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Atmospheric water vapour is an essential ingredient
of weather and climate. The key features of its
distribution can be represented by kinematic models
which treat it as a passive scalar advected by a
prescribed flow and reacting through condensation.
Condensation acts as a sink that maintains specific
humidity below a prescribed, space-dependent
saturation value. To investigate how the interplay
between large-scale advection, small-scale turbulence
and condensation controls moisture distribution, we
develop simple kinematic models which combine
a single circulating flow with a Brownian-motion
representation of turbulence. We first study the
drying mechanism of a water-vapour anomaly
released inside a vortex at an initial time. Next, we
consider a cellular flow with a moisture source at
a boundary. The statistically steady state attained
shows features reminiscent of the Hadley cell such as
boundary layers, a region of intense precipitation and
a relative humidity minimum. Explicit results provide
a detailed characterization of these features in the
limit of strong flow.

1. Introduction
Liquid water evaporates from land and ocean into the
atmosphere. The interaction between the subsequent
transport and condensation of this evaporated water
gives rise to intriguing distributions of water vapour
in the atmosphere: for example, persistent relative
humidity minima are observed in the subtropics [1,
2], and bimodal distributions have been reported in
the tropics [3]. Knowledge of the full distribution of
atmospheric humidity is crucial for understanding the
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Earth’s energy balance and climate. This is because the absorption of outgoing long-
wave radiation by water vapour increases nonlinearly (roughly logarithmically) with specific
humidity [4]. The atmospheric moisture distribution and transport are also closely linked to
global and regional precipitation patterns which have high social and economic impacts [5].

A framework to explain the key features of the atmospheric humidity distribution is the
advection–condensation model [1,6]. In this model, a moist air parcel is transported through
the atmosphere’s saturation humidity field and condensation occurs when its humidity exceeds
the local saturation value. The excessive water is rained out of the system. As a result, the
humidity at a particular location is equal to the minimum saturation value the air parcel has
encountered since leaving the moisture source. Critically, all complex cloud-scale microphysics
and molecular diffusion are excluded from this model [1]. Research over the last several
decades has demonstrated the value of the idea of advection–condensation. Brewer in 1949
was able to deduce the existence of a general circulation in the stratosphere from water-vapour
distribution measurement [7]. More recently, many studies have reconstructed humidity fields in
the troposphere [8–12] and the stratosphere [13] by simulating particle trajectories using observed
wind fields.

The success in numerical and observational studies has led to theoretical investigations of the
advection–condensation model in idealized settings. A continuum formulation of the model, with
the water-vapour distribution represented by a coarse-grained field [2,14], is prone to produce
overly saturated air [6]. Here, we employ a Lagrangian particle formulation. A few previous
works have taken this approach, starting with Pierrehumbert et al. [6], who considered an
ensemble of moist air parcels undergoing Brownian motion and condensation in one dimension.
Among other results, they obtained analytically the time-dependent probability distribution
function (PDF) of the local specific humidity when initially saturated parcels are allowed to dry
in the absence of a moisture source—stochastic drying. The stochastic drying problem where
the parcel velocity has a finite correlation time was solved by O’Gorman & Schneider [14].
Sukhatme & Young [15] studied Brownian parcels forced by a moisture source located at one
end of a bounded one-dimensional domain and derived an exact solution for the water-vapour
PDF of the resulting statistically steady state. A generalization of this steady-state problem to the
case of time-correlated parcel velocity was considered by Beucler [16]. All these studies employ
a one-dimensional Lagrangian velocity with no spatial correlation to mimic turbulent motions.
However, analyses of observational data [17,18] and idealized simulations [19] demonstrate that
synoptic-scale eddies play an important role in atmospheric transport. Pauluis et al. [20] have also
shown that the global moisture circulation can be viewed as a single overturning cell in moist
isentropic coordinates. Roughly speaking, water vapour evaporated into the planetary boundary
layer is drawn towards the tropics where it is transported upward. Large-scale advection
then carries the moisture from the tropical upper troposphere to other regions where the air
subsides [1].

In this paper, we aim to gain insight into the effects of coherent stirring on the transport and
distribution of water vapour. We consider a two-dimensional advection–condensation system
where the velocity of an air parcel consists of a large-scale circulation and a small-scale stochastic
component. We use this idealized model to investigate how the large- and small-scale velocities
interact to produce the resulting humidity distribution and answer questions such as: How does
the large-scale circulation create an area of low relative humidity? How does the precipitation
pattern change with the strength of the circulation?

Following the presentation of our model in §2, we investigate in §3 the drying of a moisture
patch in the presence of a single vortex and no moisture source. The drying process consists of an
initial fast advective stage and a later slow stochastic stage. In the limit of strong circulation,
we obtain an analytical expression for the decay of the mean moisture in the system. In §4,
we consider a cellular circulation in a bounded domain with a moisture source at the bottom
boundary. This set-up roughly resembles the Hadley cell [21]. We discuss the general features of
the statistically steady humidity distribution and their dependence on the circulation strength. In
the strong circulation limit, we derive an expression for the specific humidity PDF from which
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diagnostics such as evaporation rate and precipitation rate are obtained. Section 5 concludes
the paper.

2. The advection–condensation model
Consider an ensemble of moist air parcels passively advected by a velocity field in a two-
dimensional domain. When the specific humidity Q of an air parcel at position X = (X, Y) exceeds
the local value of the saturation specific humidity qs(X), the excessive moisture condenses
and precipitates out of the system. To a very good approximation, qs is proportional to the
saturation vapour pressure, which varies with temperature according to the Clausius–Clapeyron
relation [22]. Assuming that the temperature is independent of x and decreases linearly with y, qs

decays exponentially in y [6]. Thus for the rest of this paper, we take

qs(y) = qmax e−αy (2.1)

for some constant α > 0.
Our goal is to investigate the effect of a large-scale circulation on the distribution of moisture.

To this end, the prescribed velocity in our model is composed of a deterministic part u =
(u, v) representing large-scale coherent motions and a stochastic, δ-correlated in time (white
noise) component which mimics the small-scale random transport of the air parcels. Hence, the
Lagrangian formulation of our advection–condensation model takes the form of a set of stochastic
differential equations for the random variables (X, Y, Q),

dX(t) = u(X, Y) dt +
√

2κ dW1(t), (2.2a)

dY(t) = v(X, Y) dt +
√

2κ dW2(t) (2.2b)

and dQ(t) = [S(X, Y) − C(Y, Q)] dt. (2.2c)

The Brownian motion of the parcel is modelled via the Wiener processes W1(t) and W2(t) with
diffusivity κ . S represents a moisture source. Generally, the condensation sink C is given by

C = τ−1
c [Q − qs(Y)]H[Q − qs(Y)], (2.3)

where τc is the condensation time scale and H denotes the Heaviside step function. Following
previous studies [6,14,15], we take the rapid condensation limit τc → 0. Effectively, this means
that Q is reset to qs(Y) whenever the former exceeds the latter,

C : Q(t) �→ min{Q(t), qs[Y(t)]}. (2.4)

The specific form of S and (u, v) will be given in the following sections when we consider initial-
value and steady-state problems.

The two-dimensional model described above can represent an isentropic surface in the mid-
troposphere with x the distance in the east–west direction and y the distance from the Equator. The
present set-up can also be considered as a crude model for moisture transport by an overturning
circulation in the free troposphere. Then x represents the latitude or longitude and y is the altitude.
Generally, the typical length scales in the x- and y-directions are different. Here, it is understood
that X and Y have been scaled by their respective typical length scales. For simplicity, the re-scaled
diffusivities in the two directions are assumed equal.

3. Initial-value problem
Let us consider a patch of initially saturated air in an unbounded domain with no moisture
source, S = 0. Condensation may occur when individual air parcels move in the y-direction, hence
reducing the total moisture content in the system. We are interested in how a vortex, taken to be
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Figure 1. (a–c) Monte Carlo simulation of the stochastic advection–condensation model (2.2) for the initial-value problem in
§3. The position of air parcels is shown at different times with a colour scale that indicates the specific humidity log10 Q carried
by each parcel. The values of the simulation parameters are given in the text. (Online version in colour.)

the solid-body rotation

u = −Ωy and v=Ωx, (3.1)

with constant Ω , added to the random motion of the air parcels modifies the drying process.
Later, we shall see that the present set-up is relevant to the emergence of a dry zone in the forced
problem considered in §4. With typical length α−1 set by qs in (2.1) and typical velocity Ωα−1,
the inverse Péclet number

ε = κα2

Ω
(3.2)

measures the importance of random motion relative to the circulation.
Figure 1 shows a typical Monte Carlo simulation of (2.2) using the Euler–Maruyama method

[23] for an ensemble of 107 air parcels. The simulation parameters are Ω = 5, κ = 10−1, α =
ln(10)/π and qmax = 0.1. This gives ε ≈ 0.01 � 1, so this case is in the fast circulation limit. The
value of α mimics the situation in the troposphere where the saturation specific humidity varies
by several orders of magnitude with altitude as well as between the tropical and polar regions [1].
The parcels are initially distributed evenly over a circular area centred at the origin with radius
R = 5π (figure 1a). We are interested in a large patch R � α−1. Generally, we find that the drying
process consists of a fast advective stage and a slow stochastic stage. We discuss these two stages
in the following sections.

(a) Advective drying
Initially, at t = 0, all parcels are saturated and have Q(0) = qs[Y(0)]. At t = 0+, the air parcels start
to move in the counterclockwise sense along the circular streamlines of (u, v) with small random
fluctuations induced by the Brownian motion. The parcels that move in the −y direction are
entering regions where qs(Y)>Q, thus no condensation occurs and Q remains constant. On the
other hand, for parcels moving in the +y direction along a streamline of radius r, condensation
starts immediately. These parcels continue to lose water vapour as condensation goes on until
they reach (X, Y) ≈ (0, r) and Q ≈ qs(r)—the minimum of qs on the streamline. By the time

ta ≡ 2πΩ−1 (3.3)

every parcel has made one complete revolution and a large amount of moisture has been lost: the
moisture distribution becomes more or less axisymmetric with

Q(ta) ≈ qs

(√
X2(0) + Y2(0)

)
(3.4)
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Figure2. Decaywith timeof theglobal specifichumidity Q̄defined in (3.5) for the initial-valueproblem in§3. (a) Transition from
advective to stochastic drying for different values of angular velocityΩ . (b) Monte Carlo simulation results (circles) forΩ = 5
(ε ≈ 0.01) are compared with the theoretical prediction in (3.22) (solid line) and with the long-time asymptotic formula (3.23)
(dashed line). The inset shows the initial rapid decay, with the dotted line indicating the value at the end of the advective drying
stage, Q̄(ta) in (3.6). (Online version in colour.)

for each parcel (figure 1b). The rapid initial drying is best exhibited by the decay of the global
specific humidity defined as

Q̄(t) ≡ 1
N

N∑
i=1

Qi(t), (3.5)

where the sum is over all N air parcels. Assuming all parcels have the same air mass, Q̄ is simply
the ratio of the total moisture mass to the total air mass in the system. During the advective drying
stage, Q̄ drops rapidly from its initial value at t = 0 to

Q̄(ta) ≈ 1
πR2

∫ 2π

0
dθ

∫∞

0
qmax e−αrr dr = 2qmax

(αR)2 (3.6)

at t ≈ ta. Further drying from this time on relies on the Brownian motion of the parcels and
corresponds to the slow stochastic drying phase. Figure 2a shows this transition for different
Ω including the case without a vortex (Ω = 0); other simulation parameters are the same as
in figure 1.

(b) Stochastic drying
In the stochastic drying phase, an air parcel on a streamline of radius r1 that wanders onto
another streamline of radius r2 > r1 is being quickly advected into the region of y ≈ r2 with lower
saturation specific humidity. Rapid condensation within this region reduces the specific humidity
of the parcel from Q = qs(r1) to Q = qs(r2). Our primary goal in this section is to calculate the
resulting PDF of Q. Following previous work [6,14], this is achieved by considering the maximum
excursion statistics of an air parcel.

Define the maximum excursion (in the y-direction) at time t of an air parcel as

Λ(t) = max
s∈[0,t]

Y(s). (3.7)

Because of rapid condensation (2.4), the specific humidity of an air parcel at time t is the minimum
qs it encounters during the time interval [0, t]. Since qs decreases monotonically with y, this implies
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that the random variables Q and Λ are related by

Q(t) = qs[Λ(t)] = qmax e−αΛ(t). (3.8)

We first derive the equation satisfied by the cumulative distribution function C(λ | x; t) ofΛ for an
air parcel located at x at time t. Suppose there is an absorbing barrier at y = λ. We follow a parcel
backward in time according to (2.2a) and (2.2b) and remove it from the system if its trajectory X(t)
hits the absorbing barrier at some t> 0. It then follows that

C(λ | x; t) ≡ P[Λ(t)<λ | X(t) = x] = P[X(0) ∈ S | X(t) = x] = E{χS[X(0)] | X(t) = x}, (3.9)

where S= (−∞, ∞) × (−∞, λ], P(E1 | E2) and E(E1 | E2) denote, respectively, the probability and
expectation of event E1 conditioned upon event E2, and χS is the indicator function

χS(x) =
{

1 if x ∈ S,

0 if x �∈ S.
(3.10)

Since backward trajectories are equivalent to forward trajectories under a reversal of u, (3.9) gives

C(λ | x; t) = E{χS[X(t)] | X(0) = x}|u�→−u (3.11)

and it follows that C(λ | x; t) satisfies the backward Kolmogorov equation [24,25],

∂C
∂t

= −u · ∇C + κ∇2C, (3.12)

with the boundary condition C(λ | x; t) = 0 at y = λ. The initial condition is C(λ | x; 0) =H(λ− y)
and we adopt the convention H(0) = 0 for the Heaviside function.

We now solve (3.12) perturbatively for C in the fast flow limit ε� 1. Non-dimensionalizing
using x = α−1x̂, t = α−2κ−1 t̂ and u = α−1Ωû, then suppressing the hats, (3.12) becomes

∂C
∂t

= −ε−1u · ∇C + ∇2C. (3.13)

Adopting polar coordinates, we expand

C(λ | r, θ ; t) = C0 + ε1/2C1 + εC2 + · · · , (3.14)

where the powers of ε1/2 turn out to be required for matching with a boundary layer around r = λ.
At the leading order ε−1, we find that

u · ∇C0 = 0, (3.15)

which means C0 = C0(λ | r; t) is constant along streamlines. Hence, at the lowest order, the
moisture distribution is axisymmetrized by u, as described in §3a. The next-order solution is
similarly axisymmetric, C1 = C1(λ | r; t). At O(ε0), we obtain

∂C0

∂t
= −u · ∇C2 + ∇2C0. (3.16)

For the solid-body rotation (3.1), u · ∇C2 =Ω∂θC2. Hence, averaging (3.16) over θ eliminates the
term involving C2, leading to the one-dimensional heat equation for C0 (in dimensional variables)

∂C0

∂t
= κ

r
∂

∂r

(
r
∂C0

∂r

)
. (3.17)

For fast circulation, the boundary and initial conditions of C imply C0(λ | r; t) = 0 for r ≥ λ and
C0(λ | r; 0) =H(λ− r). The solution C0 obtained in this manner has discontinuous derivatives at
t = 0 and r = λ. These are smoothed out in boundary layers: a boundary layer in time of size O(ε)
matches with the advective drying solution described in §3a; a boundary layer around r = λ of
size O(ε1/2) where radial diffusion is important ensures a smooth transition between the positive
values of C for r<λ and zero values for r ≥ λ. The details of the solution within the boundary
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Figure3. Moisturedistribution for the initial-valueproblem. (a) Theoretical PDFs for themaximumexcursionΛand the specific
humidityQ of a parcel at r = π/2 and different times t. To ensure convergence in the tails, these PDFs are calculated from (3.18)
and (3.19) by including the first 50 terms of the series. The same parameter values as those in the Monte Carlo simulation of
figure 1 are used in the formulae. (b) Profile of the ensemble mean specific humidity 〈Q〉 at different times t. The curves are
theoretical predictions calculated using (3.20) and the first 10 terms in expression (3.19) for PQ(q|r, t). The crosses are the results
fromMonte Carlo simulations. The saturation specific humidity profile qs(r) is also shown. (Online version in colour.)

layers are unimportant for C0 outside and we do not consider them further. Solving (3.17) for C0,
we obtain the PDF of the maximum excursion for a parcel landing at r at time t,

PΛ(λ | r, t) = ∂C0

∂λ
= 2r
λ2

∞∑
n=1

1
J1(zn)

[
2znκt
λr

J0

( znr
λ

)
+ J1

( znr
λ

)]
exp

(
− z2

nκt
λ2

)
, (3.18)

for r<λ. Here, J0 and J1 are the zeroth and first-order Bessel functions of the first kind, and zn is
the nth zero of J0. Using (3.8), we finally have the leading-order PDF of the specific humidity for
a parcel arriving at position r at time t,

PQ(q | r, t) = −2r̂

qmaxq̂ ln2 q̂

∞∑
n=1

1
J1(zn)

[
2znt̂
r̂ ln q̂

J0

(
znr̂
ln q̂

)
+ J1

(
znr̂
ln q̂

)]
exp

(
− z2

nt̂

ln2 q̂

)
, (3.19)

for q̂< e−αr, where q̂ = q/qmax, r̂ = αr and t̂ = α2κt.
Using parameters matching those of figure 1, figure 3a plots (3.18) and (3.19) for r = π/2 at

different times t. At early times, most air parcels have not moved far from their initial position.
So a parcel landing at r is most probably coming from the vicinity of r, implying its maximum
excursion is either equal to or only slightly larger than r, hence its specific humidity is equal to
or slightly less than qs(r). As time goes by, more and more parcels have visited places with small
qs and undergone condensation before arriving at r. Thus, the peak of PΛ(λ | r, t) shifts to larger λ
while that of PQ(q | r, t) shifts to smaller q.

We now compare predictions of our theory with results from the Monte Carlo simulation
described in figure 1, which has ε ≈ 0.01. The fast circulation limit (ε→ 0) assumed in the theory
means that the moisture field is axisymmetrized instantaneously at t = 0+. However, it always
takes a finite amount of time, namely ta = 2πε (see the dimensional (3.3)), for that to happen in
a simulation with small but finite ε. We will, therefore, compare theoretical prediction at time t
with the corresponding numerical results at time t + ta.
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We first look at the spatial profile of the mean specific humidity

〈Q〉(r, t) =
∫ qmax e−αr

0
qPQ(q | r, t) dq. (3.20)

Figure 3b compares simulation results for 〈Q〉 at different times with the theoretical prediction
calculated from (3.19). The numerical estimate of 〈Q〉 at a given r is obtained by averaging the
specific humidity Q over all the parcels located within a thin annulus of radii r ± δ with δ =
0.05. Note that our theoretical prediction assumes the parcels are initially distributed uniformly
across the (x, y)-plane while the Monte Carlo simulation initializes parcels inside a circle of radius
R only. However, since R � α−1 and ε� 1, the parcels that are not sampled make a negligible
contribution to the statistics. We find reasonable agreement between the theoretical and numerical
results with the largest discrepancy near r = 0. This is due to the lack of data points and the
deviation from the fast circulation limit near r = 0 (recall |u| =Ωr).

We can also predict the decay of the global specific humidity Q̄(t), defined in (3.5), for a
patch of initially saturated parcels. The circles in figure 2b show Q̄(t) measured in the simulation.
For N parcels distributed uniformly in the (x, y)-plane with number density ρ = N/(πR2), the
expectation value of Q̄ can be calculated as

〈Q̄〉(t) = 1
N

∫ qmax

0
q dq

∫∫
PQ(q | r, t)ρ dx dy

= 1
πR2

∫ qmax

0
q dq

∫ 2π

0
dθ

∫− 1
α

ln q̂

0
rPQ(q | r, t) dr. (3.21)

Performing the spatial integration, we obtain

〈Q̄〉(t) = −4qmax

α2R2

∞∑
n=1

∫ 1

0
exp

(
− z2

nt̂

ln2 q̂

)[
2t̂

ln q̂
+ J2(zn)

znJ1(zn)
ln q̂

]
dq̂. (3.22)

In contrast with PΛ, PQ or 〈Q〉 in figure 3, (3.22) for 〈Q̄〉 is dominated by the first term, which
we plot as a solid line in figure 2b. We see that the theory is in good agreement with the Monte
Carlo simulation. The long-time decay of 〈Q̄〉 can be found from (3.22) using Laplace’s method as
detailed in appendix A. The result, also plotted in figure 2b, is

〈Q̄〉(t) ∝ t5/6 exp
[
− 3

22/3 (z2
1α

2κt)1/3
]

as t → ∞. (3.23)

(c) A general incompressible flow
In this section, we outline an extension of the above calculation to arbitrary flows with closed
streamlines. A motivation for this extension is that the transport of moisture in mid-latitudes is
primarily along moist isentropic surfaces. Such transport is driven by large-scale baroclinic eddies
and can roughly be modelled by a wavy velocity field in a periodic channel, which our extension
covers.

The main idea is to generalize the polar coordinates (r, θ ) used for axisymmetric flows to the
pair (ψ , τ ), where ψ is the value of the streamfunction and τ is the elapsed time along a streamline
defined by

τ =
∫
ψ

dl
|∇ψ | , (3.24)

where l is the arclength and the integral is along a streamline. The advective phase of the drying
reduces the humidity of air parcels initially located on a streamline ψ to Q = qs(yψ ), where yψ
denotes the maximum value of y along the streamline. To analyse the later phase of stochastic
drying, we need to consider the backward Kolmogorov equation (3.13) for C(λ |ψ , τ ; t). To leading
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order this reduces to

u · ∇C0 = ∂C0

∂τ
= 0, (3.25)

which implies that C0 = C0(λ |ψ ; t). Introducing this into (3.16) and averaging over τ yields

∂C0

∂t
= κ

∂

∂ψ

(∮
ψ

|∇ψ | dl
∂C0

∂ψ

)
(3.26)

(see [26] and appendix A of [27] for details). This heat-like equation, which reduces to (3.17) for a
solid-body rotation, can be solved (numerically in general) with the initial condition C0(λ |ψ ; 0) =
1 if yψ < λ and 0 otherwise. The PDFs PΛ(λ |ψ , t) and PQ(q |ψ , t) follow.

4. Steady-state problem
Water vapour condensed and precipitated out of the atmosphere is replenished by evaporation of
liquid water from the oceans and land. As mentioned in §1, the large-scale cycling of atmospheric
water can sometimes be viewed as taking place inside a single overturning cell [1,20]. One
question that naturally arises is: how does the moisture distribution within the cell change with
the strength and other properties of the circulation? Here, we investigate this within the context
of the advection–condensation paradigm.

As a simple representation of an overturning cell, we consider the velocity (u, v) = (−∂yψ , ∂xψ)
given by the streamfunction

ψ(x, y) = UL sin
( x

L

)
sin

( y
L

)
(4.1)

in a bounded domain [0,πL] × [0,πL] with reflective boundary condition; see figure 4. Recall
that x and y are re-scaled to have the same typical length L as discussed near the end of §2.
The evaporation source is modelled as a boundary condition at y = 0: the specific humidity Q of
air parcels hitting (and reflecting on) the bottom boundary is reset to qmax, the saturation value
there [6,15]. The saturation profile is given by (2.1). From here on, we fix qmax = qs(0) = 1 and
qmin ≡ qs(πL) = 0.01. The fate of a moist parcel under the action of large-scale circulation (4.1),
Brownian motion and condensation is then governed by (2.2). If we interpret x as the meridional
direction and y as the altitude, this set-up resembles the Hadley cell.

Figure 4 shows a snapshot of the statistically steady state attained in a Monte Carlo simulation
of the system. The domain is initially saturated. For all simulations presented in this section,
we use 106 parcels. We focus on situations when the circulation is strong, with the inverse
Péclet number

ε = κ

(UL)
� 1. (4.2)

Our simulations show that there are generally three distinct regions inside the cell:

(i) The source boundary layer. Since the circulation is tangential to the boundary, it is by means
of the small-scale Brownian motion that the parcels hit the bottom boundary and moisture
is injected into the domain. When the vertical random motion of the recently saturated
parcels near the source is balanced by the sweeping (towards x = 0) of the circulation,
a boundary layer of high humidity is formed at y = 0. Interestingly, as can be seen in
figure 4, mixed inside this layer of mostly wet parcels are parcels with Q ≈ qmin that
subside from aloft. This results in a bimodal local PDF P(q | x, y) for the specific humidity
inside this boundary layer; see figure 5a.

(ii) The condensation boundary layer. Advected by the circulation, the wet parcels with Q ≈ qmax

in the source boundary layer converge towards a narrow region near x = 0 before moving
upward. The water vapour in these parcels then quickly condenses as qs decreases,
keeping the relative humidity Q/qs(Y) ≈ 1 (figure 4). Such a region of intense precipitation
is reminiscent of the Intertropical Convergence Zone. Figure 5b shows a typical PDF of
Q inside this boundary layer. Similar to (i), the dry parcels brought in by the Brownian
motion give PQ(q | x, y) two peaks at q = qmin and q = qs(y).
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1/2. (Online version in colour.)

(iii) The dry interior. The bulk interior (as well as the top boundary and the descending arm) of
the cell is mainly occupied by parcels with Q ≈ qmin, creating a patch of relative humidity
minimum [2] about the cell centre. This is because parcels that pick up moisture from the
source are quickly advected by the circulation around the periphery, leaving the interior
largely oblivious of the source. The upshot is the inner region losing its moisture through
advective and stochastic drying (§3). Figure 5c shows the decrease of relative humidity
at the centre of the cell with time. The equilibrium mean specific humidity inside the dry
patch is maintained slightly above qmin by moisture mixing in [28] from the condensation
and source boundary layers via Brownian motion.

Through the interplay between coherent stirring and small-scale random motion, our idealized
model develops the interesting features of boundary layers and relative humidity minimum. This
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is in contrast with a one-dimensional system of Brownian parcels [15]. With the qualitative picture
described above in mind, we examine quantitatively how the strength of the circulation controls
the system in the next sections.

(a) Water-vapour probability distribution function in the fast circulation limit
We first derive the steady joint PDF P(q, x, y) governing the equilibrium statistics of the parcel
position and specific humidity in (2.2). The steady Fokker–Planck equation satisfied by P(q, x, y) is

u · ∇P + ∂q[(S − C)P] = κ∇2P. (4.3)

Following Sukhatme & Young [15], rapid condensation (2.4) implies that we only need to consider
(4.3) in a region of the (q, x, y)-space where qmin ≤ q ≤ qs(y). Within this region, S = C = 0. We are
interested in the limit of fast circulation. Thus, upon re-scaling x = Lx̂, u = Uû and suppressing
the hats, we consider

u · ∇P = ε∇2P, (4.4)

with ε� 1. From (4.4), it follows [15] that the marginal PDF

p(x, y) =
∫ qs(y)

qmin

P(q, x, y) dq = 1
π2 . (4.5)

This simply means that the number density of parcels is uniform over the entire cell. The
boundary conditions are no-flux at all edges except the bottom one, at which P(q, x, 0) = π−2δ(q −
qmax) representing the source. We also know that P(q, x,π ) = π−2δ(q − qmin) because when a parcel
hits y = π (and then subsides) it has a probability 1 that Q = qmin. This idealization at the top edge
coupled with a localized boundary source implies that P(q, x, y) generally contains a singular dry
spike [15] at q = qmin, as exemplified in figure 5, in addition to a continuous part F(q, x, y):

P(q, x, y) = β(x, y)π−2δ(q − qmin) + F(q, x, y). (4.6)

Equations of the form (4.4) have been widely studied in different areas such as
magnetohydrodynamics [29], transport in convective rolls [30,31] and two-dimensional vortex
condensate [32]. As ε→ 0, it is well known that boundary layers of thickness ε1/2 form around
the periphery. Following standard procedures, we introduce the von Mises transformation [33]
(x, y) → (ψ , γ ), where

γ ≡
∫ l

0
|∇ψ(l′)| dl′ (4.7)

is the integral of the speed along the cell boundary. The speed is parametrized by the arclength l
and we choose l = 0 at (π , 0) so that γ = 0 at (π , 0), 2 at (0, 0), 4 at (0,π ) and 6 at (π ,π ). The variables
ψ and γ track the variation of P across and along streamlines, respectively. Inside the boundary
layers, ∂ψ ∼ ε−1/2 and ∂γ ∼ O(1) as advection along streamlines balances diffusion (of probability)
across streamlines. We let ψ = ε1/2ψ̂ and substitute

P = P0 + ε1/2P1 + εP2 + · · · (4.8)

into (4.4), then we have, to leading order in ε,

∂P0

∂γ
= ∂2P0

∂ψ̂2
(inside the boundary layers). (4.9)

On the other hand, in the cell interior outside the boundary layers as well as the corner regions,
the Laplacian term in (4.4) is negligible to leading order [29,32]. Thus, we have

u · ∇P0 = 0 (for the cell interior and corners). (4.10)

In the following, we derive P0 for different regions of the cell.
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(i) Cell interior, boundary layers at x = π and y = π

The amplitude of the dry spike in (4.6) drops sharply from β = 1 at y = π to β ≈ 1/2 over a distance
of y ∼ O(ε1/2). Inside this top boundary layer, let Ŷ = ε−1/2(π − y) ∼ O(1). We then see that rapid
condensation restricts the specific humidity to lie within

qmin ≤ Q � qmax e−α(π−ε1/2Ŷ) ≈ qmin(1 + αε1/2Ŷ). (4.11)

Since Q = qmin to leading order for all parcels, we choose not to resolve the separation between
the dry spike and the smooth contribution F(q, x, y) to P(q, x, y) and we take

P0 = π−2δ(q − qmin). (4.12)

We now turn to the cell interior. Equation (4.10) implies that P0 = P0(q,ψ) is constant along
streamlines. To derive P0, we consider (4.4) at order ε: u · ∇P2 = ∇2P0. Integrating this equation
along streamlines (the same calculation that leads to (3.26)) gives the solvability condition for P2,

∂

∂ψ

[
Γ (ψ)

∂P0

∂ψ

]
= 0, where Γ (ψ) ≡

∮
ψ

|∇ψ | dl. (4.13)

The circulation Γ increases monotonically from Γ (0) = −8 at the boundary to Γ (1) = 0 at the
centre [27]. Hence, we conclude that, for finite ∂ψP0, P0 must be independent of ψ . By matching
to the boundary layer as y → π , we see that P0 in the cell interior is also given by (4.12).

Inside the boundary layer near x = π (where γ = 7 + cos y), (4.12) provides the ‘initial’
condition (at γ = 6) for (4.9) because (4.10) in the corner regions ensures P0 joins smoothly across
neighbouring boundary layers. With zero-flux at the boundary ψ̂ = 0 and matching to the interior
solution (4.12) as ψ̂ → ∞, it follows that P0 is once again given by (4.12).

(ii) Source boundary layer

We have seen in figure 5a an example of the bimodality of extreme high and low specific humidity
in the source boundary layer near y = 0 (where γ = 1 + cos x). From the discussion in the previous
section, we know that the dry parcels flowing in from upstream and from the interior have qmin ≤
Q< qmin + O(ε1/2). Following similar arguments, rapid condensation dictates that the specific
humidity of the wet parcels lies between qmax and qmax − O(ε1/2), therefore we write

P0 = G(ψ̂ , γ )π−2δ(q − qmin) + [1 − G(ψ̂ , γ )]π−2δ(q − qmax) for 0< γ < 2, (4.14)

making sure that (4.5) is satisfied. We emphasize the distinction between β in (4.6) and G in (4.14):
while β describes parcels with Q = qmin exactly, G is a leading-order approximation encompassing
the range of Q in (4.11). From (4.9), G satisfies the heat equation

∂G
∂γ

= ∂2G

∂ψ̂2
. (4.15)

The initial condition at γ = 0 is obtained by joining the boundary layer upstream via the corner
region at x = π . The source at the bottom edge ψ̂ = 0 and matching to the interior as ψ̂ → ∞ give
the boundary conditions. Thus,

G(ψ̂ , 0) = 1, G(0, γ ) = 0 and G(∞, γ ) = 1 (4.16)

and the solution is

G = erf

(
ψ̂

2
√
γ

)
= erf

(
y
√

1 − cos x
2ε1/2

)
. (4.17)

(iii) Condensation boundary layer

The condensation layer near x = 0 (where γ = 3 − cos y) is the region of concentrated precipitation
in the model. Figure 5b shows a typical bimodal distribution of Q in this layer. Dry parcels in
(4.11) once again contribute to the peak near qmin. The peak at qs(y) has an O(ε) width extended
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towards q< qs(y) because some parcels at y + y1(y1 > 0) are able to random walk downward
against u to reach y. We estimate the maximum y1 by balancing upward advection and downward
Brownian motion: y1 ∼ Uτ1 ∼ √

κτ1 (in dimensional variables) for some time τ1. This leads to
y1 ∼ κU ∼ εL, which implies that these parcels have Q ≈ qs(y) − O(ε) due to rapid condensation.
(This is consistent with the leading-order equation (4.9), which neglects along-flow diffusion.)
The solution can, therefore, be written as

P0 = G(ψ̂ , γ )π−2δ(q − qmin) + [1 − G(ψ̂ , γ )]π−2δ[q − qs(yγ )] for 2< γ < 4, (4.18)

where yγ = cos−1(3 − γ ). The function G in the range 2< γ < 4 satisfies the heat equation (4.15)
with initial and boundary conditions

G(ψ̂ , 2+) = G(ψ̂ , 2−), ∂
ψ̂

G(0, γ ) = 0 and G(∞, γ ) = 1 (4.19)

with G(ψ̂ , 2−) obtained from (4.17). The solution is given by

G = erf

(
ψ̂

2
√
γ

)
+ 1√

π (γ − 2)

∫∞

0
e−(ψ̂ ′+ψ̂)2/4(γ−2)G(ψ̂ ′, 2−) dψ̂ ′. (4.20)

Note that the integral term above tends to zero as γ → 2 or ψ̂ → ∞ as expected.

(b) Surface evaporation, boundary-layer ventilation and vertical flux
Equipped with the joint PDF P0(q, x, y), we now study the transport of moisture from the source
to the upper part of the domain. The mean specific humidity at position (x, y) is given by the
conditional expectation

〈Q〉(x, y) =
∫ qmax

qmin

qP̃(q|x, y) dq, (4.21)

with the conditional probability density P̃(q | x, y) = P(q, x, y)/p(x, y) = π2P(q, x, y). The steady
Fokker–Planck equation (4.3) implies the balance

∇ · (〈Q〉u − κ∇〈Q〉) = −
∫ qmax

qmin

CP̃(q | x, y) dq ≡ −〈C〉 (4.22)

for y> 0. Apart from a factor of constant air density, 〈C〉 is the mean moisture mass condensed
per unit time per unit area. By integrating (4.22) over the region above a given y and applying the
divergence theorem, we find that the net upward transport of moisture mass across height y per
unit time is proportional to

Φ(y) =
∫πL

0

(
v〈Q〉 − κ

∂〈Q〉
∂y

)
dx. (4.23)

We refer to Φ(y) as the vertical moisture flux.
The surface evaporation rate, i.e. the rate at which moisture is introduced by the source at y = 0,

is given byΦ(0). The idealization of Brownian small-scale motion leads to air parcels continuously
picking up and losing moisture by bouncing on and off the bottom edge multiple times in quick
succession. This results in an infinite Φ(0), although much of this moisture is quickly lost in the
immediate vicinity of y = 0 [15]. Thus, for the present model, we focus on a more relevant measure
of moisture input. We define the net surface evaporation rate Enet to be the surface moisture
flux attributed only to the dry air parcels, specifically parcels with Q< qs(ε1/2L). Because the
approximation P0 in (4.14) incorporates all parcels within an ε1/2-neighbourhood of qmax into
the spike at qmax which does not contribute to Φ(0), we can predict Enet by substituting (4.14)
into (4.23) and evaluating the integral at y = 0. Noting that v vanishes on the bottom boundary,
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Figure 6. (a) Surface evaporation rate Enet and boundary-layer ventilation Qvent defined by (4.26): the Monte Carlo estimates
of Enet (crosses) and Qvent (circles) are compared with the asymptotic predictions Enet/(UL)∝ ε1/2 in (4.24) (dash-dotted line)
andΦFT(ε1/2L) from (4.25) (dashed line). (b) Vertical moisture fluxΦ(y): Monte Carlo results (symbols) are compared with
the asymptotic prediction (4.25). (Online version in colour.)

we have

Enet =
√
κUL

√
8
π

(qmax − qmin) (4.24)

and the dimensionless Enet/(UL) ∝ ε1/2. Hence, the moisture input increases with the square root
of the circulation strength. Figure 6a shows good agreement between the theory and Enet obtained
from a number of Monte Carlo simulations over the range 10−3 ≤ ε ≤ 10−1.

We are also interested in the moisture flux outside the source boundary layer. In this ‘free
troposphere’ of the model, (4.23) is dominated by the first term. Using P0 for the cell interior (4.12)
and for the condensation boundary layer (4.18) in (4.23), we find (see appendix B for details)

ΦFT(y) =
√
κUL

√
8
π

[qs(y) − qmin]. (4.25)

Figure 6b plots the scaled Φ(y) from several Monte Carlo simulations (see also appendix C) with
different ε together with the prediction ΦFT(y). The collapse of all the data onto the theoretical
curve for y � ε1/2L verifies the prediction. The position where the numerical results start to
deviate from the theory indicates that the thickness of the source boundary layer is of order ε1/2L.

The value of the moisture flux at the top of the planetary boundary layer Qvent is of particular
importance for atmospheric moisture transport as it represents the amount of moisture ventilated
from the boundary layer [34]. Figure 6a demonstrates the good agreement between

Qvent ≡Φ(ε1/2L) (4.26)

measured from simulations and the prediction ΦFT(ε1/2L). Like Enet, Qvent increases with U. In
fact, Qvent ≈ Enet for small ε, showing that the large-scale circulation acts like a conveyor belt: air
parcels enter the source boundary layer at one end and travel within the layer to the other end
where they exit, carrying with them almost all the moisture they pick up from the surface source.

(c) Surface precipitation rate
As wet parcels emerge from the source boundary layer and move upward into regions of
low saturation qs(y), condensation occurs. We assume that all condensed moisture becomes
precipitation. With y interpreted as altitude and assuming precipitation falls vertically, we can
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compared with the prediction (4.32) (dashed line). (Online version in colour.)

consider the distribution R(x) of the surface precipitation rate. R(x) measured from Monte Carlo
simulations (as described in appendix C) can have a significant contribution RBL(x) from the
frequent condensation near y = 0 induced by the Brownian small-scale motion described below
(4.23). We generally find that RBL depends very weakly on x. So we instead consider the net
surface precipitation rate

Rnet(x) = R(x) − RBL(x). (4.27)

Figure 7a shows Rnet normalized by U from simulations of different ε. When the circulation
strength increases, the precipitation rate increases and the distribution of precipitation becomes
more localized around x = 0 (when κ is held fixed), in line with the boundary-layer thickness
scaling like ε1/2.

We can calculate the leading-order Rnet(x) by considering transport inside the condensation
boundary layer. Vertical transport is dominated by v, so we are in the ballistic limit studied by
O’Gorman & Schneider [14]. Only parcels with Q(t) = qs[Y(t)] contribute to precipitation at time
t. The amount of condensation from one such parcel between time t and t +�t is

�Q = qs[Y(t) + v�t] − qs[Y(t)] ≈ v�t
dqs

dy

∣∣∣∣
Y(t)

< 0. (4.28)

The mean condensation rate at position (x, y) is thus

〈C〉 = − lim
�t→0

〈
�Q
�t

〉
= v(x, y)

dqs

dy

∫ qs(y)+

qs(y)−
P̃0(q | x, y) dq, (4.29)

where the conditional PDF P̃0 is obtained from (4.18). We derive Rnet(x) by integration over y to
find

Rnet(x) =
∫πL

0
〈C〉 dy = αULqmax

∫π
0

e−αy sin y

[
1 − π2G

(√
U
κL

x sin y, 3 − cos y

)]
dy, (4.30)

with G given by (4.20). Good agreement between this prediction and numerical results is seen
in figure 7a.
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(d) Relative humidity and global specific humidity
When evaporation balances condensation, the system reaches a statistically steady state and the
mean moisture distribution has a steady profile. The snapshot in figure 4 confirms that the relative
humidity in the centre of the cell is near its minimum qmin/qs(πL/2); the inset in figure 5c shows
that it decreases towards this minimum as ε→ 0. Here, we take a closer look by plotting in
figure 7b the mean relative humidity as a function of y along a fixed x = πL/2. These profiles
are obtained from Monte Carlo simulations by averaging Q/qs(Y) over parcels as well as over
time. Figure 7b shows that the relative humidity decreases from y = 0, reaches a minimum, then
increases with y, approximately as qmin/qs(y). When the circulation strength U increases with
κ fixed, the minimum relative humidity decreases and its location shifts towards y = 0, or the
direction of increasing qs.

It is interesting to assess the dependence of the total water-vapour content, as estimated by the
global specific humidity Q̄ in (3.5), on the circulation strength. The theoretical prediction for Q̄ is
given by the expectation value

〈Q̄〉 =
∫∫ ∫ qmax

qmin

qP(q, x, y) dq dx dy. (4.31)

Clearly, 〈Q̄〉 → qmin as ε→ 0 since the area of the source and condensation boundary layers (where
Q �= qmin) tends to 0 with ε. The leading-order correction is controlled by the solution near the
corner of the domain at (x, y) = (0, 0), where the moisture content is at its largest. A computation
detailed in appendix D gives

〈Q̄〉 ∼ qmin − ε1/2 log ε

√
2
π5 (qmax − qmin), (4.32)

with the appearance of a logarithmic factor that can be traced to the streamline geometry near
the corner. Thus, the total moisture increases with the diffusivity κ , that is, with the intensity of
small-scale turbulence, and decreases as the strength of the large-scale circulation U increases.
The inset in figure 7b confirms this result.

5. Discussion and conclusion
Motivated by the importance of synoptic-scale moisture transport in the atmosphere, we have
studied two idealized problems based on the advection–condensation paradigm. The key element
in both cases is that the advecting velocity has a large-scale coherent component in addition to
small-scale white noise. The analytically tractable models introduced here capture some of the
essential processes that control the large-scale dynamics of atmospheric water vapour, enabling
us to examine the three-way interaction between large-scale advection, small-scale turbulence
and moisture condensation.

We first study in §3 the drying of a patch of initially saturated air and show how the action of a
vortex speeds up the process. We predict the long-time decay of total moisture from the statistics
of maximum excursion. The drying mechanism in this initial-value problem is responsible for the
creation of a dry zone in the steady-state problem discussed in §4.

For the steady-state problem, we consider the single overturning cell (4.1) on the (x, y)-
plane with a moisture source at the boundary y = 0. This can be interpreted as a large-scale
circulating flow on an isentropic surface if we take x and y as the zonal and meridional
directions, respectively. Alternatively, this set-up is a crude representation of the Hadley cell
if we interpret x as latitude and y as altitude. This simple model produces some interesting
features reminiscent of the atmosphere. First, a boundary layer near the source is formed as a
result of the balance between large-scale and small-scale motions. This layer roughly mimics
the atmospheric boundary layer whose role in moisture transport has been investigated using
idealized simulations with full physics [34]. There is another boundary layer along the rising
arm of the cell near x = 0—the tropics of the model—where intense precipitation occurs. Second,
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we find that the moisture distributions inside both boundary layers are bimodal. The dry peak
is a consequence of the subsidence of parcels with low humidity originated from the top of
the cell. Satellite measurements indeed show that the PDF of relative humidity over the whole
tropics is bimodal although the PDF within a subregion could be unimodal [35]. Finally, the
coherent stirring in the model produces a region of low relative humidity about the centre of
the cell. A similar dry area in the subtropics is observed in the zonal-temporal-averaged relative
humidity obtained from satellite measurements [1] and reanalysis data [2]. The importance of
these subtropical dry zones lies in their large influence on the radiation budget [6] and the high
sensitivity of such influence to water-vapour feedback [36]. Using an idealized model, O’Gorman
et al. [2] show a strong correlation between the position of the relative humidity minimum and
the inflection point of the saturation profile. In our model, the minimum is located at the edge of
the source boundary layer, at an altitude of a few times

√
κL/U, independent of the details of the

saturation profile.
There is a continuous interest in how climatological and seasonal variations in the strength

and width of the Hadley cell [37,38] affect rainfall patterns. Some analysis associates the increase
in tropical precipitation with the intensification of the Hadley circulation [39]. Increasing the
strength of the circulation U in our model does increase the amount of moisture injected into the
system through surface evaporation, with the specific scaling

√
U in the limit of strong circulation.

This is balanced by a larger moisture flux and higher precipitation rate. The precipitation becomes
more concentrated around x = 0, with an extent that scales like 1/

√
U; as a result the local

precipitation intensity increases like U. An increase in circulation strength also leads to a drier
atmosphere with humidity values that are only substantially larger than qmin in the increasingly
small source and condensation boundary layers. Interestingly, the net moisture input (4.24), and
as a consequence the total condensation above the source boundary layer, and the total moisture
(4.32) depend only on qmin and qmax rather than on the full saturation profile qs(y), which only
affects the spatial distribution of rainfall. It is known that changes in global-mean evaporation
and precipitation with surface temperature are strongly constrained energetically [40]. How well
our simple qualitative conclusions apply to more complete models of the atmosphere remains to
be assessed.

Previous work using simplified one-dimensional models has established the Lagrangian
formulation of the advection–condensation paradigm as a promising strategy to investigate
atmospheric water vapour. The present study provides a step forward in this direction through
the analysis of a stochastic Lagrangian model that incorporates the dynamics of a two-
dimensional large-scale circulation. An important extension in the future is to include the effects
of latent heat by making temperature a dynamical variable and the saturation profile temperature
dependent. As it is often difficult to untangle the many interacting processes in full general
circulation model simulations, idealized models such as the one introduced here can help to reveal
the role of specific processes in controlling the distribution of water vapour in the atmosphere.
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Appendix A. Long-time decay of global specific humidity
Here, we derive the long-time behaviour of the expectation of the global specific humidity 〈Q̄〉.
We consider only the first term in the series (3.22). With t̂ = α2κt and introducing ŵ = − ln q̂,
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we have

〈Q̄〉 ≈ 4qmax

α2R2

∫∞

0

[
2t̂
ŵ

+ J2(z1)
z1J1(z1)

ŵ

]
exp

(
− z2

1 t̂

ŵ2 − ŵ

)
dŵ. (A 1)

The argument of the exponential function has a movable maximum at ŵ∗ = (2z2
1 t̂)−1/3. Hence, let

w = ŵ∗ŵ to obtain

〈Q̄〉 ≈ 4qmax

α2R2

∫∞

0

[
1
w

+ z1/3
1 J2(z1)
J1(z1)

w

(2t̂)1/3

]
exp

[
−(2z2

1 t̂)1/3
(

1
2w2 + w

)]
dw. (A 2)

Applying Laplace’s method to the integral in (A 2) for t̂ � 1 leads to

〈Q̄〉 ∼
√

2π
3

[
1

z1/3
1

+ 1

(2t̂)1/3

J2(z1)
J1(z1)

]
(2t̂)5/6 exp

[
− 3

22/3 (z2
1 t̂)1/3

]
, (A 3)

from which (3.23) follows.

Appendix B. Leading-order vertical moisture flux
Working in dimensionless variables, we derive (4.25) by computing the first term in (4.23) as
follows. Let ε1/2 � δ∗ � 1. For 0< x< δ∗, we use (4.18) with G given by (4.20) and v ≈ sin y to
obtain

∫ δ∗
0
v〈Q〉 dx =

∫ δ∗
0

sin y
∫ qs

qmin

q{(1 − G)[δ(q − qs) − δ(q − qmin)] + δ(q − qmin)} dq dx

= ε1/2[qs(y) − qmin]
∫∞

0
[1 − G(ψ̂ , γ )] dψ̂ + qminδ∗ sin y. (B 1)

Here, we have used the transformation ψ̂ = ε−1/2x sin y and taken the limit ε→ 0, δ∗/ε1/2 → ∞.
Integrating (4.15) over all ψ̂ and noting that ∂

ψ̂
G = 0 at ψ̂ = 0, ∞ shows that the ψ̂-integral in (B 1)

is independent of γ and hence can be evaluated by replacing G(ψ̂ , γ ) with G(ψ̂ , 2) to give
√

8/π .
Next, for δ∗ < x<π , using (4.12) and v = cos x sin y, we find

∫π
δ∗
v〈Q〉 dx =

∫π
δ∗

cos x sin y
∫ qs

qmin

qδ(q − qmin) dq dx = −qminδ∗ sin y as δ∗ → 0. (B 2)

Combining the results in (B 1) and (B 2) and reverting to dimensional variables gives (4.25).

Appendix C. Monte Carlo simulation diagnostics
In a Monte Carlo simulation with N parcels, let Np(y, t) be the number of parcels crossing a given
height y in either direction between time t and t +�t. Assuming that all parcels have the same
total air mass M, the ith parcel carries a moisture mass of QiM. Recall that Φ(y) in (4.23) is the
rate of upward transport of moisture mass across y divided by the mass density NM/(πL)2. With
σi(t) the sign of dYi/dt, we estimate Φ(y, t) from simulation data by summing over this set of Np

parcels as follows:

Φ(y, t) = (πL)2

N�t

Np∑
i=1

σiq
∗
i (t), where q∗

i (t) =
{

min[Qi(t), qs(y)] if σi > 0,

Qi(t) if σi < 0.
(C 1)

The statistically steady Φ(y) is then obtained by averaging Φ(y, t) over t.
To estimate the distribution R(x) of the surface precipitation rate, we divide the surface into Nb

bins of width �x = πL/Nb. Denote by Nr(x, t) the number of parcels that undergo condensation
at time t and whose positions Xi(t) fall in (x −�x/2, x +�x/2]. Summation over this set of parcels
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gives the total mass of precipitation per unit time about x which defined R(x, t):

NM
(πL)2 R(x, t)�x ≡ 1

�t

Nr∑
i=1

[Qi − qs(Yi)]M. (C 2)

It follows that

R(x, t) = πL
�t

Nb

N

Nr∑
i=1

[Qi − qs(Yi)]. (C 3)

We then average R(x, t) over t to get R(x). RBL(x) in (4.27) is calculated similarly except that only
parcels inside the source boundary layer are included in the summation.

Appendix D. Global specific humidity
The difference between

〈Q̄〉 = 1
π2

∫∫
〈Q〉 dx dy =

∫∫ ∫ qmax

qmin

qP(q, x, y) dq dx dy (D 1)

(in dimensionless variables) and qmin arises from the source and condensation boundary layers.
Asymptotically, most of the area of this region is located near the corner where x, y � 1 and

〈Q〉 − qmin ∼ (qmax − qmin) erfc
(

xy

2
√

2ε1/2

)
, (D 2)

according to (4.14) and (4.18). We now pick ε1/4 � δ∗ � 1 and integrate (D 2) for (x, y) ∈ [0, δ∗]2

to find
∫ δ∗

0

∫ δ∗
0

(〈Q〉 − qmin) dx dy = ε1/2(qmax − qmin)
∫ δ2

∗/ε
1/2

0

[
2
√

2√
π

1 − e−ξ 2/8

ξ
+ erfc

(
ξ

2
√

2

)]
dξ

= 2
√

2ε1/2(qmax − qmin)√
π

[
log

(
δ2∗
ε1/2

)
+ O(1)

]
, (D 3)

where we have defined ξ = δ∗x/ε1/2. Ignoring the term in log δ2∗ , this gives the result (4.32) for
the global specific humidity. This term in fact cancels out when we account for the rest of the
source and condensation boundary layers, that is, for the regions (x, y) ∈ [δ∗,π ] × [0,μ] and (x, y) ∈
[0,μ] × [δ∗,π ] for some ε1/2 �μ� 1. For the source boundary layer, we have from (4.14)

∫μ
0

∫π
δ∗

(〈Q〉 − qmin) dx dy ∼ (qmax − qmin)
∫π
δ∗

dx
∫μ

0
erfc

(
y
√

1 − cos x
2ε1/2

)
dy

∼ 2
√

2ε1/2(qmax − qmin)√
π

tanh−1
(

cos
δ∗
2

)
= 2

√
2ε1/2(qmax − qmin)√

π
[− log δ∗ + O(1)]. (D 4)

The contribution of the condensation boundary layer is more complicated because of the variable
qs(y) in (4.18) and the integral term in G in (4.20). However, this contribution is identical to (D 4) to
leading order because it is controlled by the limit y → 0 of P(q, x, y) for which qs(y) → qmax and the
integral term vanishes. Together the two contributions cancel the log δ2∗ term in (D 3) as claimed.
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