) , the result of τ ≈ τTor < τr in 
Fig. 4 (a) suggests that in the interior, ( B θ , B φ) evolve faster than 
B r and Ḃ is dominated by ( ̇B θ , Ḃ φ) . At the CMB, the magnetic 
boundary condition together with ∇ · B = 0 means B r , B θ and 
B φ are related to each other, as reflected in eq. ( 34 ) (and t lm 

= 

0 ). Consequently, τ = τr and Fig. 4 (c) shows that τ then follows 
the scaling of τr . Further details emerge in Section 7.3 when we 
investigate the induction equation in the spectral space. 

6  T H E  S P E C T R A  F ( l, r) A N D  F Ḃ ( l, r) 

We want to trace the origin of the scaling eq. ( 19 ) at the CMB and 
eq. (20) in the interior. In order to do this, we need to first take a 
closer look at the two spectra F and F Ḃ that made up τ . Moreover, 
as discussed in the introduction, the shape of F Ḃ is in itself an 
interesting question. Our numerical result for F Ḃ covers a broad 
range of l and thus complements observational studies of R sv which 
are limited to fairly small l. 

6.1 The magnetic ener g y spectrum F ( l, r) 

Fig. 5 plots the magnetic energy spectrum F ( l, r ) at different r . 
We already know from Fig. 1 that F ( l, r ) is flat for the small- l
modes (excluding l = 1 ) at r = r o . Here we see that the small- 
l modes remain fairly flat in the interior. For large l, as shown 
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Figure 4. Comparison of four (time-averaged) time-variation spectra for run 1: τ ( l, r ) in eq. ( 13 ) is associated with the full magnetic field B , τPol ( l, r ) in 
eq. ( 27 ) is associated with the poloidal magnetic field B Pol , τTor ( l, r ) in eq. ( 28 ) is associated with the toroidal magnetic field B Tor and τr ( l, r ) in eq. ( 30 ) is 
associated with the radial magnetic field B r . Three different locations are shown: (a) in the interior, (b) inside the CMB boundary layer where transition occurs 
and (c) just below the CMB. We see that τ and τPol follow each other and change shape as r → r o whereas τTor and τr maintain their shape for all r . 

Figure 5. T ime-a v eraged magnetic energy spectrum F ( l, r ) , giv en by 
eq. ( 8 ), at different radius r for run 1. F ( l, r ) is fairly flat (in logarithmic 
scale) at the large scales. 
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n Fig. 6 (a), F can be very well approximated by an exponential
odified by a power law for the whole domain. We thus conclude

hat for r i � r � r o , 

F ∼ l 0 , 2 � l � 13 , (36a) 

F ∼ l β1 e −α1 l , 30 � l � 100 . (36b) 

e find that β1 < 0 , so F decays slightly faster than an exponential
t large l. The exact shape of F is of secondary importance here.
he key point is that there is no abrupt change in the scaling of F 

ith l near the CMB. 

.2 The magnetic time-variation spectrum F Ḃ ( l, r) 

ig. 7 (a) plots the magnetic time-variation spectrum F Ḃ at differ-
nt r . For small l, specifically 2 � l � 13 , F Ḃ increases with l
s a po wer-la w for all r : F ˙ ∼ l ˆ β2 . The scaling exponent remains
B 
oughly constant at ˆ β2 = 1 in the interior and then transitions to
ˆ 2 = 2 at the CMB. Thus for small l, F Ḃ becomes steeper as r in-
reases. Fur ther more this transition occurs within a thin boundary
ayer below the CMB, as shown in Fig. 7 (b) where we plot ˆ β2 versus
. 

As l increases, F Ḃ e ventuall y reaches its maximum value at some
 = l η before decaying at the small scales, presumably due to mag-
etic diffusion. For run 1, we find that l η generall y increases weakl y
ith r from l η = 25 to l η = 35 (for r 
 r i ). Similar to F , the decay

t large l can be approximated almost perfectl y b y an exponential
odified by a power law for all r , as can be seen in Fig. 6 (b). Hence

n summary, 

F Ḃ ∼ l ˆ β2 , 2 � l � 13 , (37a) 

F Ḃ ∼ l β2 e −α2 l , 30 � l � 100 , (37b) 

here 

ˆ 2 = 

{
1 , in the interior , 
2 , at the CMB . 

(38) 

e also note that β2 > 0 , so F Ḃ decays slightly slower than an
xponential at large l. 

We expect l η to increase with Rm . So the Earth ma y ha ve a
arger l η if Rm in the outer core is significantly higher than that in
ur simulations. It is not our goal to predict l η for the Earth. The
roposal here is that the behaviour of F Ḃ for the geodynamo at the
arge scales and the small scales, partitioned by some l η, is similar
o that described in eqs (37) and ( 38 ). 

It is probably reasonable to assume l η also represents roughly
here F starts to drop off exponentially. Then by definition eq. ( 13 ),
may have at most two different scaling regimes in l. The scale l τ

hat separates the two regimes is linked to l η. Given that F Ḃ has a
ather flat peak, l τ most likely is less than but not too different from
 η. In the following, we adopt the usage that ‘large scales’ means
 < l τ and ‘small scales’ means l > l η. 

.3 Connecting the scalings of F Ḃ and τ

quipped with this knowledge about F and F Ḃ , we can understand
he scaling of τ as follows. From the definition of τ , together with

art/ggae234_f4.eps
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Figure 6. Small-scale properties for run 1: (a) decay of the magnetic energy spectrum F ( l, r ) in eq. ( 8 ) for different radius r . It is well fitted by the form 

F ∼ l β1 exp ( −α1 l) . (b) Similar to (a) but for the magnetic time-variation spectrum F Ḃ ( l, r ) in eq. ( 11 ). The form F Ḃ ∼ l β2 exp ( −α2 l) again fits the data 
extremely well. (c) The differences between the fitting parameters of F and F Ḃ showing α1 ≈ α2 and ( β1 − β2 ) / 2 ≈ −1 that lead to τ ∼ l −1 at large l. 

Figure 7. (a) T ime-a veraged magnetic time-variation spectrum F Ḃ ( l, r ) , 
gi ven b y eq. ( 11 ), at different radius r for run 1. The scaling at small l
transitions from F Ḃ ∼ l in the interior to F Ḃ ∼ l 2 at the CMB. The location 
l = l η of the peak varies weakly with r . (b) The exponent ̂  β2 in the po wer-la w 

fit eq. ( 37a ) for F Ḃ at small l as a function of r . 
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eqs ( 36a ) and ( 38 ), we have at the large scales: 

τ = 

√ 

F 

F Ḃ 

∼
√ 

l 0 

l ˆ β2 
∼
⎧ ⎨ ⎩ 

√ 

l 0 

l 1 
∼ l −1 / 2 , in the interior , √ 

l 0 

l 2 
∼ l −1 , at the CMB . 

(39) 
Hence the sharp change in the scaling of τ across the CMB boundary 
layer is mainly a consequence of the corresponding change in F Ḃ . 
At the small scales, we have seen that both F B and F Ḃ are well 
approximated by an exponential modified by a power law for all r . So 
how does this lead to τ ∼ l −1 at the small scales? Fig. 6 (c) plots the 
differences ( α1 − α2 ) / 2 and −( β1 − β2 ) / 2 between the exponents in 
eqs ( 36b ) and ( 37b ). It shows that α1 ≈ α2 and ( β1 − β2 ) / 2 ≈ −1 , 
so the exponentials in eqs ( 36b ) and ( 37b ) cancel each other resulting 
in τ ∼ l −1 . 

7  B A L A N C E  O F  T E R M S  I N  T H E  

I N D U C T I O N  E Q U  A  T I O N  

Section 6.3 establishes that the large-scale scaling of τ is predom- 
inantly linked to that of F Ḃ . Therefore in this section we focus 
on F Ḃ and examine how its behaviour is controlled by the in- 
duction term and the diffusion term in the induction equation 
eq. ( 16b ). 

7.1 Spectrum of the induction term and spectrum of 
magnetic diffusion 

Let G = u × B and expand in terms of the vector spherical har- 
monics: 

G = 

∞ ∑ 

l= 0 

l ∑ 

m =−l 

[
q G 

lm 

( r, t) Y 

m 

l + s G 

lm 

( r, t ) � 

m 

l + t G 

lm 

( r, t ) � 

m 

l 

]
. (40) 

Then the induction term C = ∇ × ( u × B ) can be written as a series 
of spherical harmonics modes: 

C = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

[ 

−
√ 

l( l + 1) t G 

lm 

r 
Y 

m 

l −
(
r t G 

lm 

)′ 
r 

� 

m 

l 

+ 

(
rs G 

lm 

)′ − √ 

l( l + 1) q G 

lm 

r 
� 

m 

l 

] 

, (41) 

where ( ·) ′ denotes r -deri v ati ve. Now, in complete analogy to eq. ( 6 ), 
we define the spectrum F C of C by 

∞ ∑ 

l= 1 
F C ( l, r, t) ≡ 1 

4 π

∮ 
| C ( r, θ, φ, t) | 2 sin θ dθ dφ. (42) 
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ubstituting eq. ( 41 ) into eq. ( 42 ) gives F C in terms of the expansion
oefficients ( q G 

lm 

, s G 

lm 

, t G 

lm 

) : 

F C ( l, r, t) = 

1 

r 2 
1 

(2 l + 1) 

l ∑ 

m = 0 

[ 
l( l + 1) 

∣∣t G 

lm 

∣∣2 + 

∣∣(r t G 

lm 

)′ ∣∣2 
+ 

∣∣(rs G 

lm 

)′ − √ 

l( l + 1) q G 

lm 

∣∣2 ] (4 − 3 δm, 0 ) . (43) 

imilarl y, for the dif fusion term D = ∇ 

2 B = −∇ × ( ∇ × B ) , tak-
ng the double curl of the expansion eq. ( 7 ) for B , we obtain 

D = −
∞ ∑ 

l= 1 

l ∑ 

m =−l 

{ 

l( l + 1) q lm 

− √ 

l( l + 1) ( rs lm 

) ′ 

r 2 
Y 

m 

l 

+ 

√ 

l( l + 1) q ′ lm 

− ( rs lm 

) ′′ 

r 
� 

m 

l + 

[
l( l + 1) 

t lm 

r 2 
− ( r t lm 

) ′′ 

r 

]
� 

m 

l 

} 

. 

(44) 

he spectrum of D is then given in terms of the coefficients
 q lm 

, s lm 

, t lm 

) as: 

F D ( l, r, t) = 

1 

r 2 
1 

(2 l + 1) 

l ∑ 

m = 0 

[
l( l + 1) 

r 2 
∣∣√ 

l( l + 1) q lm − ( rs lm ) 
′ ∣∣2 

+ 

∣∣√ 

l( l + 1) q ′ lm − ( rs lm ) 
′′ ∣∣2 + 

∣∣∣∣l( l + 1) 
t lm 
r 

− ( r t lm ) 
′′ 
∣∣∣∣2 
] 

(4 − 3 δm, 0 ) . 

(45) 

lthough Ḃ = C + D , it is not true that F Ḃ = F C + F D , because
ross-product terms arise when taking the squares for the spectra.
o wever , when one of the three terms is small compared to the
thers, the spectra of the remaining two terms should be very close,
nd we exploit this below. 

Let us first discuss the situation in the interior of the domain.
his is demonstrated in Fig. 8 (a) which plots F C and F D together
ith F Ḃ at r = 0 . 5722 r o . It is clear that the diffusion term D is
e gligible e xcept for a small range of very large l. So to a very
ood approximation, F Ḃ = F C for most spatial scales. In particular
or the large scales, Fig. 8 (a) shows that F C ∼ l and thus from the
rguments in eq. ( 39 ), the induction term alone is responsible for
he large-scale scaling τ ∼ l −0 . 5 in the interior. Ho wever , despite

agnetic diffusion being negligible here, this scaling of τ cannot
e predicted using the frozen-flux hypothesis. 

Inside the CMB boundary layer, F C and F D increase sharply
hile F Ḃ decreases as r → r o from below. This is illustrated using

he two modes l = 10 and l = 100 in Figs 8 (c) and (d), respecti vel y.
he upshots are F C = F D essentially and F Ḃ � ( F C , F D ) for all l,
s shown in Fig. 8 (b) for r = 0 . 9998 r o . This suggests a dominant
alance between the induction and the diffusion terms and the be-
aviour of Ḃ is a higher-order effect of this balance. Focusing on
he large scales, we have the same scaling F C ∼ l and F D ∼ l as in
he interior, as can be seen by comparing Figs 8 (a) and (b). How-
ver the balance between C and D means these dominant scalings
ancel each other, revealing a different scaling behaviour for F Ḃ ,
amely F Ḃ ∼ l 2 , which leads to τ ∼ l −1 near the CMB. In antic-
pation of the stress-free results in Section 8 , we mention that the
brupt increase in F C and F D is related to the no-slip condition for
he velocity. 

In summary, we find that in the interior, magnetic diffusion is
egligible in the spectra but the scaling τ ∼ l −0 . 5 differs from the
rediction based on the frozen-flux hypothesis. At the CMB, we
ndeed ha ve τ ∼ l −1 , how ever, such scaling is achieved through
oundary effects that involve the magnetic diffusion. 
.2 T he froz en-flux argument 

e now briefly re vie w an argument that has been used to derive the
caling of τsv ∼ l −1 . We recall from eq. ( 4 ) that in contrast to τ ,

sv is defined for r � r o only. Neglecting magnetic diffusion in the
nduction equation (the frozen-flux hypothesis), the radial magnetic
eld and the horizontal velocity u h = (0 , u θ , u φ) at the CMB satisfy 

Ḃ r = −∇ h · ( u h B r ) , (46) 

here ∇ h · a = ∇ · a − r −2 ∂ ( r 2 ˆ r · a ) /∂ r for any vector a . Crudely,
ne may assume ∇ h ∼

√ 

l( l + 1) ∼ l and u h ∼ U where U is some
haracteristic velocity scale independent of l. Then from eq. ( 46 ),
t is argued that (Holme & Olsen 2006 ; Christensen et al. 2012 ) 

sv ∼ B r 

Ḃ r 

∼ l −1 . (47) 

he keys to this ‘frozen-flux argument’ are magnetic diffusion is
egligible and only the horizontal derivatives are important. 

.3 Balance of terms in the spectral space 

he frozen-flux argument heuristically connects the scaling of τ to
he factor 

√ 

l( l + 1) derived from the horizontal deri v ati ve. In this
ection, we consider the induction equation in the spectral space
hich allows us to carefully track the appearance of this factor.
ombined with the finding that a very limited number of terms
ominate the expansions of C and D in eqs ( 41 ) and ( 44 ), respec-
i vel y, we gain a deeper understanding of the results presented in
ection 7.1 . 
Substituting the expansions eq. ( 9 ), eq. ( 41 ) and eq. ( 44 ) into

he induction equation eq. ( 16b ) gives the following time evolution
quations for the coefficients q lm 

, s lm 

and t lm 

: 

˙ lm = −
√ 

l( l + 1) 

r 
t G lm −

l( l + 1) 

r 2 
q lm + 

√ 

l( l + 1) 

r 
s ′ lm + 

√ 

l( l + 1) 

r 2 
s lm , (48a) 

˙ lm 

= − (
t G 

lm 

)′ − t G 

lm 

r 
−

√ 

l( l + 1) 

r 
q ′ lm 

+ s ′′ lm 

+ 

2 

r 
s ′ lm 

, (48b) 

 ̇lm = 

(
s G 

lm 

)′ + 

s G 

lm 

r 
−

√ 

l( l + 1) 

r 
q G 

lm + t ′′ lm + 

2 

r 
t ′ lm −

l( l + 1) 

r 2 
t lm . (48c) 

erms on the right-side of eq. (48) can be separated into two groups.
hose that involve q G 

lm 

, s G 

lm 

or t G 

lm 

originate from the induction term
C while terms involving q lm 

, s lm 

or t lm 

come from the diffusion term
D . A pre-factor of 

√ 

l( l + 1) is produced each time ∇ h is applied in
he physical space and again ( ·) ′ denotes the r -deri v ati ve. Note that
he equations for q̇ lm 

and ṡ lm 

are not independent but are related in
ccordance with eq. ( A7 ). 

To determine the dominant balance, we compare the spectra of
he different terms in eq. (48). The spectrum of any term is defined
n an analogous manner to eq. ( 22 ), for example the spectrum of the
ast term in eq. ( 48a ) is 

l( l + 1) 

(2 l + 1) 

1 

r 4 

l ∑ 

m = 0 

〈| s lm 

| 2 〉
t 
(4 − 3 δm, 0 ) . (49) 

or the rest of this section, we focus e xclusiv ely on the large scales
 < l τ where l τ ≈ 13 in our simulation. A key observation relevant
o our discussion below is that terms that involve no deri v ati ve or
nly the radial derivativ e hav e fairly shallow spectra. On the other
and, the spectra of those terms involving the horizontal deri v ati ve
ave steep spectra dictated by the factor l( l + 1) . 

We first consider the interior of the domain. With reference to
he relation eq. ( 24 ), Fig. 9 (a) plots the spectra F q̇ , F ṡ , F ṫ and F Ḃ 
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Figure 8. The spectrum F C ( l, r ) of the induction term defined in eq. ( 42 ), the spectrum F D ( l, r ) of the magnetic diffusion term given in eq. ( 45 ) and the 
magnetic time-variation spectrum F Ḃ ( l, r ) of eq. ( 11 ) for run 1: (a) in the interior of the domain and (b) just below the CMB. (c) F C , F D and F Ḃ as a function 
of r for the mode l = 10 . (d) Similar to (c) but for l = 100 . 

Figure 9. For run 1, the top row shows the spectral balance in the interior: (a) the magnetic time-variation spectrum F Ḃ ( l, r ) , given by eq. ( 11 ), and its three 
constituents F q̇ ( l , r ) , F ṡ ( l , r ) and F ṫ ( l , r ) (see the text surrounding eq. ( 22 ) for definitions); (b) spectra of the individual terms in the time evolution equation of 
s lm 

, eq. ( 48b ), the subscripts l, m are omitted in the legend for clarity; (c) spectra of the terms in the equation of motion of t lm 

, eq. ( 48c ). The bottom row shows 
the spectral balance near the CMB: (d) similar to (a) but for r ≈ r o , note that F ṫ e ventuall y v anishes at r = r o ; (e) spectra of the terms in the time evolution 
equation of q lm 

, eq. ( 48a ); (f) similar to (b) but for r ≈ r o . It is clear that despite the large number of terms appearing in the equations, q̇ lm 

, ̇s lm 

and ̇t lm 

are 
often dominated by only one or two terms. 
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at r = 0 . 5722 r o . It shows that the steeper F q̇ is negligible and F Ḃ is
mainly composed of F ṡ and F ṫ . Moreover, both F ṡ and F ṫ scales like 
l 1 , that is the same scaling of F Ḃ which leads to τ ∼ l −0 . 5 . Fig. 9 (b) 
plots F ṡ together with the spectra of the terms on the right-side 
of eq. ( 48b ). It clearly shows that, among the many terms, ṡ lm 

is 
dominated by a single one, namely ( t G 

lm 

) ′ . Similarly Fig. 9 (c) shows 
ṫ lm 

is dominated by ( s G 

lm 

) ′ in eq. ( 48c ). In summary, for the large 
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Figure 10. (a) The spectra of the three terms in eq. ( 52 ) for run 1 as a 
function of radius r for the l = 10 mode (the subscripts l, m are omitted in 
the legend). This shows the transition in the balance of q̇ lm 

from induction- 
dominant in the interior to diffusion-dominant near the CMB. The situation 
is similar for large l (b) Same data as in (a) but zooming into the boundary 
layer to show the transition in details. We have verified that the spectra of the 
sum 

√ 

l( l + 1) ( −t G 

lm 

+ s ′ lm 

) /r (not shown) virtually overlaps F q̇ (red solid 
curve) for all r , including inside the boundary layer. 
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F Ḃ ≈ F ṡ + F ṫ ∼ l, (50a) 

˙ lm 

≈ −
√ 

l( l + 1) 

r 
t G 

lm 

, (50b) 

˙ lm 

≈ − (
t G 

lm 

)′ 
, (50c) 

 ̇lm 

≈ (
s G 

lm 

)′ 
. (50d) 

he balance for q̇ lm 

in the interior is not rele v ant for the present
iscussion and is not plotted in Fig. 9 , but it is included in eq. (50)
or later discussion. 

From eq. (50), we infer two properties of the large-scale magnetic
eld in the interior. First, the absence of F q̇ in eq. ( 50a ) implies the
ain contribution to Ḃ comes from Ḃ θ and Ḃ φ . This echoes the

iscussion near the end of Section 5 . Secondly, eqs ( 50c ) and ( 50d )
ell us that the scaling of F Ḃ is related to the radial deri v ati ves in the
nduction term C rather than the horizontal deri v ati ves. This is the
eason why the prediction of τ ∼ l −1 by the frozen-flux argument
s not valid even though magnetic diffusion is negligible here. 

It is not useful to analyse eq. (48) near the bottom of the CMB
oundary lay er w here the transition in scaling starts as a large num-
er of terms are in volved. Ho wever , the situation becomes simple
gain at the CMB and in the vicinity just below it. This is illustrated
n Figs 9 (d)–(f) for r = 0 . 9998 r o and summarized below (for the
arge scales): 

F Ḃ ≈ F q̇ + F ṡ ∼ l 2 , (51a) 

˙ lm 

≈
√ 

l( l + 1) 

r 
s ′ lm 

, (51b) 

ṡ lm 

≈ − (
t G 

lm 

)′ + s ′′ lm 

, (51c) 

 ̇lm 

→ 0 , (51d) 

ith some additional contribution to ̇s lm 

at very small l coming from
 s ′ lm 

/r (we have verified that the spectrum of the sum − (
t G 

lm 

)′ + s ′′ lm 

s indeed close to F ṡ ). 
The absence of F ṫ in eq. ( 51a ) reflects the discussion in Sec-

ion 5 : Ḃ ≈ Ḃ Pol near the CMB with B Pol related to q lm 

and s lm 

y eq. ( 26a ). We also expect F q̇ and F ṡ to be approximately equal
ecause of eq. ( 34 ) required by the magnetic boundary condition.
ndeed, Fig. 9 (d) shows that F q̇ ≈ F ṡ ∼ l 2 and the two spectra con-
ribute equally to the sum in eq. ( 51a ). We also know from Sec-
ion 7.1 that magnetic diffusion is involved in the scaling F Ḃ ∼ l 2 at
he CMB. Further insights are provided by eq. (51). It can be proved
hat the no-slip condition implies t G 

lm 

= 0 at the CMB. So q̇ lm 

must
e controlled by the diffusion terms on the right-side of eq. ( 48a ).
t turns out the dominant balance is eq. ( 51b ). Since Fig. 9 (f) shows
hat the spectrum of s ′ lm 

is quite flat, it immediately follows from
q. ( 51b ) that F q̇ ∼ l 2 . For the balance of ṡ lm 

, it can be seen in
ig. 9 (f) that the two terms on the right-side of eq. ( 51c ) have shal-

o w spectra. Ho wever , the almost exact balance of these tw o terms
esults in the steeper scaling of F ṡ ∼ l 2 . This is the origin of the
imilar cancellation between F C and F D depicted in Fig. 8 (b) and
escribed in details near the end of Section 7.1 . We also note that
n eq. ( 51c ), s ′′ lm 

is a diffusion term and both 
(
t G 

lm 

)′ 
and s ′′ lm 

involve
he radial deri v ati ve rather than the horizontal deri v ati ve, so none of
hese is compatible with the frozen-flux argument. 
.4 Spectral balance for the radial component 

he results presented in Section 7.3 reaffirm that the frozen-flux
rgument does not predict the scaling of τ . But how about τr ? After
ll, strictly speaking, the frozen-flux argument is based on B r . We
nvestigate this by first reporting that F q ∼ l 0 at the large scales
or all r (not shown), so the scaling of τr is determined by F q̇ .
he dominant balance of q̇ lm 

is given by eq. ( 50b ) for the interior
nd eq. ( 51b ) near the CMB. Most interestingly, we find that by
ombining eqs ( 50b ) and ( 51b ), the following simple expression
orks very well at all r : 

˙ lm 

≈ −
√ 

l( l + 1) 

r 
t G 

lm 

+ 

√ 

l( l + 1) 

r 
s ′ lm 

. (52) 

igs 9 (b) and (f) show that, for different r , the spectra of both t G 

lm 

nd s ′ lm 

vary weakly with l at the large scales, so eq. ( 52 ) gives
F q̇ ∼ l 2 for all r . This implies the scaling τr ∼ l −1 is maintained
s r → r o from below although the origin of this scaling stealthily
ransitions from induction in the interior to diffusion near the CMB.
he variation of the different terms in eq. ( 52 ) with r is demonstrated

n Fig. 10 using the l = 10 mode. 
To answer the question posed at the beginning of this subsection,

e find that the frozen-flux argument correctly predict the scaling
f τr in the interior which arises from the horizontal deri v ati ve of the
nduction term. This is not surprising since the balance eq. ( 50b )
s essentially the spectral version of eq. ( 46 ). The argument fails
hen t G 

lm 

→ 0 near the CMB as required by the no-slip condition.
e shall see in the next section that the situation is different with a

art/ggae234_f10.eps


12 Y.-K. Tsang and C. A. Jones 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/1/1/7708370 by guest on 01 O

ctober 2024
8  S T R E S S - F R E E  B O U N DA RY  

C O N D I T I O N  

We have learned that boundary conditions play a role in the transi- 
tion of τ and F Ḃ near the CMB. In order to distinguish between the 
influence of the magnetic boundary condition and that of the ve- 
locity boundary condition, we study the geodynamo model eq. (16) 
using the stress-free condition for the velocity at the CMB in run 2. 
Other boundary conditions and all simulation parameters are the 
same as in run 1 which uses the no-slip condition (see Table 1 ). 

With the stress-free condition, the three spectra F , F Ḃ and τ
behav e qualitativ ely the same as in run 1, excepting some minor 
differences for τ and F Ḃ , which are plotted in Figs 11 (a) and (b), 
respecti vel y. These are to be compared with Figs 2 (a) and 7 (a) 
for run 1 with the no-slip condition. In run 1, the scaling of F Ḃ 

at l < l η remains roughly the same throughout the interior. Here, 
Fig. 11 (c) shows that ˆ β2 ≈ 1 near the inner boundary and increases 
gradually to ˆ β2 ≈ 1 . 75 just below the CMB boundary layer. As a 
result, τ at the large scales is steeper than l −0 . 5 by a fair amount 
with 0 . 6 � γ ( r ) � 0 . 8 as shown in Fig. 11 (d). 

Just as in run 1, there is a sharp increase of steepness in τ and 
F Ḃ when r → r o from below, as illustrated by ˆ β2 ( r ) in Fig. 11 (c) 
and γ ( r ) in Fig. 11 (d). This shows that the no-slip condition is not 
crucial for this transition to occur. At the CMB, w e ha ve ˆ β2 ≈ 2 . 26 
and γ ≈ 1 . 11 which are not different in a significant manner from 

the values in run 1. This means that, disappointingly, we cannot 
deduce the velocity boundary condition at the CMB by observing 
τsv at the planetary surface. We also find that the spectra τPol , τTor 

and τr all follow the same pattern described in Section 5 and Fig. 4 . 
In other words, their scalings are also insensitive to the velocity 
boundary condition. 

Regarding the balance of terms in the induction equation, the sit- 
uation in the interior is almost exactly the same as in run 1 shown in 
Fig. 8 (a), that is F Ḃ ≈ F C with F D negligible. Similarly, Figs 9 (a)–
(c) and the relations in eq. (50) describe the spectral balance in 
the interior equally well for the stress-free case. Near the CMB, 
the magnetic boundary condition necessitates F q̇ ≈ F ṡ and we find 
that F Ḃ ≈ F q̇ + F ṡ ∼ l 2 , again the same as in run 1. We shall see 
the main difference between the stress-free and no-slip boundary 
conditions is finally unveiled when we investigate the balance of 
terms near the CMB. 

With the stress-free boundary condition, Fig. 11 (e) shows that 
near the CMB, F C and F D are no longer many orders of magnitude 
larger than F Ḃ and neither do they overlap, in contrast to Fig. 8 (b) 
for run 1. Therefore the sharp rise in F C and F D seen in Fig. 8 is 
caused by the no-slip condition at the CMB. Closely related to this 
is the balance in the spectral space for ̇s lm 

. We find that the dominant 
balance eq. ( 51c ) at the large scales is also valid in the stress-free 
case. Ho wever , Fig. 11 (g) shows that the spectra of 

(
t G 

lm 

)′ 
and s ′′ lm 

do 
not become much larger than F ṡ near the CMB, unlike in Fig. 9 (f) 
for run 1. 

We now turn to the balance for q̇ lm 

. An important consequence 
of employing the stress-free condition at the CMB is that t G 

lm 

�= 0 at 
r = r o . We then find that the relation eq. ( 50b ) is now valid for all r ,
including near the CMB as shown in Fig. 11 (f). The switching to a 
diffusion term near the CMB depicted in Fig. 10 for run 1 does not 
occur here. Since eq. ( 50b ) is ef fecti vel y the spectral form of the 
frozen-flux hypothesis and it leads to τr ∼ l −1 , we conclude that in 
the stress-free case, the frozen-flux argument correctly predicts the 
scaling of τr at the large scales e verywhere (aw ay from the inner 
boundary). Ho wever , for τ near the CMB, since both F q̇ and F ṡ 

contribute and the dominant balance of ṡ lm 

involves the diffusion 
term s ′′ , the frozen-flux hypothesis is violated. 
lm 
9  E F F E C T S  O F  VA RY I N G  Ek A N D  Rm 

In this section, we consider two simulations with the no-slip condi- 
tion that have simulation parameters different from those in run 1. 
Referring to Table 1 , run 3 has a larger Ek than run 1 and we also 
adjust Ra so that Rm is approximately the same as in run 1. Run 4 
uses a smaller Ra, resulting in a Rm that is about half of that in 
run 1. 

The scalings of the spectra F , F Ḃ and τ in both run 3 and run 4, 
as well as how these scalings vary with r and l, are essentially the 
same as what we have found in run 1. We also find that, as expected, 
run 4 has a smaller l η than run 1, indicating that l η increases with 
Rm . Fig. 12 (a) plots τsv ( l) from different r uns. Comparing r un 1 and 
run 3, it appears that the effect of Ek on τsv is small. This is also 
true for τ ( l, r ) in the interior, especially at large l. Comparing run 4 
to run 1 (or run 3), Fig. 12 (a) suggests that B varies on increasingly 
shorter timescales as Rm increases. However we note that as r
decreases, τ from run 2, which has the highest Rm but also different 
boundary conditions, approaches those of run 1 and run 3 from 

below. It may be because the local Rm in run 2 is smaller in the 
interior than near the CMB. 

We now focus on the transition layer below the CMB in which 
the scaling of τ changes. Figs 12 (b) and (c) show, respecti vel y, 
τ ( l = 1 , r ) and γ for the large scales as a function of r just below 

the CMB. Comparing run 1 and run 4 shows that, unsurprisingly, the 
thickness of the transition layer increases as Rm decreases. By con- 
trast, the effect of Ek is more curious. Previous sections establish 
that the scaling τ ∼ l −γ undergoes a transition regardless of whether 
an Ekman layer exists near the CMB. Ho wever , the presence of an 
Ekman layer does change the characteristics of the transition. Com- 
paring run 3 ( Ek = 1 × 10 −4 ), run 1 ( Ek = 2 . 5 × 10 −5 ) and run 2
(stress-free) in Figs 12 (b) or (c) indicates that as Ek decreases, the 
thickness of the transition layer increases towards that in run 2. It 
is not clear in run 2 whether this transition layer associated with 
τ coincides with the magnetic dif fusi ve layer (Terra-Nova & Amit 
2020 ). Further investigation is needed to better understand the inter- 
action between the magnetic field and the velocity inside the CMB 

boundary layer. 

1 0  D I S C U S S I O N  

In all of our simulations, either with a no-slip condition or a stress- 
free condition at the outer boundary, τsv ( l) ≡ τ ( l, r o ) ∼ l −1 is found 
at the CMB. So the scaling of τsv provides no hint about the bound- 
ary condition at the CMB. And yet this scaling actually has a very 
different origin in these two types of model. This is most clearly 
demonstrated in τr (which equals τsv at r = r o ). In the no-slip 
case, the scaling τr ∼ l −1 at the CMB comes from the diffusion 
term 

√ 

l( l + 1) s ′ lm 

/r while in the stress-free case, the very same 
scaling originates from the induction term 

√ 

l( l + 1) t G 

lm 

/r . It is 
sometimes argued that τsv ∼ l −1 implies the secular variation is 
dri ven b y the induction term whereas τsv ∼ l −2 indicates it is due 
to magnetic diffusion (Holme & Olsen 2006 ; Christensen et al. 
2012 ; Sharan et al. 2022 ). Here we see that this interpretation is an 
oversimplification. 

Regardless of the velocity boundary condition, the scaling of τ
at the large scales near the CMB is al wa ys different from that in the 
interior, suggesting the large-scale magnetic field varies on different 
timescales in the two regions. Hence once again, details about the 
magnetohydrodynamics in the interior are hidden from τsv at the 
surface. In hindsight, this is not too surprising as the condition of 
B being potential at r = r o combined with ∇ · B = 0 tie Ḃ r , Ḃ θ
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Figure 11. Summary of results for run 2 which has a stress-free condition at the CMB. (a) T ime-a veraged magnetic timescale spectrum τ ( l, r ) at different 
radius r (b) T ime-a veraged magnetic time-variation spectrum F Ḃ ( l, r ) at different r . F Ḃ is slightly steeper than l 2 at the CMB. (c) The exponent ˆ β2 in the 

po wer-la w fit F Ḃ ∼ l ˆ β2 for the large scales as a function of r . This shows ˆ β2 varies considerably in the interior. (d) The scaling exponent γ in the po wer-la w 

fit eq. ( 5 ) to τ as a function of r . The least-square fit is performed separately for the large scales (red) and the small scales (blue). (e) The spectrum F C of the 
induction term, the spectrum F D of the diffusion term and F Ḃ near the CMB. (f) Spectra of the terms in the time evolution equation of q lm 

, eq. ( 48a ), for 
r = 0 . 9998 r o . The subscripts l, m are omitted in the legend. (g) Similar to (f) but for the time evolution equation of s lm 

, eq. ( 48b ). 

Figure 12. Comparison of the time-variation spectrum τ ( l, r ) for the four runs listed in Table 1 : (a) τ ( l, r ) versus l at the CMB r = r o ; (b) τ ( l, r ) as a function 
of r for the dipole l = 1 near the CMB; (c) the scaling exponent γ in the po wer-la w fit eq. ( 5 ) to the large scales of τ as a function of r near the CMB. The 
range of l used in the fit is shown in the figure. 
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nd Ḃ φ together at and above the CMB, preventing the genuine time
ariation of ( B θ , B φ) in the interior from being observed above the
MB. Maybe the real surprise here is why only the large scales are
ffected, with τ ∼ l −1 found at the small scales for all r . 
o  
0.1 Inferring τ at the small scales in the interior 

hile our focus is mainly on the large scales, we now briefly discuss
he situation at the small scales. Difficulties in the measurement
f the internal magnetic field B at the small scales due to the
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presence of the lithospheric field means τsv ( l) is not available from 

observation for l � 13 . A result in our simulations and in previous 
numerical studies (Christensen et al. 2012 ) is that τsv exhibits the 
same scaling for all l. Thus we suggest that the scaling at the large 
scales derived from observation can be extrapolated to the small 
scales. Another interesting point of our investigation is that τ ( l, r ) 
v aries onl y weakl y with r for large l. This is illustrated in Fig. 2 (b) 
for run 1. The dependence on r is even weaker for the stress-free 
case of run 2, as can be inferred from Fig. 11 (a). The significance 
of these findings is that even if F and F Ḃ are not available at the 
small scales, it is possible to estimate the timescale of a small-scale 
mode l hi inside the outer core using large-scale properties observed 
at the surface. For a radius r 1 in the interior, the estimation goes as 
follows: 

τ ( l hi , r 1 ) ≈ τ ( l hi , r o ) ≡ τsv ( l hi ) ≈ τ∗( r o ) l 
−γ ( r o ) 
hi , (53) 

where τ∗( r o ) and γ ( r o ) are obtained from a po wer-la w fit to the 
accessible large-scale modes of τsv . 

Regarding the scaling law at the small scales, we find γ ≈ 1 for 
all r 
 r i in our simulations. This is irrespective of the velocity 
boundary condition used at the CMB, as shown in Figs 3 (a) and 
11 (d). A physical meaning can be attached to the scaling τ ∼ l −1 

by invoking Jeans’ rule (Jeans 1923 ) which relates the spatial scale 
λ of a feature to the spherical harmonics degree l by 

λ = 

2 πr E √ 

l( l + 1) 
. (54) 

Then γ = 1 means τ is directly proportional to λ because 

τ = 

τ∗
l 

= τ∗

[ 

1 √ 

l( l + 1) 
+ O 

(
l −2 

)] 

≈ τ∗
2 πr E 

λ. (55) 

If we interpret τ as a turn-over time over which a ‘magnetic eddy’ of 
size λ completely reorganizes (Stacey 1992 ), then eq. ( 55 ) implies 
doubling the size of a small-scale magnetic eddy allows it to live 
twice as long. 

10.2 Inferring τ at the lar g e scales in the interior 

The scaling of the secular variation spectrum R sv ( l) ≡ F Ḃ ( l, r o ) ∼
l 2 at the large scales found in our simulations is consistent with most 
of the results based on satellite observations, for example, see Gillet 
et al. ( 2010 ), Holme et al. ( 2011 ) and more recently, Finlay et al. 
( 2020 ) which extends the observations of R sv up to l ≈ 17 , thanks 
to the fact that Ḃ is less polluted by the static lithospheric field than 
B itself. Beyond l ≈ 17 , it is currently unclear how R sv behaves. 
Hypothetically, if the shape of R sv is similar to our simulation results 
in Fig. 7 (a) or 11 (b) and l η can be determined, we can make an 
order-of-magnitude estimate on the timescale of a large-scale mode 
l lo < l η at some radius r 1 in the interior. We assume τ = τ∗l −1 / 2 for 
l < l τ in the interior. Making the approximation l τ = l η, we have 
the estimate 

τ ( l lo , r 1 ) = τ ( l η, r 1 ) 

(
l lo 
l η

)− 1 
2 

= τ∗( r o ) · ( l ηl lo ) 
− 1 

2 , (56) 

where in the last step w e ha ve used eq. ( 53 ) with l hi = l η to deduce
τ ( l η, r 1 ) and we also set γ ( r o ) = 1 for simplicity. Since our argument
neglects the variation of τ with r in the interior, r 1 does not appear 
on the right-side of eqs ( 53 ) and ( 56 ). For run 1, τ∗( r o ) = 9 × 10 −3 

and l η = 31 . At r 1 = 0 . 7596 r o , for l lo = 1 and l lo = 5 , the values
of τ from the simulation data are 2 . 28 × 10 −3 and 6 . 15 × 10 −4 

respecti vel y. Appl ying eq. ( 56 ), we obtain the estimates of τ = 
1 . 62 × 10 −3 for l lo = 1 and τ = 7 . 23 × 10 −4 for l lo = 5 . So if the
value of l η becomes available in the future—admittedly a big if—τsv 

may give us some information on the large-scale dynamics inside 
the outer core. 
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Beitr. Geophys, 65, 207–215. 

eubert , T. et al. , 2001. Ørsted satellite captures high-precision geomagnetic
field data, EOS, Trans. Am. geophys. Un., 82 (7), 81–88. 
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P P E N D I X  A :  V E C T O R  S P H E R I C A L  

A R M O N I C S  

sing the Schmidt semi-normalized associated Legendre polyno-
ials P 

m 

l , we define the spherical harmonics as follow: 

 

m 

l ( θ, φ) = P 

| m | 
l ( cos θ ) e imφ. (A1) 

hen closely following Barrera et al. ( 1985 ), we define the following
et of vector spherical harmonics: 

 

m 

l ( θ, φ) = Y 

m 

l ˆ r , (A2a) 

 

m 

l ( θ, φ) = 

1 √ 

l ( l + 1) 
r∇Y 

m 

l , (A2b) 

 

m 

l ( θ, φ) = ˆ r × � 

m 

l , (A2c) 

hich form an orthogonal basis for all square-inte grable v ector
elds on the unit sphere. Note that � 

m 

l and � 

m 

l are defined for
 > 0 . The semi-normalization condition is ∮ 

Y 

m 

l · ( Y 

m 

′ 
l ′ ) ∗ sin θ dθ dφ = 

4 π

2 l + 1 
(2 − δm, 0 ) δl l ′ δmm 

′ , (A3) 

ith similar expressions for � 

m 

l and � 

m 

l . 
The magnetic field B can be expanded in terms of { Y 

m 

l , � 

m 

l , � 

m 

l }
s in eq. ( 7 ), which is repeated below: 

B = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

(
q lm 

Y 

m 

l + s lm 

� 

m 

l + t lm 

� 

m 

l 

)
. (7) 

n terms of the expansion coefficients ( q lm 

, s lm 

, t lm 

) , the components
f B are: 

B r = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

q lm 

Y 

m 

l , (A4a) 

B θ = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

1 √ 

l( l + 1) 

(
s lm 

∂Y 

m 

l 

∂θ
− t lm 

sin θ

∂Y 

m 

l 

∂φ

)
, (A4b) 

B φ = 

∞ ∑ 

l= 1 

l ∑ 

m =−l 

1 √ 

l( l + 1) 

(
t lm 

∂Y 

m 

l 

∂θ
+ 

s lm 

sin θ

∂Y 

m 

l 

∂φ

)
. (A4c) 

he magnetic field can also be written as the sum of a poloidal part
nd a toroidal part as in eq. (25), and the scalar potentials P and T 
an be expanded in terms Y 

m 

l : 

( r, θ, φ, t) = 

∞ ∑ 

l= 1 

l ∑ 

m =−l ̃

 P lm 

( r, t) Y 

m 

l ( θ, φ) , (A5a) 

 ( r, θ, φ, t) = 

∞ ∑ 

l= 1 

l ∑ 

m =−l ̃

 T lm 

( r, t) Y 

m 

l ( θ, φ) . (A5b) 

hen the two sets of coefficients ( q lm 

, s lm 

, t lm 

) and ( ̃  P lm 

, ̃  T lm 

) are
elated by: 

 lm 

= 

l( l + 1) 

r 
˜ P lm 

, (A6a) 

 lm 

= 

√ 

l( l + 1) 
1 

r 

d 

dr 

(
r ˜ P lm 

)
, (A6b) 

 lm 

= −
√ 

l( l + 1) ̃  T lm 

. (A6c) 

t is clear from eq. (A6) that q lm 

and s lm 

are not independent but are
elated by √ 

l( l + 1) 

r 
s lm 

= 

dq lm 

dr 
+ 

2 

r 
q lm 

. (A7) 

q. ( A7 ) can also be derived from ∇ · B = 0 by taking the diver-
ence of eq. ( 7 ). 
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A P P E N D I X  B :  S P E C T R A  O F  T H E  

S C A L A R  F I E L D S  P A N D  T 

In the main text, various spectra for different vector fields are de- 
fined. In a very similar fashion, we can also consider the spectra 
for a scalar field. We define the spectrum F P ( l, r, t) for the poloidal 
potential P in eq. ( 25b ) by, 

∞ ∑ 

l= 1 
F P ( l, r, t) = 

1 

4 π

∮ 
| P| 2 sin θ dθ dφ. (B1) 

Then using the expansion in eq. ( A5a ), we get 

F P = 

1 

2 l + 1 

l ∑ 

m = 0 

∣∣˜ P lm 

∣∣2 (4 − 3 δm, 0 ) . (B2) 

Similarly, we have for the spectrum of Ṗ = ∂ P/∂ t , 

F Ṗ ( l, r, t) = 

1 

2 l + 1 

l ∑ ∣∣ ˙̃
 P lm 

( r, t) 
∣∣2 (4 − 3 δm, 0 ) . (B3) 
m = 0 

C © The Author(s) 2024. Published by Oxford University P
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Finally, the timescale spectrum for P is defined as 

τP ( l, r ) ≡
〈 √ 

F P ( l, r, t) 

F Ṗ ( l, r, t) 

〉 
t 

= 

〈 √ √ √ √ 

∑ 

m 

| ̃  P lm 

| 2 ∑ 

m 

| ̇̃  P lm 

| 2 

〉 
t 

. (B4) 

However because of eq. ( A6a ), we see that τP is identical to τr 

defined in eq. ( 30 ). Following the same procedure, the timescale 
spectrum for the toroidal potential T is given by: 

τT ( l, r ) = 

〈 √ √ √ √ 

∑ 

m 

| ̃  T lm 

| 2 ∑ 

m 

| ̇̃  T lm 

| 2 

〉 
t 

. (B5) 

And because of eq. ( A6c ), τT is identical to τTor given in eq. ( 28 ). 
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