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Scaling behavior in turbulent Rayleigh-Bénard convection revealed
by conditional structure functions
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We show that the nature of the scaling behavior can be revealed by studying the conditional structure functions
evaluated at given values of the locally averaged thermal dissipation rate. These conditional structure functions
have power-law dependence on the value of the locally averaged thermal dissipation rate, and such dependence
for the Bolgiano-Obukhov scaling is different from the other scaling behaviors. Our analysis of experimental
measurements verifies the power-law dependence and reveals the Bolgiano-Obukhov scaling behavior at the
center of the bottom plate of the convection cell.
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I. INTRODUCTION

A common phenomenology of turbulence is Richardson’s
cascade of energy transfer from large to small scales. Based
on this picture, the seminal paper of Kolmogorov in 1941 [1]
(K41) predicts the scaling behavior of the velocity functions
Sp(r) = 〈|δv(r)|p〉 ∼ εp/3rp/3 when r is in the inertial range,
the range of length scales smaller than those of energy input
and larger than those affected directly by molecular dissipa-
tion. Here, δv(r) ≡ v(�x + �r,t) − v(�x,t) is the velocity differ-
ence between two points separated by a distance r = |�r|, ε =
〈ε(�x,t)〉, where ε(�x,t) = (ν/2)[∂ivj (�x,t) + ∂jvi(�x,t)]2 and ν

is the kinematic viscosity of the fluid, is the mean energy
dissipation rate as well as the mean energy transfer rate, and
the average is taken over position �x and time t . Experiments
confirmed the power-law dependence on r , but the exponent is
found to be a nonlinear function of p, showing that turbulent
fluctuations are intermittent.

A fundamental and yet unsettled question is how buoy-
ancy might affect the scaling behavior in thermal convec-
tive turbulence. There are predictions [2–5] that buoyancy
would give rise to a different scaling behavior for Sp and
temperature structure functions Rp, first derived by Bol-
giano [6] and Obukhov [7] Sp(r) ∼ (αg)2p/5χp/5r3p/5 and
Rp(r) = 〈|δT (r)|p〉 ∼ (αg)−p/5χ2p/5rp/5 for stably stratified
turbulence (see Ref. [8] for a review). Here, δT (r) ≡ T (�x +
�r,t) − T (�x,t) is the temperature difference similarly defined as
δv(r), α is the volume expansion coefficient of the fluid, g is the
acceleration due to gravity, and χ = 〈χ (�x,t)〉 is the mean ther-
mal dissipation rate where χ (�x,t) = κ〈|∇T (�x,t)|2〉 and κ is the
thermal diffusivity of the fluid. The Bolgiano-Obukhov (BO)
scaling can be obtained based on a cascade of temperature
variance instead of energy. A key element of the BO scaling
is the thermal balance: [δv(r)]3/r ≈ (αg)δv(r)δT (r) ∼ r4/5,
which indicates that the mean rate of energy transfer is scale
dependent with energy supplied by buoyancy at each scale r .
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This is in contrast to Richardson’s cascade in which energy
is input at the largest scale only and the mean rate of energy
transfer is constant in the inertial range.

The K41 scaling plus corrections due to intermittency
has been observed in nonbuoyant flows. It is, thus, expected
that the BO scaling would hold only when buoyancy is
significant. A crossover from the K41 scaling to the BO
scaling, if it does occur, should occur when the the rate of
change due to a velocity obeying the BO scaling is faster
than the corresponding rate due to a velocity obeying the
K41 scaling. Estimating the rate of change by δv(r)/r and
using the corresponding results for the K41 and BO scalings,
it can be seen that the above crossover would occur when
r > LB ≡ ε5/4/[(αg)3/2χ3/4], where LB is the Bolgiano scale
[8]. Using the thermal balance in the BO scaling, we see further
that the power injected into the flow due to buoyancy, given by
αg δv(r)δT (r), is balanced by the mean dissipation rate ε at
r = LB and, therefore, for r > LB , αg δv(r)δT (r) > ε. Thus,
the BO scaling is expected only for r > LB . For r � LB ,
one expects the velocity to obey the K41 scaling and the
temperature to act as a passive scalar and to obey the Obukhov-
Corrsin (OC) scaling [9,10] of Rp(r) ∼ ε−p/6χp/2rp/3.

A paradigm for thermal convective turbulence is turbulent
Rayleigh-Bénard (RB) convection [11,12] in a fluid enclosed
in a convection cell of height H , heated from below and cooled
at the top. The state of fluid motion is determined by two
parameters: the Rayleigh number Ra = αg(	T )H 3/νκ and
the Prandtl number Pr = ν/κ . The BO scaling has been found
in two-dimensional (2D) turbulent RB convection in direct
numerical simulations with periodic boundary conditions [13]
and in experiments using soap films [14] or soap bubbles
[15,16]. On the other hand, the situation in three-dimensional
(3D) turbulent RB convection is less clear. It has been
known [17,18] that the Bolgiano scale, constructed using
the energy and thermal dissipation rates measured locally, is
highly inhomogeneous within the convection cell. Numerical
simulations, at Ra = 3.5 × 107 and Pr about 1, showed that
[18] the height-dependent Bolgiano scale, constructed using
the energy and thermal dissipation rates averaged over a cross
section at different heights, is comparable to the height H at the
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center and decreases to 0.2H very close to the top and bottom
boundaries. Similarly, more recent numerical simulations [19]
show that the local Bolgiano scale, constructed using the
local energy and thermal dissipation rates measured at each
position, is comparable to H except very close to the top
and bottom plates of a cylindrical convection cell where it is
smaller than 0.1H for Ra = 1 × 109 and Pr = 6.4. The K41 and
OC scalings (plus intermittency corrections) have indeed been
observed experimentally in the central region [20], but until
now, the BO scaling expected to hold near the top and bottom
plates has not been observed in experiments. On the contrary,
there is an experimental report [19] that the vertical velocity
structure functions near the top plate obey yet a different
scaling behavior predicted to hold in shear flows [21]. As a
result, the validity of the BO phenomenology for turbulent RB
convection has again been called into question [22].

Until now, all numerical and experimental studies have
attempted to directly study the scaling behavior of the structure
functions. In the earlier studies, the structure functions in
the time domain were measured and the interpretation paper
studied the structure functions in the time domain, and the
interpretation of any scaling behavior observed in the time
domain to give scaling behavior in the spatial domain is
difficult in general. Only recently have direct measurements
of the structure functions in the spatial domain been carried
out. The reader is referred to Ref. [22] for a recent review of
these earlier works. A direct study of the scaling behavior in
the spatial domain is made difficult by the lack of an extended
scaling behavior (this is not surprising because, even very close
to the top and bottom plates, the BO scaling, if it exists, can
only occur for H > r > LB ≈ 0.1 − 0.2H ) and the presence
of a priori unknown corrections due to intermittency to the
scaling behavior.

In this paper, we show that the nature of the scaling
behavior can be revealed by studying the conditional structure
functions evaluated at given values of the locally averaged
thermal dissipation rate. In Sec. II, we first derive results
for such conditional structure functions based on ideas of
the refined similarity hypothesis [23,24]. We find that these
conditional structure functions have a power-law dependence
on the value of the locally averaged thermal dissipation
rate, and such dependence for the case of the BO scaling
is different from the other scaling behaviors: the K41 and
OC or shear-flow scalings. As a result, we can make use
of this feature to reveal the BO scaling. To calculate such
conditional structure functions, simultaneous measurements
of velocity and temperature and the thermal dissipation rates
as a function of time and space are needed. These experimental
measurements are challenging and are yet to be taken. On
the other hand, using available experimental measurements in
3D turbulent RB convection, we have studied the conditional
temperature structure functions in the time domain using a
locally averaged thermal dissipation rate that is averaged over
time at the cell center and at the center of the bottom plate.
We find that the dependence of these conditional temperature
structure functions on the locally averaged thermal dissipation
rate at the cell center is consistent with the observed K41 and
OC scalings, and the corresponding dependence at the center
of the bottom plate is different and reveals the BO scaling.

We discuss our analysis in Sec. III and present our results in
Sec. IV. Finally, we end the paper with a conclusion in Sec. V.

II. THEORY

We use the refined similarity hypothesis [23,24] to account
for intermittency corrections by replacing the average energy
dissipation rate ε by the locally averaged energy dissipation
rate εr (�x,t),

δv(r) ∼ ε1/3
r r1/3. (1)

Here, εr is defined by

εr (�x,t) = 3

4πr3

∫
Br (�x)

ε(�x + �y,t)d3y, (2)

where Br (�x) is a spherical volume of radius r centered at
�x. Equation (1) implies that Sp(r) ∼ 〈εp/3

r 〉rp/3, and the r

dependence of 〈εq
r 〉, resulting from the spatial intermittency

of the energy dissipation rate, would lead to corrections to
the K41 scaling. The refined similarity hypothesis has been
extended to temperature fluctuations by also replacing χ by
the locally averaged χr (�x,t), which is similarly defined

χr (�x,t) = 3

4πr3

∫
Br (�x)

χ (�x + �y,t)d3y. (3)

For passive temperature in the OC scaling [25,26],

δT (r) ∼ ε−1/6
r χ1/2

r r1/3. (4)

For the BO scaling [27],

δv(r) ∼ (αg)2/5χ1/5
r r3/5, (5)

δT (r) ∼ (αg)−1/5χ2/5
r r1/5. (6)

For shear flow with passive temperature, the shear rate s

introduces an additional length scale, and we have [21]

δv(r) ∼ ε1/6
r s1/2r2/3, (7)

δT (r) ∼ ε−1/12
r s−1/4χ1/2

r r1/6. (8)

We focus on the dependence on χr for the different kinds of
scaling behaviors. For this purpose, we study the conditional
velocity and temperature structure functions, defined by

S̃p(r,X) ≡ 〈|δv(r)|p|χr = X〉, (9)

R̃p(r,X) ≡ 〈|δT (r)|p|χr = X〉. (10)

Here, the average is taken under a condition, namely, only
over those measurements with χr = X. We have used such
conditional structure functions [27] and similar conditional
structure functions evaluated at given values of the local
temperature variance transfer rate [28] or the local energy
transfer rate [29] to examine the validity of the refined
similarity hypothesis. Conditional statistics evaluated at a
given large-scale velocity have also been used to study
the effect of large-scale velocity on inertial-range turbulent
statistics [30,31].

To derive S̃p(r,X) and R̃p(r,X) from Eqs. (1), (4), (7), and
(8), one needs to evaluate the conditional average 〈εq

r

∣∣χr =
X〉 for various values of q. In these cases, temperature is
a passive scalar, thus, we can make use of the measured
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approximate statistical independence of εr and χr for passive
scalar fluctuations [32] to get〈

εq
r

∣∣χr = X
〉 ≈ 〈

εq
r

〉
, K41, shear, OC. (11)

As a result, we obtain

S̃p(r,X) ∼

⎧⎪⎨
⎪⎩

〈
ε

p/3
r

〉
rp/3, K41,〈

ε
p/6
r

〉
sp/2r2p/3, shear,

(αg)2p/5Xp/5r3p/5, BO,

(12)

R̃p(r,X) ∼

⎧⎪⎨
⎪⎩

〈
ε

−p/6
r

〉
Xp/2rp/3, OC,〈

ε
−p/12
r

〉
s−p/4Xp/2rp/6, shear,

(αg)−p/5X2p/5rp/5, BO.

(13)

We note that S̃p is independent of X for both the K41 and the
shear-flow scalings and is different from the dependence of
Xp/5 for the BO scaling. Similarly, R̃p has the same power-law
dependence of Xp/2 for both the OC and the shear-flow scaling
behaviors, which is different from the dependence of X2p/5 for
the BO scaling. Hence, the nature of the scaling behavior could
be revealed by studying the X dependence of the conditional
structure functions S̃p and R̃p. In particular, we can distinguish
the BO scaling from either the K41 and OC or the shear-flow
scalings.

As discussed in Sec. I, the local Bolgiano scale LB(�x),
constructed using the local energy and thermal dissipation
rates at each position ε(�x) = 〈ε(�x,t)〉t and χ (�x) = 〈χ (�x,t)〉t
with 〈· · · 〉t denoting an average over time t only, is highly
inhomogeneous. To test the BO phenomenology in turbulent
RB convection, one can calculate S̃p and R̃p and can study
their dependence on X in two regions,

(1) region 1: LB(�x) ≈ H ,
(2) region 2: LB(�x) � H

see also Ref. [22]). A good choice for regions 1 and 2 would
be around the cell center and near the top or bottom plate,
respectively. It is important to choose the two regions such
that LB(�x) is approximately uniform within each region. In
calculating χr (�x,t), the averaging would be taken within each
region. The BO phenomenology with the refined similarity
ideas, developed above, then predicts that

S̃p(r,X) ∼
{

X0, region 1,

Xp/5, region 2,
(14)

R̃p(r,X) ∼
{

Xp/2, region 1,

X2p/5, region 2.
(15)

III. ANALYSIS USING EXPERIMENTAL MEASUREMENTS

To calculate S̃p and R̃p, one needs to have measurements
of velocity, temperature, and thermal dissipation rates taken
simultaneously as a function of space and time. Such exper-
imental measurements are very challenging and are yet to be
performed. On the other hand, simultaneous measurements
of the temperature and the thermal dissipation rate at a fixed
location as a function of time have been obtained recently [33]
in 3D turbulent RB convection. Using these measurements, one
can calculate the conditional temperature structure functions
in the time domain using a locally averaged thermal dissipation
rate that is averaged over time.

The experiment was conducted in a cylindrical cell of
inner diameter 19.0 and H = 20.5 cm, filled with water.
The bulk fluid is maintained at about 30 ◦C at which ν 

8.2 × 10−3, κ 
 1.5 × 10−3 cm2/s, and Pr is kept at 
5.5.
The range of Ra covered is 9 × 108 � Ra � 9 × 109. χ (�x,t)
is measured by a probe consisting of four small (0.11 mm in di-
ameter) identical thermistors with one placed at the center and
the other three placed at a distance δl = 0.25 ± 0.1 mm from
the central one, each along the three perpendicular directions.
From the simultaneous temperature signals measured from
the four thermistors, T from the central thermistor and Ti (i =
x,y,z) from the other three thermistors, the three components
of the temperature gradient (Ti − T )/δ� (i = x,y,z) and, thus,
χ (�x,t) can be obtained as a function of time t . The sampling
rate of the measurements is 40 Hz, and 12–30-h-long time
series data at various locations in the cell were taken. Other
details about the experiment can be found in Ref. [33].

Using these measurements, we have constructed [34,35] a
locally averaged thermal dissipation rate, averaged over a time
interval,

χτ (�x,t) ≡ 1

τ

∫ t+τ

t

χf (�x,t ′)dt. (16)

Here, χf (�x,t) ≡ κ|∇Tf (�x,t)|2, and Tf is the temperature
fluctuation. The space-time correlation functions of
temperature 〈T (�x + �r,t + τ )T (�x,t)〉 have been found [36] to
depend on one variable rE = [(r − U0τ )2 + V 2τ 2]1/2, where
U0 is the mean flow velocity and V is the random sweeping
velocity proportional to the root-mean-squared velocity
fluctuation in accordance with a model proposed in Ref. [37].
This suggests that temperature fluctuation at the same spatial
location and across a time interval τ could be related to
temperature fluctuation at the same time and across a spatial
distance r with r = (U 2

0 + V 2)1/2τ . In the same spirit, the
time averaged χτ can be taken as the volume averaged χr

with r and τ related by r = (U 2
0 + V 2)1/2τ . We note that U0

and V could depend on r for inhomogeneous flows, such
as turbulent RB convection. Such a dependence could result
in a nonlinear relation between r and τ , but this would not
affect the association of χτ with χr . On the other hand, a
nonlinear relation between r and τ would make the relation of
the scaling behavior in the time domain to that in the spatial
domain nontrivial. Since we are interested in the dependence
of the conditional structure functions on the value of χτ and
not their scaling behaviors, this problem of relating the scaling
behavior in the time and spatial domains is, thus, avoided.

Using the experimental measurements, we study the condi-
tional structure functions in the time domain,

Ŝp(τ,X) ≡ 〈|v(�x,t + τ ) − v(�x,t)|p|χτ = X〉, (17)

R̂p(τ,X) ≡ 〈|T (�x,t + τ ) − T (�x,t)|p|χτ = X〉, (18)

where the average is taken over those times at which χτ = X is
satisfied (in practice, the average is taken over measurements
with χτ within a narrow range of the value X, see below for
more details). The conditional structure functions, whether in
spatial or time domain, have the same dimension, and χτ has
the same dimension as χr , thus, Ŝp and R̂p have the same
power-law dependence on X as S̃p and R̃p,
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FIG. 1. (Color online) Dependence of R̂p(τ,X) on X for circles:
τ = 108τ0 and p = 0.5; squares: τ = 16τ0 and p = 2; and triangles:
τ = 32τ0 and p = 3 at the cell center. The solid lines are the best fits
of the power-law region.

Ŝp(τ,X) ∼
{

X0, K41 or shear,

Xp/5, BO,
(19)

R̂p(τ,X) ∼
{

Xp/2, OC or shear,

X2p/5, BO.
(20)

Using the present experimental measurements, R̂p can be
readily calculated, and we report the results in the next section.

IV. RESULTS AND DISCUSSIONS

In the calculation of R̂p(τ,X), χτ is measured in units of
the standard deviation σχf

of χf , and the average is taken over
those measurements with |χτ/σχf

− X| � 0.005. To check the
BO phenomenology, we evaluate R̂p(τ,X) at two locations:
at the cell center at which K41 and OC scalings have been
reported and at the center of the bottom plate (with one of the
four thermistors touching the bottom plate) at which the local
Bolgiano scale should be small compared with H . We study
R̂p(τ,X) as a function of X for different values of τ (from τ0

to 512τ0 and τ0 is the sampling time interval of 1/40 s) and p

(from 0.5 to 4). Power-law dependence on X is observed in all
the cases studied, confirming the refined similarity ideas that
intermittency corrections are due to fluctuations in the local
thermal dissipation rate.
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FIG. 2. (Color online) Dependence of R̂p(τ,X) on X for circles:
τ = 45τ0 and p = 1; squares: τ = 23τ0 and p = 2.5; and triangles:
τ = 8τ0 and p = 4 at the bottom plate. The solid lines are the best
fits of the power-law region.
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FIG. 3. (Color online) Plot of αp as a function of τ/τ0 for p =
0.5–4 in steps of 0.5 from bottom to top for measurements at the
center of the bottom plate. The dashed lines are 2p/5.

In this paper, we report results studied at Ra = 8.3 × 109.
At this Ra, σχf

is 0.022 and 3.35 K2/s, respectively, and the
corresponding 〈χf 〉t /σχf

is 0.33 and 0.86, respectively, at the
cell center and at the center of the bottom plate. Results for
some values of τ and p for the two locations are shown in
Figs. 1 and 2.

At each of the two locations, we choose the largest power-
law region of R̂p(τ,X), common to all the values of τ and
p studied. As can be seen in Figs. 1 and 2, the extent of the
power laws is longer, about two decades, at the cell center and
is about a decade at the bottom plate. We extract the power-
law exponents, defined by R̂p(τ,X) ∼ Xαp , in this common
power-law region by least-squares fit in the log-log plots. The
results are shown in Figs. 3 and 4. We find that αp depends on
τ for the range of τ studied. However, the scaling behavior,
whatever its nature, would hold only in a certain range of r or
the corresponding range of τ , which implies that Eqs. (19) and
(20) also hold only in that range of τ . For each p, αp attains
a maximum value αm(p) at a certain τm(p), therefore, αp is
approximately constant and equal to αm(p) for a small range
of τ close to τm(p), i.e., we have

R̂p(τ,X) ∼ Xαm(p) for τ ≈ τm(p). (21)

At the cell center, τm(p) is about 20τ0 and is the same for all
the values of p studied. On the other hand, it is found that,
at the center of the bottom plate, τm(p) decreases from about
200τ0 to about 20τ0 as p increases, indicating that the range
of τ , over which Eq. (21) holds, changes with p. This feature

1 1 0 100
τ/τ

0

0

0.5

1

1.5

2

α
p

FIG. 4. (Color online) Same as Fig. 3 for measurements at the
cell center. The dashed horizontal lines are p/2.
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FIG. 5. (Color online) Plot of αm(p) as a function of p at circles:
cell center and triangles: the bottom plate. The solid line is p/2,
whereas, the dashed line is 2p/5.

is not clearly understood and deserves further investigation in
future papers.

We plot αm(p) as a function of p for the two locations
in Fig. 5. It can be seen that the p dependence of αm(p) is
clearly different at the two locations. At the cell center, the
values of αm(p) are in good agreement with p/2 and are, thus,
consistent with the experimental observation of OC scaling
with intermittent corrections [20] in the central region. On the
other hand, at the center of the bottom plate, the values of
αm(p) are in excellent agreement with the predicted values of
2p/5 for the BO scaling. Thus, our results confirm the BO
phenomenology.

V. CONCLUSION

In conclusion, we have studied the conditional velocity
and temperature structure functions S̃p(r,X) and R̃p(r,X),
evaluated when the locally averaged thermal dissipation rate χr

is within a narrow range of the value X. Using ideas of refined
similarity, we have derived the theoretical results that S̃p(r,X)
and R̃p(r,X) have power-law dependence on X and that the
power-law dependence for the BO scaling is different from the
other kinds of scaling behaviors [see Eqs. (12) and (13)]. As a
result, this feature can be used to reveal the nature of the scaling
behavior. However, experimental measurements needed for
the calculation of S̃p(r,X) and R̃p(r,X) have yet to be taken.
Using available experimental measurements, instead, we have
calculated the conditional temperature functions R̂p(τ,X) in
the time domain, evaluated when a local thermal dissipation
rate, averaged over time interval τ,χτ , is within a narrow

range of the value X. Since we are not studying the scaling
behavior, the problem of relating scaling behavior of structure
functions in the time domain to that in the spatial domain
is avoided. Moreover, the X dependence of R̂p(τ,X) would
be the same as that of R̃p(τ,X), given by Eq. (20), based
on dimensional analysis. We have studied R̂p(τ,X) at two
locations. The first location is the cell center at which the local
Bolgiano scale is comparable to H , thus, the K41 and OC
scaling behaviors are expected from the BO phenomenology
and have been observed experimentally. The second location
is the center of the bottom plate. The local Bolgiano scale
has been found to be about 0.1–0.2H very near the bottom
plate, thus, the BO scaling behavior is expected from the
BO phenomenology. The major result of our analysis of
the experimental measurements is summarized in Eq. (21).
This confirms the power-law dependence predicted, but our
observation of τm(p), varying with p at the center of the
bottom plate, remains to be understood. The values of αm(p)
that we have found at the two locations are different: At the
cell center, αm(p)’s are consistent with the values of p/2 for
the K41 and OC scalings at the cell center, and at the center
of the bottom plate, αm(p)’s are consistent with the values of
2p/5 for the BO scaling. Our results have, thus, confirmed the
BO phenomenology in 3D turbulent RB convection.

Our approach of using the conditional structure functions
to reveal the nature of the scaling behavior can also be applied
to 2D turbulent RB convection if there is intermittency and the
intermittency is caused by fluctuations of the local thermal
dissipation rate. We note, however, that both intermittent
velocity fluctuations [14] and intermittent temperature fluc-
tuations [13] and nonintermittent velocity fluctuations [13,16]
and nonintermittent temperature fluctuations [16] have been
reported in 2D. A connection between the presence of the
BO scaling and an inverse energy transfer from small to
large scales, which is known to exist in 2D, has also been
reported [38]. It is, thus, interesting to explore this possible
connection in 3D. If an inverse energy transfer does exist, it
could also explain the origin of the mean large-scale circulation
present in 3D turbulent RB convection.
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