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We study numerically a model of random advection of a passive scalar by an incompressible
velocity field of different prescribed statistics. Our focus is on the conditional statistics of the
passive scalar and specifically on two conditional averages: the averages of the time derivative
squared and the second time derivative of the scalar when its fluctuation is at a given value. We find
that these two conditional averages can be quite well approximated by polynomials whose
coefficients can be expressed in terms of scalar moments and correlations of the scalar with its time
derivatives. With the fitted polynomials for the conditional averages, analytical forms for the
probability density function~pdf! of the scalar are obtained. The variation of the coefficients with
the parameters of the model result in a change in the pdf. Three different kinds of velocity statistics,
~i! Gaussian,~ii ! exponential, and~iii ! triangular, are studied, and the same qualitative results are
found demonstrating that the one-point statistics of the velocity field do not affect the statistical
properties of the passive scalar. ©1997 American Institute of Physics.
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I. INTRODUCTION

In the study of fluid turbulence, one of the interesti
problems is to understand the fluctuation statistics of velo
and temperature fields, and their derivatives. The statistic
velcocity derivatives or vorticity and temperature derivativ
in turbulent flows, which are believed to be small-scale ch
acteristics, have been known to deviate significantly fr
Gaussian and this is directly related to the problem
dissipative-range intermittency.1 A series of experimenta
studies on Rayleigh–Be´nard convection further reveal tha
the temperature fluctuation itself can also be non-Gaus
when the Rayleigh number is high enough.2 Such a discov-
ery has motivated several studies3–9 to understand the statis
tics of a randomly advected passive scalar, which is a th
retically more tractable problem.

The statistics of any fluctuating quantity are described
its probability density function~pdf!. It has been found tha
the pdf of any stationary fluctuation can be expressed in
exact formula in terms of two conditional averages, the
erages of the time derivative squared and the second
derivative of the fluctuation for a given value of th
fluctuation.10,11 SupposeX(t) is a physical quantity mea
sured in a statistically stationary process. For simplicity,
take the mean and the standard deviation ofX(t) to be 0 and
1, respectively:̂ X&50 and ^X2&51. The angular bracke
^•••& denotes the ensemble average. The pdf ofX, P(x), is
then given by

P~x!5
CN

^Ẋ2uX5x&
expF E

0

x ^ẌuX5x8&

^Ẋ2uX5x8&
dx8G , ~1!

where an overdot indicates a time derivative andCN is a
constant fixed by normalization:*2`

` P(x)dx51. The quan-
tity ^Ẋ2uX5x& denotes the average of the square of the ti
derivative ofX(t) whenX is at a given valuex. It is thus a
conditional average and is generally a function ofx. The
conditional average of the second time derivative^ẌuX5x&
is defined similarly. An analogous formula for statistica
Phys. Fluids 9 (5), May 1997 1070-6631/97/9(5)/1353/9/$
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homogeneous fluctuations can also be derived.11 Thus the
problem of understanding the statistics of any fluctuat
X(t) is equivalent to the problem of understanding the t
corresponding conditional averages^Ẋ2uX5x& and ^ẌuX
5x&.

It has been found12 that the following closed-form ex-
pression for the pdf:

P~x!5
CN

^Ẋ2uX5x&
expF E

0

x

2
^Ẋ2&x8

^Ẋ2uX5x8&
dx8G , ~2!

is in good correspondence with measurements in hi
Rayleigh-number and high-Reynolds-number flows wh
X(t) is taken to be the turbulent temperature fluctuat
dT(t). Such an observation implies that the conditional a
erage^d̈TudT& is approximately2^(dṪ)2&dT.10 Linearity
for the conditional average of the second time derivative
also been found to hold approximately for spanwise vortic
data taken in several turbulent shear flows.13 The existence
of such simple general statistical feature in turbulence
quite surprising and understanding it remains a challenge
the other hand,~2! does not work well for the time derivative
of the temperature fluctuation]@dT(t)#/]t12 which indicates
that the function^]3(dT)/]t3u](dT)/]t& deviates signifi-
cantly from a linear function of](dT)/]t.

Another major problem in turbulence is to understa
the behavior of the structure functions of the velocity field
the scalar field. Ann-th order structure function of a field i
the ensemble average of then-th power of the field differ-
ence separated by a certain distance. The specific questio
interest is to study the scaling properties of these struc
functions as a function of the separating distance. In part
lar, one is concerned with whether there is any deviat
from the scaling predicted by Kolmogorov-type dimension
arguments, i.e., whether there is any anomalous scaling.
cently, it has been demonstrated14 that the conditional aver-
135310.00 © 1997 American Institute of Physics
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age of the Laplacian of the field difference on the value
the field difference plays a crucial role in this scaling pro
lem. Using the standard Taylor hypothesis to replace spa
gradients by time derivatives, such a conditional averag
then of the form^ẌuX5x& ~whereX is the field difference!
as discussed above.

In this paper, we report a numerical study of the con
tional statistics of a passive scalar in a model of rand
advection. The model was first studied by one of the pres
authors and Tu8 and will be described in more details in th
next Section. It has been found that the passive scalar
tuation changes from Gaussian to non-Gaussian upon v
tion of the parameters in this model. Such a change is sim
to what was observed in experiments, as discussed in
beginning of this section. Thus, it is interesting to study h
the two conditional averages behave and particularly h
they change upon variation of the parameters. We find
the two conditional averages can be fitted quite well by po
nomials whose coefficients can be expressed in terms of
lar moments and correlations of the scalar fluctuation with
time derivatives. The coefficients vary with the parameters
the model resulting in a change in the pdf of the pass
scalar fluctuation. Another interesting issue is whether
how the statistical properties of the scalar field depend
those of the advecting velocity field. We have studied vel
ity fields of different prescribed statistics. The same qual
tive results are found for the three different kinds of veloc
statistics studied, showing that the one-point statistics of
velocity field do not affect the statistical properties of t
passive scalar.

II. MODEL

We study the advection of a passive scalarT(r ,t), for
example, the temperature field, by a random incompress
velocity fieldu(r ,t). Such a process is described by the f
lowing equations:

]T

]t
1u•“T5k¹2T, ~3a!

¹•u50, ~3b!

where k is the molecular diffusivity. Following an earlie
study,8 we do not solve the full advection-diffusion proble
but resort to a simplified discrete model by evaluating~3! on
a two-dimensional square lattice with a lattice spacing equ
to j. Such coarse-graining has an effect of renormalizing
molecular transport coefficient thus we replacek by an ef-
fective diffusivity D. The advecting velocity field is gener
ated using the stream functionf(r ,t) which is a scalar func-
tion along the third direction. To mimic a turbulent veloci
field, we modelf(r ,t) by a random field with prescribe
statistics which has a correlation timet. The random field is
generated independently at each lattice site such that
stream function and thus the velocity field has a correlat
length equal to the lattice spacingj. The noise strength o
the stream function is measured by its standard devia
f0. The typical size of velocity fluctuation is given b
u0[f0 /j.
1354 Phys. Fluids, Vol. 9, No. 5, May 1997
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Using t, j, andu0 as typical time, length, and velocit
scales, we nondimensionalize the equation of motion. Th
are three time scales in the problem: the velocity correlat
time t, the advection timej/u0, and the diffusion time
j2/D, giving rise to two independent dimensionless para
eters. The resulting equation is

]T~ i , j !

]t
1Ku~ i , j !•¹ i j T5

1

C
¹ i j
2T~ i , j !, ~4!

with the two dimensionless parameters beingK andC. The
parameterK is the ratio of the velocity correlation time to th
advection time,u0t/j, and is known as the Kubo numbe
The parameterC is the ratio of the diffusion time to the
velocity correlation time:j2/(Dt). The product ofK and
C gives a Pe´clet-like numberu0j/D.

We use finite difference method with a small time st
Dt to integrate~4! in time. The system size isN3N and
N531 is used in the present work. A relatively small size
sufficient as we shall evaluate the statistics by averaging o
time. The random stream functionf at each lattice site is
updated everym time steps so thatt5mDt. The boundary
condition for both the velocity and the scalar fields is pe
odic in thei -direction. In thej -direction, the velocity field is
no-slip on both the top and bottom boundaries:u( i , j51)
5u( i , j5N)50 while the scalar field satisfies a fixed
difference condition: T( i , j51)50 and T( i , j5N)51.
To study the scalar statistics, we measureT at the center of
the system,@(N11)/2 , (N11)/2#, as a function of time af-
ter the system reaches the steady state. A long time se
with at least 43106 data points are used to get good stat
tics. Different probability distributions are prescribed for th
stream function to generate velocity field with three differe
kinds of statistics:~i! Gaussian,~ii ! exponential, and~iii !
triangular. For all the three cases, we fix the parameterK at
1 such that the velocity correlation time is the same as
advection time and study the conditional statistics ofT as a
function of the parameterC.

III. RESULTS

A. Gaussian velocity statistics

We first consider the case of velocity field having Gau
ian statistics. Such a velocity field is generated by a stre
function which has a Gaussian distribution. The parame
C is varied from 0.01 to 13.3 by varyingD, f0, andt. As
discussed in Ref. 8, the mean scalar profile is almost linea
j , with a gradient of 1/N, for all the values ofC studied. The
mean profiles are not exactly linear and have a slight dep
dence oni , with the spread ini slightly larger for largerC.
For each value ofC, we use the time series measured at
center of the system to calculate the pdf,P(X5x), of the
standardized scalar fluctuationsX(t) which is defined by

X[
T2^T&

A^~T2^T&!2&
, ~5!

and the two conditional averages,
E. S. C. Ching and Y. K. Tsang
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tistics.
FIG. 1. The probability density functionP(x) of normalized scalar fluctuation evaluated by various methods for the case of Gaussian velocity sta
Directly from the data~solid lines!; using Eq.~1! with the conditional averagesq(x) andr (x) from data~circles!; using analytical forms Eqs.~13! and~16!
resulted from the polynomial fits ofq(x) andr (x) ~dashed lines!. Good agreement among the three can be seen.~a! C50.01,~b! C53.00,~c! C56.67, and
~d! C513.3.
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q~x![
^Ẋ2uX5x&

^Ẋ2&
, ~6!

r ~x![
^ẌuX5x&

^Ẋ2&
. ~7!

The averages are evaluated by averaging over time.
In Fig. 1, we plotP(x) ~solid line! for the various values

of C studied. As reported in Ref. 8, the pdf varies from
Gaussian to distribution with flatter-than-Gaussian tails
C increases~or as the Pe´clet-like number increases sinceK is
fixed to be 1). Using the calculatedq(x) andr (x), we evalu-
ate the right hand side of~1! and display the result as circle
in the same figure. It is clear that the circles coincide v
well with the solid line verifying that the formula~1! holds
well for all the pdf’s regardless of whether they are Gauss
or not.

In Fig. 2, we show the conditional averagesq(x) and
r (x) as a function ofC. For smallC, q(x) is approximately
independent ofx and its value is about 1@which is what one
would get by definition ifq(x) is exactly a constant#. For
larger values ofC, q(x) becomes a concave, quadratic-lik
function inx with the functional dependence onx becoming
stronger and stronger asC further increases. On the othe
hand, the conditional averager (x) is almost a linear func-
tion, 2x, for both small and large values ofC. For interme-
diate values ofC, the deviation ofr (x) from 2x cannot be
neglected andr (x) is approximated better by a cubic fun
tion in x.

To quantify the variation ofq(x) andr (x) as a function
of C, we fit them by polynomials inx. Because of theT to
2T symmetry at the center of the system,P(x) is symmetric
Phys. Fluids, Vol. 9, No. 5, May 1997
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FIG. 2. The conditional averages~a! q(x) and~b! r (x) as a function of the
parameterC for the case of Gaussian velocity statistics.C50.01 ~solid
line!, C53.00 ~dotted line!, C56.67 ~dashed line!, C59.00 ~long dashed
line!, andC513.3 ~dot–dashed line!.
1355E. S. C. Ching and Y. K. Tsang
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TABLE I. Fitted values of the coefficientsb, A0, A2, A4, c, e, a, b, a8, andb8 ~see the text! in the case of
Gaussian velocity statistics.

C b A0 A2 A4 c e a b a8 b8

0.01 0.002 — — — 0.03 0.009 — — — —
0.20 0.07 — — — 0.19 0.08 0.21 0.5 — —
0.80 0.12 — — — 0.32 0.15 0.79 0.42 — —
1.00 0.13 — — — 0.32 0.15 0.98 0.39 — —
3.00 — 0.83 0.15 0.006 0.33 0.14 — — 5.29 5.16
5.00 — 0.79 0.21 0.002 0.25 0.09 — — 9.66 7.38
6.67 0.26 — — — 0.24 0.07 2.17 0.11 — —
9.00 0.30 — — — 0.07 0.02 2.51 0.03 — —
11.0 0.38 — — — 0.02 0.02 2.27 0.02 — —
13.3 0.54 — — — 0.09 0.009 1.84 0.007 — —
-

r
as observed in Fig. 1. This symmetry implies thatq(x)
should be an even function ofx while r (x) should be an odd
function of x. Thus, we fitq(x) by an even quadratic poly
nomial:a1bx2. By definition,*2`

` P(x)q(x)dx51 and this
ids, Vol. 9, No. 5, May 1997

¬May¬2003¬to¬129.2.106.94.¬Redistribution¬subject
constrainsb to be 12a so there is only one fitting paramete
which we choose asb. That is, the fitting form forq(x) is

qf it~x!512b~12x2!. ~8!
FIG. 3. Some representative polynomial fits ofq(x) and r (x) for the case of Gaussian velocity statistics.~a! and ~d! C50.20, ~b! and ~e! C55.00, ~c! and
~f! C513.3. Circles are data points while solid lines are polynomial fits.
E. S. C. Ching and Y. K. Tsang

¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/phf/phfcr.jsp



FIG. 4. The parametersb ~cirles! ande ~triangles! as a function ofC for the case of Gaussian velocity statistics.
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We find that this form works generally well except for th
casesC53 and 5 for which we need a quartic polynomia

q̃f it~x!5A01A2x
21A4x

4. ~9!

For r (x), we use an odd cubic polynomial:

r f it~x!52~12c!x2dx3, ~10!

as a fitting form. The stationarity condition gives^ẌX&
52 ^Ẋ2& which constrainsd to bec/^X4&. With ^X4& evalu-
ated from data, there is again only one fitting parametec.
However, forC59,11.0, and 13.3, the pdf of the fluctuatio
has very flat tails which makes an accurate evaluation
^X4& from the measurements difficult. Thus in these cas
Phys. Fluids, Vol. 9, No. 5, May 1997
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we treatd as an independent parameter in the fit. In Table
we display the fitted values of the coefficients. Using the
fitted values, we constructqf it or q̃f it and r f it which are
found to agree well withq andr . Some representative fits ar
shown in Fig. 3.

We now focus on the cases where~8! and~10! are good
fits for q(x) andr (x). The parameterb measures how much
q(x) deviates from a constant~51!. It has been shown that i
r (x) is a linear function ofx thenr (x) has to be2x.10 Thus,
the parameterc can be taken as a measure of how mu
r (x) deviates from linearity with the importance of the no
linear term inr (x) given directly bye[d/(12c). In Fig. 4,
we plot b ande as a function ofC. As C increases,b in-
ian
at the
FIG. 5. A comparison of the mean scalar profile along the centerline of the lattice, ati516, for the three different kinds of velocity statistics studied: Gauss
~circles!, exponential~squares!, and triangular~crosses!. The parameterC is 13.3. It can be seen that the mean profile is almost linear regardless of wh
velocity statistics are.
1357E. S. C. Ching and Y. K. Tsang
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FIG. 6. Similar to Fig. 1 for the case of exponential velocity statistics.~a! C50.01, ~b! C51.00, ~c! C55.00, and~d! C513.3.
a
r
n

creases montonically whilee first increases then decreases
C further increases. Suppose~8! is taken as an exact form fo
q(x), then the coefficientb can be expressed explicitly i
terms of moments ofX and correlations ofX and its time
derivatives:15

b5
^Ẋ2X2n&/^Ẋ2&2^X2n&

^X2n12&2^X2n&
, for any integern. ~11!

Similarly, if we take~10! as an exact form forr (x), thenc
@with e5c/@(12c)^X4&## can be evaluated to be
1358 Phys. Fluids, Vol. 9, No. 5, May 1997
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^X2n12&2~2n11!^Ẋ2X2n&/^Ẋ2&

^X2n12&2^X2n14&/^X4&
, for any integern.

~12!

In ~12!, the relation̂ ẌX2n11&52(2n11)^Ẋ2X2n& is used,
which is valid for stationary fluctuationX. The parameterb
is proportional to the difference between̂Ẋ2X2n& and

^X2n&^Ẋ2&. Thus, how strongẊ2 and X2n are statistically
FIG. 7. Similar to Fig. 1 for the case of triangular velocity statistics.~a! C50.05, ~b! C53.00, ~c! C59.00, and~d! C513.3.
E. S. C. Ching and Y. K. Tsang
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correlated with each other controls how muchq(x) deviates
from a constant. From~12!, the parameterc deviates from
zero when̂ X2n12& deviates from (2n11)^Ẋ2X2n&/^Ẋ2&.

When the pdf of X(t) is Gaussian, we have

^X2n12&5(2n11)^X2n&. Thus the uncorrelation ofẊ2 and
X2n is equivalent toc50 or, in other words,q(x) being 1
and r (x) being2x are equivalent in this case. From~1!, if
q(x) is algebraic then it has to be 1 for a GaussianP(x).
Hence for a GaussianP(x), we haveq(x)51 and r (x)
52 x unlessq andr are nonalgebraic. For the case that n
only P(x) is Gaussian but thatX(t) is a Gaussian process,
can be proved exactly thatq(x)51 and r (x)52x as dis-
cussed in Ref. 10. On the other hand, for non-Gauss
P(x), the linearity ofr (x), if observed, is a nontrivial resul
in the sense discussed above.

Using~8! and~10! in ~1!, we obtain an analytical expres
sion forP(x):

P~x!5
CN

~12b1bx2!a exp~2bx2!, ~13!

where

a511
12c

2b
2
d~12b!

2b2
, ~14!

b5
d

2b
. ~15!

We note that ifa is small,~13! is a Gaussian slightly modi
fied by an algebraic factor. On the other hand, ifb is small
then ~13! is of the form of a Lorentzian raised toa so that
P(x) has algebraic tails. For the casesC53 and C55,
q(x) is better fitted by~9! and the corresponding analyt
expression forP(x) is given by

P~x!5
CN

~A01A2x1A4x
4!a8F2A01~A21D!x2

2A01~A22D!x2G
b8
, ~16!

with

a8511
d

4A4
, ~17!

b852
1

2DF ~12e!2
A2d

2A4
G , ~18!

D5AA2
224A0A4. ~19!

@Note thatA2
2.4A0A4 ~see Table I! so thatD is real.# The

asymptotic behavior ofP(x) as uxu→` is given byx24a8.
We note that the value ofa8 is quite large in these two case
such thatP(x) has very fast-decreasing tails which are pra
tically indistinguishable from exponential tails. The values
a andb, or a8 andb8, for the different values ofC ~except
for C50.0116! are shown in Table I. We calculate~13! and
~16! and compare them~dashed lines! to the directly calcu-
lated pdf’s~solid lines! in Fig. 1. The good agreement is
confirmation that~8! or ~9! and~10! are good approximation
for the conditional averagesq and r .
Phys. Fluids, Vol. 9, No. 5, May 1997
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B. Other velocity statistics

Besides considering velocity field that has a Gauss
distribution, we have studied two other types of velocity s
tistics. The first is an exponentially distributed velocity fie
which is generated by using a stream function who
distribution is given by the modified Bessel functio
K0(ufu/f0)/(pf0). For the second one, we use a uniform
distributed stream function which produces a velocity fie
that has a triangular distribution.

The mean scalar profiles are again found to be alm
linear in j . A comparison of the mean profile along the ce
terline, ati516, is made for the three kinds of velocity st
tistics and is shown in Fig. 5. We see that the mean profil
not affected much by the velocity statistics.

We analyze the scalar measurements as in the cas
Gaussian velocity statistics. First, we find that the pdf of
scalar fluctuation changes from Gaussian to non-Gaus
with flatter tails as observed before. The pdf’s are shown
Figs. 6 and 7, respectively, for exponential and triangu
velocity statistics. Equation~1! is again verified. Second, w
study the variation of the conditional averagesq and r as a
function ofC. Results for exponential velocity statistics a
shown in Fig. 8 while those for triangular statistics a

FIG. 8. Similar to Fig. 2 for the case of exponental velocity statisti
C50.01 ~solid line!, C51.00 ~dotted line!, C55.00 ~dashed line!, and
C513.3 ~dot–dashed line!.
1359E. S. C. Ching and Y. K. Tsang
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shown in Fig. 9. Comparing them with Fig. 2, we find simil
changes asC increases.

As before, we fitq and r using polynomials. We find
that ~8! and ~10! are good fits in general with the exceptio
that ~9! is a better fit forq for intermediate values ofC
(C51.00,3.00, and 5.00) in the case of exponential veloc
statistics. The parameterd has to be treated as an indepe
dent parameter in the fitr f it for C>9 as discussed before
The values of the fitted coefficients are displayed in Table
and Table III, respectively, for the two types of velocity st
tistics. AsC increases, the parameterb increases while the
parametere first increases then decreases as observed be

FIG. 9. Similar to Fig. 2 for the case of triangular velocity statistic
C50.05 ~solid line!, C53.00 ~dotted line!, C59.00 ~dashed line!, and
C513.3 ~dot–dashed line!.
1360 Phys. Fluids, Vol. 9, No. 5, May 1997

Downloaded¬01¬May¬2003¬to¬129.2.106.94.¬Redistribution¬subject
y
-

II

re.

Following the discussion in the previous subsection, us
~8! or ~9! and~10! in ~1! lead to analytical result for the pd
given by ~13! or ~16!. The values fora andb, or a8 and
b8, are also shown in Tables II and III for the two types
statistics. Comparisons of the analytic forms~dashed lines!
with the directly calculated pdf’s~solid lines! are done in
Figs. 6 and 7. Good agreement is again found.

IV. DISCUSSION AND SUMMARY

We have studied numerically a model of a passive sc
advected by a random incompressible velocity field in t
dimensions. As the parameterC in the model increases, th
pdf changes from Gaussian to distribution with flatter-tha
Gaussian tails. This change is qualitatively the same for
three different velocity statistics studied:~i! Gaussian,~ii !
exponential, and~iii ! triangular. As expected,~1! works for
the pdf of the scalar fluctuation so that the pdf is expresse
terms of the conditional averagesq and r . Thus, the change
in the pdf is reflected by changes inq and r .

The changes inq andr can be quantified by fitting them
with polynomial forms and then studying the behavior of t
fitted coefficients as a function ofC. The conditional average
q(x) can generally be well fitted by an even quadratic po
nomial except for intermediate values ofC for which a quar-
tic polynomial is a better fit. In general,q(x) deviates more
and more from a constant asC increases. On the other han
the conditional averager (x) can be well fitted by an odd
cubic polynomial for all the values ofC studied. We find that
r is close to a linear function for both small and large valu
of C while for intermediate values ofC, the cubic term can-
not be neglected. The approximate linearity ofr (x) when the
pdf is non-Gaussian is a nontrivial result which has yet to
understood.

With the form of the fitted polynomials forq and r , we
obtain analytical results for the pdf using~1!. We find that
for small values ofC, the pdf is a Gaussian, slightly modifie

TABLE III. Fitted values of the coefficientsb, c, e, a, andb ~see the text!
in the case of triangular velocity statistics.

C b c e a b

0.05 0.008 0.02 0.007 12.45 0.40
3.00 0.11 0.23 0.09 1.95 0.32
9.00 0.26 0.18 0.05 2.33 0.08
13.3 0.54 0.23 0.04 1.68 0.03
TABLE II. Fitted values of the coefficientsb, A0, A2, A4, c, e, a, b, a8, andb8 ~see the text! in the case of
exponential velocity statistics.

C b A0 A2 A4 c e a b a8 b8

0.01 0.10 — — — 0.15 0.05 3.08 0.25 — —
0.05 0.16 — — — 0.19 0.07 2.66 0.16 — —
1.00 — 0.71 0.27 0.005 0.31 0.11 — — 4.43 2.40
3.00 — 0.67 0.31 0.006 0.37 0.13 — — 4.39 2.59
5.00 — 0.69 0.26 0.01 0.30 0.08 — — 1.97 20.57
9.00 0.43 — — — 0.19 0.05 1.89 0.05 — —
11.0 0.45 — — — 0.25 0.05 1.79 0.04 — —
13.3 0.68 — — — 0.16 0.03 1.60 0.02 — —
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by an algebraic factor. For intermediate values ofC, the pdf
has power-law tails that decay very fast and are thus in
tinguishable from exponential tails. For large values ofC,
the pdf is of the form of a generalized Lorentzian which h
algebraic tails.

Results for the three different types of velocity statist
studied are found to be qualitatively the same. This dem
strates that the one-point statistics of the velocity field do
play a role in determining the pdf and the conditional av
ages of the passive scalar. The relevant parameter isC which
is a measure of the relative size of the effective diffus
time to the correlation time of the velocity field.
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