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We study the fast irreversible bimolecular reaction in a two-dimensional chaotic flow. The reactants are
initially segregated and together fill the whole domain. Simulations show that the reactant concentration decays
exponentially with rate � and then crosses over to the algebraic law of chemical kinetics in the final stage of
the reaction. We estimate the crossover time from the reaction rate constant and the flow parameters. The
exponential decay phase of the reaction can be described in terms of an equivalent passive scalar problem,
allowing us to predict � using the theory of passive scalar advection. Depending on the relative length scale
between the velocity and the concentration fields, � is either related to the distribution of the finite-time
Lyapunov exponent of the flow or given in terms of an effective diffusivity which is independent of the
small-scale stretching properties of the flow. For the former case, we suggest an optimal choice of flow
parameters at which � is maximum.
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I. INTRODUCTION

The effects of mixing on chemical reactions in fluids have
long been recognized �1,2�. In many industrial and chemical
processes, well-designed mixing efficiently brings reactants
into contact �3�, leading to increased product selectivity and
higher reaction yields. Reactive mixing also plays a major
role in other disciplines where various types of reactions are
involved. Some examples are air pollution modeling �4�,
ozone hole modeling �5�, and plankton population dynamics
�6–8�.

In this paper, we focus on the irreversible bimolecular
reaction

A + B → 2P , �1�

in which the two species A and B react and produce the inert
product P. The initially segregated reactants together occupy
the whole domain and are in contact along a material surface.
The reaction is assumed to be fast and thus diffusion limited
�9�. Fast bimolecular reaction appears in a wide range of
processes including the removal of pharmaceutically active
compounds during drinking water treatment �10� and the sul-
fur cycle in the marine boundary layer �11�. Although out of
the scope of this paper, we mention another class of initial
condition in which the two reactants are separated by a third
inert medium �12�. Such configuration has important appli-
cations such as the parametrization of mix-down time in at-
mospheric chemical transport �13� and the estimation of fer-
tilization rate in broadcast spawning �14�.

We are interested in the time evolution of a bimolecular
reaction in a two-dimensional incompressible flow that is
Lagrangian chaotic, meaning that nearby fluid trajectories
diverge from each other exponentially in time. In such sys-
tems, experiments �15,16� and numerical simulations �17,18�
clearly demonstrate that the growth of product concentration,
or equivalently the decay of reactant concentration, depends
on the flow pattern. The exact shape of the decay varies
among studies, especially at large time when the reaction is
near completion. For the model we consider in this paper,
numerical simulations show that the reactant concentration

decays exponentially before it undergoes a transition to the
algebraic law of classical kinetics in the late stage of the
reaction.

Several theoretical works have made predictions of the
decay rate of the reactant concentration. Using a steady strain
flow u= ��x ,−�y� in a lamellar model, Sokolov and Blumen
�19� predicted that for random initial condition, the reactant
concentration at first decays exponentially and then crosses
over to power-law decay at long time. During the first phase,
the exponential decay rate is � /2. Károlyi and Tél �20� re-
lated the exponential decay of reactant concentration to a
time-dependent effective fractal dimension �21,22� and ex-
pressed the decay rate in terms of the average Lyapunov
exponent of the flow. Arratia and Gollub �16� showed in their
experiment that the average Lyapunov exponent may be used
to predict the time dependence of the mean product concen-
tration for flows with different dynamical features. These re-
sults are in accord with the common belief that the stretching
properties of the velocity field, usually characterized by an
average Lyapunov exponent, have a strong influence on the
progress of the reaction. However, as we shall see below,
there are scenarios where the Lyapunov exponent is not the
relevant quantity controlling the progress of the reaction.
Specifically, when the flow scale is much smaller than the
domain size, the reaction progresses much slower than esti-
mates based on Lyapunov exponents.

Our analysis is based on the fact that for an infinitely fast
reaction, the reactive mixing problem can be transformed
�19,23� into the problem of a decaying passive scalar and the
reactant concentration decay rate may be deduced from the
variance decay rate in the equivalent passive scalar problem.
Our numerical results explicitly establish the applicability of
such passive scalar approximation to reactions of fast but
finite rate. This lets us take advantage of recent advances in
the theory for chaotic advection of passive scalars �see, for
example, Refs. �24–29� and references therein�. For the type
of initial condition we consider here, where the longest
length scale of the concentration field equals the domain
size, we find that when the velocity varies on the same scale
as the domain size, the progress of the reaction is controlled
by the small-scale stretching characteristics of the flow. Fur-
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thermore, it is necessary to take into account the fluctuation
in the stretching statistics. On the other hand, if the velocity
correlation length is much smaller than the domain size, the
large-scale transport of the flow becomes the crucial and lim-
iting factor. We make quantitative predictions of the reactant
decay rate in both cases and verify them with numerical
simulations.

In Sec. II, we formulate the advection-diffusion-reaction
problem and present our flow model. Section III presents and
discusses results from our numerical simulations for different
flow parameters. In Sec. IV, we develop a theory for the
reactant decay rate and compare its predictions to simula-
tions. We discuss the special case where the stretching sta-
tistics are Gaussian and also suggest the existence of an op-
timal velocity correlation time at which the product growth
rate is maximum. Section V concludes the paper.

II. MATHEMATICAL FORMULATION

A. Advection-diffusion-reaction equations

The interplay between advection, diffusion, and reaction
may be described by microscopic, individual-based stochas-
tic models �30–32�. The mean-field approximation to such
many-body formulation usually gives rise to deterministic
differential equations �33�. In the present work, we shall
adopt such mean-field approach and use the following
advection-diffusion-reaction equations as our model:

�a

�t
+ u · �a = ��2a − �ab , �2a�

�b

�t
+ u · �b = ��2b − �ab , �2b�

�p

�t
+ u · �p = ��2p + 2�ab . �2c�

Here, u�x , t� is a two-dimensional incompressible velocity
and a�x , t�, b�x , t�, and p�x , t� are the concentration fields of
A, B, and P, respectively. � is the reaction rate constant and
all reactants and product are assumed to have the same dif-
fusivity �. We consider a square periodic domain of side
2�L�2�L. The initial condition is such that a�x ,0�= PF in
the right half of the domain and vanishes elsewhere while
b�x ,0�= PF�0 only in the left half. Here, PF��p�x ,	�� is
the final average product concentration, where � · � denotes
spatial average over the whole domain. Conservation of mat-
ter implies

�p� = PF − 2�a� , �3�

�a� = �b� �4�

for all time t.

B. Chaotic flow model

For the advection of reactants, we employ the following
incompressible chaotic flow �24�:

u�x,t�

= �	2U cos�kfy + 
1�n��ı̂ , n� � t  
n +
1

2
��

	2U cos�kfx + 
2�n��ĵ , 
n +
1

2
�� � t  �n + 1�� ,�

�5�

where n is an integer. 
1 and 
2 are randomly chosen with
uniform density on �0,2�� and uncorrelated for different n.
The characteristic scales of the flow are U, kf, and �.

We can characterize the stretching in a chaotic flow by the
Lyapunov exponent. Consider two nearby fluid parcels ini-
tially at positions x0 and x0+�0; the separation ��t� between
them typically grows exponentially. We define the �maxi-
mum� finite-time Lyapunov exponent over a time interval t
as

h�x0,t� = max
�0
1

t
ln

���t��
��0� � , �6�

where the maximum is taken over all orientations of �0. As
t→	, h�x0 , t� approaches the infinite-time Lyapunov expo-

nent h̄ for almost all x0. However, for finite time, h depends
on x0 and have a distribution ��h , t� that becomes more and
more sharply peaked as t increases �34�. For sufficiently
large t, the mean of the distribution will approximate the

infinite-time Lyapunov exponent h̄, i.e.,

�
0

	

��h,t�hdh → h̄, t → 	 . �7�

Figure 1�a� illustrates the time dependence of ��h , t� for a
typical set of parameters. These distributions are obtained by
tracking the evolution of 16 3842 individual ��t� initially
scattered uniformly over the domain. From the large devia-
tion theory �34,35�, ��h , t� obeys the large t asymptotic rela-
tion

��h,t� =	 tG��h�
2�

e−tG�h�, �8�

where G�h� is independent of t. Moreover, G�h� is concave

upward, G��h��0, with minimum value zero and G�h̄�
=G��h̄�=0. Figure 1�b� shows the G�h� corresponding to the
��h , t� in Fig. 1�a�. We see that G�h� is indeed time indepen-
dent at large t, thus we verify Eq. �8� for our flow model Eq.
�5�. Birch et al. �8� gave the following empirical formula for

h̄ as a function of �U ,kf ,�� for the model Eq. �5�:

h̄ = Ukf��Ukf�� , �9a�

where ��z� =
ln�1 + z2/10 + z4/67�

2z
. �9b�

Figure 1�c� plots h̄, as obtained by Eq. �7�, versus U and
shows that the empirical formula works very well.
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Another quantity concerning our flow model that will be
useful in our investigation is the single-particle effective dif-
fusivity given by

�eff =
���x�2�

2�
=

���y�2�
2�

=
U2�

8
, �10�

where �x and �y are the x and y displacements of a particle
during the time interval between t=0 and t=�, ���x�2� and
���y�2� are computed by averaging over the random angles

1 and 
2.

C. Dimensionless parameters

We estimate the initial reaction time as ��PF�−1 and the
advection time as �Ukf�−1. The diffusion time across a length
kf

−1 is taken as ��kf
2�−1. We then define the Péclet number Pe

and the Damköhler number Da for our problem as follows:

Pe =
U

�kf
and Da =

�PF

Ukf
. �11�

We are interested in fast reactions and small diffusivity so
that

diffusion time � advection time � reaction time,

hence Pe�1 and Da�1. For example, taking parameter val-
ues similar to those used in the experiment of Ref. �16� �
=2�10−5 cm2 s−1, U=0.5 cm s−1, kf =0.5 cm−1, and set-
ting �PF=1 s−1, we have Da=4 and Pe=5�104.

Rescaling length by kf
−1, time by ��PF�−1, velocity by U,

and concentration by PF, we write Eqs. �2a� and �2b� �and
similarly for the equation of p� in its nondimensional form

�a

�t
+ Da−1u · �a = ���

2a − ab , �12a�

�b

�t
+ Da−1u · �b = ���

2b − ab , �12b�

where ����DaPe�−1 and now

�p� = 1 – 2�a� , �13�

with �p�→1 as t→	. The nondimensional domain size,
2�kfL, controls the scale separation between the largest pos-
sible length scale of the concentration field, which is the
same as the domain size L in our configuration, and the ve-
locity length scale kf

−1. We shall consider two distinct cases
kfL�1 and kfL�1.

III. NUMERICAL RESULTS

Following Ref. �36�, we solve the advection-diffusion-
reaction equations for the concentration fields a and b, Eq.
�12�, using the pseudospectral method �37� with exponential
time differencing �38�. Time stepping is the fourth-order
Runge-Kutta scheme and the time step equals 0.005. We also
incorporate the modification suggested in Ref. �39�.

The parameters of the problem are ��, Da, and �. We fix
��=5�10−6 throughout this paper. For results presented in
this section, we take �=10 and vary Da. The effects of � will
be discussed in Sec. IV E.

A. Large-scale velocity: kfL=1

We first consider the case kfL=1. The grid size used is
10242. Figure 2 shows the time evolution of the average
product concentration for different values of Da. The quan-
tity 1− �p� is obtained from �a� using Eq. �13� and can also
be interpreted as the remaining fraction of reactant A �or B�.
Figure 3 displays snapshots of a�x , t� and b�x , t� for 1 /Da
=0.22, illustrating the spatial structure of the concentration
fields at different stages of the reaction.

Generally for all values of Da investigated here, the decay
of �a�, hence the progress of the reaction, is relatively slow at
the beginning when the interface between concentration
fields of the two reactants has short length and the reactants
remain mostly segregated, as shown in the top row of Fig. 3.

After about 15% of either species of the reactant has been
consumed; �a� �or �b�� starts to decrease exponentially as
shown in Fig. 2,

2�a� = 1 − �p� � exp�− �t� . �14�

Such decay continues until �p� reaches about 90% of its ul-
timate value. During this exponential decay phase, the
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FIG. 1. �Color online� Stretching properties of the chaotic flow Eq. �5� with U=0.22 �in �a� and �b��, kf =1, and �=10. �a� Probability
density ��h , t� of the finite-time Lyapunov exponent h. Inset shows the mean of the distribution approaching the infinite-time Lyapunov

exponent h̄. �b� The collapse of the function G�h�, defined in Eq. �8�, as t increases. Broken curves represent earlier time and solid curves

denote later times. �c� h̄, approximated by Eq. �7�, as a function of U. The dashed curve is the empirical formula Eq. �9�.
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stretching and folding action of the chaotic flow creates fine
structures in the reactant concentration fields �see second row
of Fig. 3�. Increases in interface length and concentration
gradients enhance diffusion and bring more reactants into
contact. The reaction is fast and occurs mostly at the inter-
face, so the overlap between a and b is still rather small. As

the majority of the product P is produced during the expo-
nential decay phase, the decay rate � is the most important
indicator of how fast the reaction progresses. We shall
present a theory to predict � in Sec. IV.

All curves shown in Fig. 2 eventually level off as the
reaction enters its final stage. At this time, the concentrations
are low; a and b are fairly homogeneous and significantly
overlap each other, as shown in the bottom row of Fig. 3. In
this regime, we expect �a� to decay according to the classical
chemical kinetic law �in our nondimensionalization�

�a�t�� =
�a�tcl��

1 + �t − tcl��a�tcl��
, �15�

which is obtained by neglecting the advection and diffusion
terms in Eq. �12�. We estimate tcl, defined as the time after
which classical kinetics applies, using the overlap integral

R�t� =
�ab�

	�a2��b2�
. �16�

R�t� increases noisily with time from 0 to 1 and measures the
overlap between a and b. We determine tcl by setting R�tcl�
=0.8. Equation �15� is then plotted as dotted curves in Fig. 2
for t� tcl and is in excellent agreement with the simulation
data.

B. Small-scale velocity: kfL=5

We now turn to the situation where the velocity length
scale is much smaller than the largest length scale of the
concentration, specifically kfL=5. We use the same velocity
as in the previous section, but increase L by a factor of 5.
Thus, Da and Pe in Eq. �11� and � are unchanged. We use
Da=4 as a representative case. The grid size is 51202. As
shown in Fig. 4, with all other parameters the same, the
reaction progresses much slower with small-scale advection.
As before, an exponential decay phase exists during which
Eq. �14� holds, albeit with a smaller �. Notice that the prob-
ability density ��h , t� is the same for both cases shown in
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FIG. 2. �Color online� Time evolution of the average product
concentration for kfL=1 and different Da �solid curves�. Dotted
curves, which coincide with the solid curves at large t, are the
classical kinetic law Eq. �15�. Dot-dashed curves are ����� from the
solution of the passive scalar problem Eq. �18a�. The inset focuses
on the exponential decay phase, where the dashed lines are least-
squares fits used to estimate � in Eq. �14�.

FIG. 3. �Color online� Snapshots of concentration fields of the
reactants A �left� and B �right� at different stages of the reaction for
kfL=1 and 1 /Da=0.22. From top to bottom, time t=3�, 12�, and
72�. Note the different scale used in the bottom row. �p��0.018,
0.347 and 0.993, respectively, for the three different times shown.
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FIG. 4. �Color online� Comparison of the time dependence of
the average product concentration for small-scale �kfL=5� and
large-scale �kfL=1� advections, Da=4. Dashed lines are least-
squares fits used to estimate � in Eq. �14�.
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Fig. 4. This implies that the mechanism responsible for the
exponential decay observed here with kfL=5 is not related to
the stretching properties of the flow, in contrast to the previ-
ous cases with kfL=1.

The structure of the fields a�x , t� and b�x , t�, shown in
Fig. 5, also suggests a different mechanism is at work in a
large domain. Throughout the course of the reaction, the
amount of each species is much higher on one side of the
domain than the other, resembling their respective initial
condition. The two reactants move and come into contact
through the filamentary structures penetrating into the high
concentration region of each species. As a and b generally
decrease in time, this pattern remains more or less un-
changed. Note that the velocity becomes uncorrelated at
length greater than 2� /kf, so the fluid parcels move like a
random walk on the large scale. Hence, the transport of re-
actants from one side of the domain to the other is effectively
diffusive and we anticipate that the effective diffusivity in
Eq. �10� is the crucial property of the flow that controls the
decay rate �. We shall give a quantitative description of this
picture in Sec. IV.

IV. THEORY

In this section, we apply the theory for the chaotic advec-
tion of passive scalars to predict the progress of a fast bimo-
lecular irreversible reaction. In particular, we relate quantita-
tively the value of � in Eq. �14� to the properties of the flow
for both large-scale �kfL�1� and small-scale �kfL�1� ve-
locities.

A. Relation to the passive scalar problem

Following earlier work, for example, Refs. �19,23�, we
introduce two functions,

� = a − b , �17a�

� = a + b , �17b�

which satisfy the equation of motions,

��

�t
+ Da−1u · �� = ���

2� , �18a�

��

�t
+ Da−1u · �� = ���

2� +
�2 − �2

2
. �18b�

For infinitely fast reactions, i.e., Da→	, a�x , t� and b�x , t�
never overlap, so ab=0 or equivalently �2=�2 for all x and
t. Therefore, we have a= ����+�� /2 and b= ����−�� /2,
which implies

�a� = �b� =
1

2
����� , �19�

�p� = 1 − ����� . �20�

The numerical results in Sec. III show that for a finitely
fast reaction, the overlap between a and b is very small ex-
cept during the late stage of the reaction. Thus, it is expected
that until the reaction is near completion, Eq. �20� will be a
good approximation for finite but large Da. We explicitly
verify this by solving Eq. �18a� numerically and comparing
����� to 1− �p�. As shown in Fig. 2, the two quantities follow
each other closely up until the end of the exponential decay
phase. This observation allows us to understand the exponen-
tial behavior of �p� by studying the passive scalar problem
for �.

For a finitely fast reaction, the exponential decay phase
ends when the passive scalar approximation fails. This fail-
ure is because the reaction rate is � times the exponentially
decreasing concentrations a and b. Thus, once the concentra-
tions are sufficiently small, the reaction is no longer fast
relative to diffusion, hence a and b start to overlap. This
crossover happens at the time tX when the diffusion term
becomes comparable to the reaction term in Eq. �2�. We can
estimate tX as follows. During the exponential decay phase,
comparing strain against diffusion gives the width of a fila-

ment as w�	� / h̄. Balancing diffusion with reaction then
yields

�
b

w2 � �ab �21�

or h̄��a. But the concentration decays exponentially with
a�tX�� PFe−�tX so that

tX �
1

�
ln

�PF

h̄
. �22�

Substituting numerical values from our simulations into Eq.
�22� shows that tX indeed gives a good estimate to the time at
which the decay starts to deviate from exponential.

B. Review of theory for passive scalar decay

There has been much development in the theory for cha-
otic advection of passive scalars recently. We now briefly
review aspects of such theory that are relevant to our current
study of reactive mixing. The main point is that the variance
decay rate may be related to the probability distribution of
the finite-time Lyapunov exponent of the flow �25� or to an
effective diffusivity �26–28� depending on the size of kfL,
i.e., the velocity length scale relative to the largest possible
scalar length scale.

FIG. 5. �Color online� Snapshots of concentration fields of the
reactants A �left� and B �right� for kfL=5 and Da=4 at time t
=30�. �p��0.641 at this time instance. Values of a and b are be-
tween 0 and 1; darker shades represent higher concentration.
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Consider a passive scalar field � in the same two-
dimensional setup described in previous sections with gov-
erning equation Eq. �18a�. The chaotic flow u is spatially
smooth and single-scaled and ���=0. We also assume the
absence of Kolmogorov-Arnold-Moser surfaces �40� and
boundary effects �41,42�. In this situation, after initial tran-
sient, the system enters the “strange eigenmode” regime
�24,43� in which � exhibits statistically persistent spatial pat-
terns while its amplitude decreases with time. Furthermore,
the scalar variance decays exponentially �24�. These obser-
vations suggest the following form for the scalar field
�8,25,43,44�:

��x,t� = e−�s/2�t�̂�x,t� , �23�

where �̂�x , t� is statistically stationary and it follows that

����n� � e−n�s/2�t. �24�

The existence of strange eigenmodes seems quite robust and
Sukhatme and Pierrehumbert �44� give theoretical and nu-
merical supports that Eqs. �23� and �24� are valid for both
kfL�1 and kfL�1.

Much theoretical work focuses on the particular case of
variance �n=2� decay, ��2��e−st. It turns out that the
mechanism of such decay depends on the value of kfL
�28,29�. When kfL�1, the decay is controlled by the small-
scale stretching characteristics of the flow and the Lagrang-
ian stretching theory �25,28� predicts that as �→0,

s = min
h

�h + G�h�� , �25�

with G�h� defined in Eq. �8�. On the other hand, when kfL
�1, it is the large-scale transport properties of the flow that
determine the variance damping rate �26,27�. The gravest
mode of � then satisfies a diffusion equation with effective
diffusivity �eff ���� given by Eq. �10�. As a result,

s =
�eff

L2 . �26�

C. Predicting the decay rate �

Because of Eq. �20�, predicting the reactant decay rate �
in Eq. �14� is equivalent to determining the time dependence
of ����� and Eq. �24� provides the answer

1 − �p� � ����� � e−�s/2�t. �27�

Therefore, using the results Eqs. �25� and �26�,

� �
1

2
min

h
�h + G�h�� when kfL � 1 �28�

and

� �
�eff

2L2 when kfL � 1. �29�

Figure 6 compares the theoretical prediction Eq. �28� with
the decay rate measured in simulations for kfL=1. The nu-
merical decay rate is obtained by least-squares fits to the data

�see inset of Fig. 2�. To evaluate the right-hand side of Eq.
�28�, we use the procedure described in the Appendix, which
circumvents the numerical estimation of G�h�. In general, we
find good agreement between the theory and simulation re-
sults; the discrepancies are probably due to the finiteness of
� and � in the simulations, since the theory is derived for the
limiting case �→0 and �→	. Furthermore, it is known that
s converges rather slowly �28,29� to its zero diffusivity limit
Eq. �25�. This leads us to believe that the �→0 limit is the
more restrictive one. As for the case kfL=5, with the param-
eter values used in Sec. III B, Eq. �29� predicts �
=0.003 125, which agrees well with the numerical results
shown in Fig. 4.

D. Flow with Gaussian �(h , t)

In this section, we give some results when the distribution
of the finite-time Lyapunov exponent is Gaussian, specifi-
cally,

��h,t� =	 t

2��2 exp�− t
�h − h̄�2

2�2 � , �30�

where h̄ is the mean and � /	t is the standard deviation of h.
Strictly speaking, h�0 as defined in Eq. �6�. For the discus-
sions in this section, we relax this restriction by dropping the
maximization over the orientations of �0 in the definition.

With this in mind, we can deduce that h̄=�2 using the rela-
tion ����t��−2�= ���0�−2� proved by Zel’dovich et al. �45�, here
� · � denotes ensemble average. Hence,

G�h� =
�h − h̄�2

2h̄
. �31�

Then for kfL�1, Eq. �28� gives

0.1 0.2 0.3 0.4 0.5
1/Da

0

0.01

0.02

0.03

0.04

λ

simulation
theory
Gaussian ρ(h,t) approx.

FIG. 6. �Color online� Comparison of the decay rate �, defined
in Eq. �14�, for large-scale advection kfL=1. Crosses are measured
values from simulations described in Sec. III A. Circles are from
the theory Eq. �28�. The dashed curve uses the Gaussian approxi-
mation to ��h , t� in the theory �Eq. �32�� and the formula Eq. �9�
for h̄.
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� =
h̄

4
. �32�

The above result is generally true for any flow with Gaussian
��h , t�. For the flow Eq. �5�, if we use the formula Eq. �9� for

h̄, we have a prediction for � solely in terms of the flow
parameters �U ,kf ,��, it is plotted as a dashed curve in Fig. 6.
The Gaussian approximation is good when U is small but
fails for large U. This is because while Eq. �31� is a very
good approximation at small U, ��h , t� becomes asymmetric
when U is large and Eq. �31� does not fit the data well, as
shown in Fig. 7.

The function ��z� in Eq. �9b� has a global maximum �see
Fig. 3�a� in Ref. �8��. This means that in the case of kfL
�1, for some given Ukf, there would be an “optimal” � at
which � is maximum, assuming Eqs. �9� and �32� are appli-
cable to the situation. We shall see in the next section that
although Eq. �32� has limited validity, an optimal � does
exist.

E. Optimal velocity correlation time

We now explore how the progress of the reaction depends
on the velocity correlation time � given some fixed U and kf.
If kfL�1, the effective diffusion theory Eq. �29� implies that
� grows linearly with �. When kfL�1, the dependence of �
on � is less obvious. With 1 /Da=0.22 and kfL=1, Fig. 8
shows that the value of � measured in simulations increases
linearly with � before it levels off and reaches its maximum
value at 30�35. It then decreases rather slowly as we
further increase �. The small-scale stretching theory Eq. �28�
agrees reasonably well with the numerical data and predicts
the occurrence of a maximum at similar value of �. The
Gaussian approximation using Eqs. �9� and �32� shows a
similar trend, but it does not agree with simulations quanti-
tatively at large �, when ��h , t� is skewed. The interesting
observation here is that the maximum of � occurs at Ukf�
�7, which is suspiciously close to 2�. We thus speculate
that the optimal choice for the velocity correlation time � is
roughly equal to the velocity correlation length 2� /kf di-
vided by the root-mean-square velocity U.

V. CONCLUSION

We study the evolution of a fast bimolecular reaction in a
two-dimensional Lagrangian chaotic flow. For the range of
parameters considered here, numerical simulations show that
the reactant concentrations decay exponentially until the re-
action reaches its final stage, at which point the decay be-
comes algebraic and proceeds according to the classical
chemical kinetics.

Within the infinitely fast reaction approximation, which
allows us to employ results from the theory for chaotic ad-
vection of passive scalars, we are able to make quantitative
predictions on the reactant decay rate � with good accuracy.
The ratio of the velocity correlation length kf

−1 and the long-
est length scale L of the concentration field turns out to be an
important parameter. When the two length scales are compa-
rable, kfL�1, the stretching and folding of the fluid carry the
reactants around the whole domain and bring them into close
contact. The small-scale stretching of the flow controls the
decay and � is given by Eq. �28� in terms of the probability
density of the finite-time Lyapunov exponent. For some fixed
root-mean-square velocity U, � attains its maximum value
when the velocity correlation time � roughly equals
2� / �Ukf�. On the other hand, � increases monotonically
with U for any given �. When kfL�1, the velocity varies on
a much smaller scale than the gravest mode of the concen-
tration field. As a result, the reactants are transported by eddy
diffusion and the reaction progresses slower than the case of
kfL�1. � is given by Eq. �29� in terms of an effective dif-
fusivity, independent of the small-scale stretching of the
flow.
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APPENDIX: EVALUATION OF � FROM EQ. (28)

While it is possible to evaluate the right-hand side of Eq.
�28� from numerically computed G�h� such as the ones
shown in Fig. 1 �25�, we employ the alternate method de-
scribed in detail in Ref. �28�, which is simpler to implement
and more accurate. We recap the basic idea of this method
here. The method is based on the following relation:

�e−ht� =� ��h,t�e−htdh � exp�− min
h

�h + G�h��t� . �A1�

Hence, using the ensemble of finite-time Lyapunov exponent
hi�t� obtained by tracking large number of ��t� in Eq. �6�, we
estimate �e−ht� as

�e−ht�N �
1

N
�
i=1

N

e−hi�t�t.

We then plot ln�e−ht�N
−1 versus t and obtained minh�h+G�h��

as the slope of this curve. N=16 3842 in our calculation.
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