Passive scalar conditional statistics in a model of random advection
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We study numerically a model of random advection of a passive scalar by an incompressible
velocity field of different prescribed statistics. Our focus is on the conditional statistics of the
passive scalar and specifically on two conditional averages: the averages of the time derivative
squared and the second time derivative of the scalar when its fluctuation is at a given value. We find
that these two conditional averages can be quite well approximated by polynomials whose
coefficients can be expressed in terms of scalar moments and correlations of the scalar with its time
derivatives. With the fitted polynomials for the conditional averages, analytical forms for the
probability density functior{pdf) of the scalar are obtained. The variation of the coefficients with
the parameters of the model result in a change in the pdf. Three different kinds of velocity statistics,
(i) Gaussian(ii) exponential, andiii) triangular, are studied, and the same qualitative results are
found demonstrating that the one-point statistics of the velocity field do not affect the statistical
properties of the passive scalar. 97 American Institute of Physics.
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I. INTRODUCTION homogeneous fluctuations can also be derietihus the
problem of understanding the statistics of any fluctuation

In the_study of fluid turbulence, one of .th? mterestmg X(t) is equivalent to the problem of understanding the two
problems is to understand the fluctuation statistics of velocity orresponding conditional avera QXZ|X—X> and (5(|X
and temperature fields, and their derivatives. The statistics o(i ) P 9 9 B

velcocity derivatives or vorticity and temperature derivatives
in turbulent flows, which are believed to be small-scale char-
acteristics, have been known to deviate significantly from
Gaussian and this is directly related to the problem of

It has been found that the following closed-form ex-
ression for the pdf:

dissipative-range intermittendyA series of experimental C . <X2>x’
studies on Rayleigh—Bard convection further reveal that P(X)= — N F{j _ _—dx,l, 2
the temperature fluctuation itself can also be non-Gaussian (X?X=x) o (XFX=x")

when the Rayleigh number is high enoufgBuch a discov-
ery has motivated several studie$to understand the statis- | . ) ]
tics of a randomly advected passive scalar, which is a thedS N good correspondence with measurements in - high-
retically more tractable problem. Rayleigh-number and high-Reynolds-number flows when
The statistics of any fluctuating quantity are described by*(t) iS taken to be the turbulent temperature fluctuation
its probability density functioripdf). It has been found that 9T(t). Such an observation implies tha; the ﬁ)onfjltlogal av-
the pdf of any stationary fluctuation can be expressed in affage(dT|dT) is approximately—((&T))dT.™ Linearity
exact formula in terms of two conditional averages, the avfor the conditional average of the second time derivative has
erages of the time derivative squared and the second tim@S0 been found to hold approximately for spanwise vorticity
derivative of the fluctuation for a given value of the data taken in several turbulent shear flddThe existence
fluctuation'®'* SupposeX(t) is a physical quantity mea- Of such simple general statistical feature in turbulence is
sured in a statistically stationary process. For simplicity, weduite surprising and understanding it remains a challenge. On
take the mean and the standard deviatioX () to be 0 and  the other hand2) does not work well for the time derivative
1, respectively(X)=0 and(X?)=1. The angular bracket of the temperature fluctuatio#f 6T (t)]/at*? which indicates
<...> denotes the ensemble average. The p(ﬂ(,OP(X), is that the functlon(ﬁg(5T)/8t3|o7(5T)/(7t> deviates S|gn|f|-

then given by cantly from a linear function of(5T)/4t.
. Another major problem in turbulence is to understand
_ Cn x(X[X=x") the behavior of the structure functions of the velocity field or
(x)= <X2|X=x> fo (X2|X=x’> X0 (1) the scalar field. Am-th order structure function of a field is

the ensemble average of tiheth power of the field differ-
where an overdot indicates a time derivative abgd is @  ence separated by a certain distance. The specific question of
constant fixed by normalizatiorf” .P(x)dx=1. The quan- jnterest is to study the scaling properties of these structure
tity (X?|X=x) denotes the average of the square of the timgunctions as a function of the separating distance. In particu-
derivative ofX(t) whenX is at a given value. Itis thus a lar, one is concerned with whether there is any deviation
conditional average and is generally a functionxofThe  from the scaling predicted by Kolmogorov-type dimensional
conditional average of the second time deriva¥X=x) arguments, i.e., whether there is any anomalous scaling. Re-
is defined similarly. An analogous formula for statistically cently, it has been demonstratéthat the conditional aver-
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age of the Laplacian of the field difference on the value of  Using 7, £, andug as typical time, length, and velocity
the field difference plays a crucial role in this scaling prob-scales, we nondimensionalize the equation of motion. There
lem. Using the standard Taylor hypothesis to replace spatiare three time scales in the problem: the velocity correlation
gradients by time derivatives, such a conditional average iime 7, the advection timeé/uy, and the diffusion time
then of the form{X|X=x) (whereX is the field difference £2/D, giving rise to two independent dimensionless param-
as discussed above. eters. The resulting equation is

In this paper, we report a numerical study of the condi- o
tional statistics of a passive scalar in a model of random dT(i,])
advection. The model was first studied by one of the present at
authors and Ttiand will be described in more details in the
next Section. It has been found that the passive scalar flug¥ith the two dimensionless parameters bei@ndC. The
tuation changes from Gaussian to non-Gaussian upon variRarameteK is the ratio of the velocity correlation time to the
tion of the parameters in this model. Such a change is similafdvection timeug7/¢, and is known as the Kubo number.
to what was observed in experiments, as discussed in thEhe parametecC is the ratio of the diffusion time to the
beginning of this section. Thus, it is interesting to study howVelocity correlation time:¢%/(D 7). The product ofk and
the two conditional averages behave and particularly hov gives a Pelet-like numbernuo/D.
they change upon variation of the parameters. We find that We use finite difference method with a small time step
the two conditional averages can be fitted quite well by poly-At to integrate(4) in time. The system size iBIXN and
nomials whose coefficients can be expressed in terms of scBl=31 is used in the present work. A relatively small size is
lar moments and correlations of the scalar fluctuation with itssufficient as we shall evaluate the statistics by averaging over
time derivatives. The coefficients vary with the parameters ofime. The random stream functiop at each lattice site is
the model resulting in a change in the pdf of the passivélPdated everyn time steps so that=mAt. The boundary
scalar fluctuation. Another interesting issue is whether angondition for both the velocity and the scalar fields is peri-
how the statistical properties of the scalar field depend o@dic in thei-direction. In thej-direction, the velocity field is
those of the advecting velocity field. We have studied veloc0-slip on both the top and bottom boundarie¢t,j=1)
ity fields of different prescribed statistics. The same qualita=U(i.j=N)=0 while the scalar field satisfies a fixed-
tive results are found for the three different kinds of velocity difference - condition: T(i,j=1)=0 and T(i,j=N)=1.
statistics studied, showing that the one-point statistics of thd © Study the scalar statistics, we meastirat the center of

velocity field do not affect the statistical properties of thethe system[(N+1)/2, (N+1)/2], as a function of time af-
passive scalar. ter the system reaches the steady state. A long time series

with at least 4< 10° data points are used to get good statis-
tics. Different probability distributions are prescribed for the
Il. MODEL stream function to generate velocity field with three different
kinds of statistics:(i) Gaussian,ii) exponential, andiii)
We study the advection of a passive scaldr,t), for  triangular. For all the three cases, we fix the paramiétat
example, the temperature field, by a random incompressible such that the velocity correlation time is the same as the
velocity field u(r,t). Such a process is described by the fol- advection time and study the conditional statisticsTcds a

+Ku(i,j) v T= éViij(i,j), (4)

lowing equations: function of the parametet.
oT
— U VT=kV?T, (3a
Il. RESULTS
V-u=0, (3b)

. e . . A. Gaussian velocity statistics
where k is the molecular diffusivity. Following an earlier

study® we do not solve the full advection-diffusion problem  We first consider the case of velocity field having Gauss-
but resort to a simplified discrete model by evaluati@gon  ian statistics. Such a velocity field is generated by a stream
a two-dimensional square lattice with a lattice spacing equal&/nction which has a Gaussian distribution. The parameter
to ¢&. Such coarse-graining has an effect of renormalizing th€ is varied from 0.01 to 13.3 by varyinB, ¢, andr. As
molecular transport coefficient thus we replacéy an ef-  discussed in Ref. 8, the mean scalar profile is almost linear in
fective diffusivity D. The advecting velocity field is gener- |, With a gradient of I, for all the values o€ studied. The
ated using the stream functia#(r,t) which is a scalar func- Mean profiles are not exactly linear and have a slight depen-
tion along the third direction. To mimic a turbulent velocity dence oni, with the spread in slightly larger for largeC.
field, we modelg(r,t) by a random field with prescribed For each value o€, we use the time series measured at the
statistics which has a correlation time The random field is ~ center of the system to calculate the pB{X=Xx), of the
generated independently at each lattice site such that trgandardized scalar fluctuatiogt) which is defined by

stream function and thus the velocity field has a correlation

length equal to the lattice spacirg The noise strength of Y= T—(T) 5
the stream function is measured by its standard deviation B V(T—=(TH?)'

¢o. The typical size of velocity fluctuation is given by

Ug= g/ &. and the two conditional averages,
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In[P(x)]
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FIG. 1. The probability density functioR(x) of normalized scalar fluctuation evaluated by various methods for the case of Gaussian velocity statistics.
Directly from the datgsolid lineg; using Eq.(1) with the conditional averagesg(x) andr(x) from data(circles; using analytical forms Eq$13) and(16)
resulted from the polynomial fits af(x) andr(x) (dashed lines Good agreement among the three can be @& =0.01,(b) C=3.00,(c) C=6.67, and

(d) C=13.3.

- (X2|X=x) © I @ // ]
qx)=——77—, : ) ) ;
<X2> 8 4 \‘\ ) ! :_

. 7 ~\‘\\ \ ,/v [?7
X|X=x \,“1\ | ’/ ! 34/'
o= o et D
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The averages are evaluated by averaging over time.

In Fig. 1, we plotP(x) (solid line) for the various values
of C studied. As reported in Ref. 8, the pdf varies from a
Gaussian to distribution with flatter-than-Gaussian tails as
C increasesor as the Pelet-like number increases sinkeis
fixed to be 1). Using the calculateg{x) andr(x), we evalu-
ate the right hand side ¢1) and display the result as circles
in the same figure. It is clear that the circles coincide very
well with the solid line verifying that the formulél) holds
well for all the pdf's regardless of whether they are Gaussian
or not.

In Fig. 2, we show the conditional averaggéx) and
r(x) as a function ofC. For smallC, q(x) is approximately
independent ok and its value is about flwhich is what one =
would get by definition ifq(x) is exactly a constafit For =
larger values ofC, q(x) becomes a concave, quadratic-like,
function inx with the functional dependence arbecoming
stronger and stronger & further increases. On the other
hand, the conditional averag€x) is almost a linear func-
tion, —x, for both small and large values &f. For interme-
diate values ofC, the deviation ofr (x) from —x cannot be 5 4 3 2 4 0 1 2 3 4 5

neglected and(x) is approximated better by a cubic func- *
tion in x.

. L . FIG. 2. The conditional averagéa) q(x) and(b) r(x) as a function of the
To quantify the variation 0g(x) andr(x) as a function parameterC for the case of Gaussian velocity statisti€s=0.01 (solid

of C, we fit them by polynomials irx. Because of thd 10 jine), c=3.00 (dotted ling, C=6.67 (dashed ling C=9.00 (long dashed
—T symmetry at the center of the systelf(x) is symmetric  line), andC=13.3 (dot—dashed line
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as observed in Fig. 1. This symmetry implies tlgix)

nomial: a+ bx?. By definition, [* . P(x)q(x)dx=1 and this

TABLE |I. Fitted values of the coefficients, Ay, Ay, A4, C, €, «, B, @', and B’ (see the tejtin the case of

Gaussian velocity statistics.

C b Ay A, A, c e a B ! B’
0.01 0.002 — — — 0.03 0.009 — — — —
0.20 0.07 — — — 0.19 0.08 0.21 0.5 — —
0.80 0.12 — — — 0.32 0.15 0.79 0.42 — —
1.00 0.13 — — — 0.32 0.15 0.98 0.39 — —
3.00 — 0.83 0.15 0.006 0.33 0.14 — — 5.29 5.16
5.00 — 0.79 0.21 0.002 0.25 0.09 — — 9.66 7.38
6.67 0.26 — — — 0.24 0.07 2.17 0.11 — —
9.00 0.30 — — — 0.07 0.02 251 0.03 — —
11.0 0.38 — — — 0.02 0.02 2.27 0.02 — —
13.3 0.54 — — — 0.09 0.009 1.84 0.007 — —

10.0

75

50

(a)

10.0

(b)

10.0

5.0 |

25

constraind to be 1-a so there is only one fitting parameter
should be an even function &fwhile r(x) should be an odd which we choose ab. That is, the fitting form forq(x) is
function of x. Thus, we fitq(x) by an even quadratic poly-

r(x)

-10.0

-10.0

Uri(X)=1—b(1—x?).

®

5.0

0.0

-5.0

10.0

5.0

0.0

-5.0

5.0

FIG. 3. Some representative polynomial fitsgg) andr(x) for the case of Gaussian velocity statistit. and (d) C=0.20, (b) and(e) C=5.00,(c) and
(f) C=13.3. Circles are data points while solid lines are polynomial fits.
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FIG. 4. The parametets (cirles) ande (triangles as a function ofC for the case of Gaussian velocity statistics.

We find that this form works generally well except for the we treatd as an independent parameter in the fit. In Table I,
casesC=3 and 5 for which we need a quartic polynomial: we display the fitted values of the coefficients. Using these
fitted values, we construd;; or Gs; and r¢; which are

Trir(X) = Ag+ A,x2+ A x4, _ neh

Qe (X) = Ao+ AX"+ Ag © found to agree well witlyg andr. Some representative fits are
Forr(x), we use an odd cubic polynomial: shown in Fig. 3.

Fi(0)=—(1—c)x—dx3, (10) We now focus on the cases whéB and(10) are good

. fits for q(x) andr(x). The parametel measures how much
as a fitting form. The stationarity condition givéXX)  q(x) deviates from a constafi=1). It has been shown that if
= — (X?) which constraingl to bec/(X*). With (X*) evalu-  r(x) is a linear function ok thenr (x) has to be-x.*° Thus,
ated from data, there is again only one fitting parameter the parametec can be taken as a measure of how much
However, forC=9,11.0, and 13.3, the pdf of the fluctuation r(x) deviates from linearity with the importance of the non-
has very flat tails which makes an accurate evaluation ofinear term inr(x) given directly bye=d/(1—c). In Fig. 4,
(X* from the measurements difficult. Thus in these casesye plotb ande as a function ofC. As C increasesb in-

1.0 T T

08

16,j)>
>
3
®

<T(i=
&

0.0 . \
1 21 31

FIG. 5. A comparison of the mean scalar profile along the centerline of the lattice 18t for the three different kinds of velocity statistics studied: Gaussian
(circles, exponentialsquares and triangulafcrosses The paramete€ is 13.3. It can be seen that the mean profile is almost linear regardless of what the
velocity statistics are.
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In[P(x)]

-12
-10 8 6 4 -2 0
X

FIG. 6. Similar to Fig. 1 for the case of exponential velocity statis{igsC=0.01,(b) C=1.00,(c) C=5.00, and(d) C=13.3.

creases montonically whilefirst increases then decreases as (X2"*2y —(2n+ 1)(X2X2”)/<§(2>

C further increases. Suppo&® is taken as an exact form for ¢c= (X 2y XAy [y , for any integen.
q(x), then the coefficienb can be expressed explicitly in 12
terms of moments oK and correlations oKX and its time
derivatives®®

(XEXEI(X?) —(X") In (12), the relation( XX2"* )= — (2n+1)(X2X?") is used,

b= , forany integen. 11
(X2 —(X*") Y g 1) which is valid for stationary fluctuatioX. The parameteb

Similarly, if we take(10) as an exact form for(x), thenc  is proportional to the difference betweefx?X?") and
[with e=c/[(1—c)(X*)]] can be evaluated to be (X2M(X?). Thus, how strongx? and X?" are statistically

In[P(x)]

FIG. 7. Similar to Fig. 1 for the case of triangular velocity statist{e$.C=0.05, (b) C=3.00,(c) C=9.00, and(d) C=13.3.

1358 Phys. Fluids, Vol. 9, No. 5, May 1997 E. S. C. Ching and Y. K. Tsang

Downloaded-01-May-2003-t0-129.2.106.94.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



correlated with each other controls how mugfx) deviates 10 I o
from a constant. Frontl2), the parametec deviates from N / J
zero when(X2"*2) deviates from (B+ 1){X2X?")/(X?). I J ‘

When the pdf of X(t) is Gaussian, we have A Y .
(X?"2)=(2n+1)(X?"). Thus the uncorrelation ok? and Th.oN P
X2" is equivalent toc=0 or, in other wordsg(x) being 1 of h L

andr(x) being —x are equivalent in this case. Frob), if
g(x) is algebraic then it has to be 1 for a Gaussk(x).
Hence for a Gaussia®(x), we haveq(x)=1 andr(x)

- N ’
X 5l N A ]
5 /

= — x unlessg andr are nonalgebraic. For the case that not 8t

only P(x) is Gaussian but thaf(t) is a Gaussian process, it 2t ]
can be proved exactly thaf(x)=1 andr(x)=—x as dis- 1 1
cussed in Ref. 10. On the other hand, for non-Gaussian

P(x), the linearity ofr(x), if observed, is a nontrivial result -5 5

in the sense discussed above.
Using(8) and(10) in (1), we obtain an analytical expres-

sion for P(x): 8.
o
P(x)= LeXlO(—BXZ) (13 4 ]
(1—b+bx?)® ' o
2+
where I
~
1 1-c d(1-b) 14 27 1
TR T (14 |
-6 4
_ g 15 o
A=2p (19 N
-5 -4 -3 -2 -1 0 1 2 3 4 5
We note that ifa is small,(13) is a Gaussian slightly modi- X

fied by an algebraic factor. On the other handgifs small
then (13) is of the form of a Lorentzian raised @ so that
P(x) has algebraic tails. For the cas€s=3 and C=5,
q(x) is better fitted by(9) and the corresponding analytic
expression folP(x) is given by

FIG. 8. Similar to Fig. 2 for the case of exponental velocity statistics.
C=0.01 (solid ling), C=1.00 (dotted ling, C=5.00 (dashed ling and
C=13.3(dot—dashed line

215
P(x) = Cn . a{;ﬁoiiﬁﬂ'iiiz g . (16)  B. Other velocity statistics
(Aot A+ AgxT) ° 2 Besides considering velocity field that has a Gaussian
with distribution, we have studied two other types of velocity sta-
tistics. The first is an exponentially distributed velocity field
, which is generated by using a stream function whose
a'=1+ an,’ A7 distribution is given by the modified Bessel function
Ko(| @|/ po)! (o). For the second one, we use a uniformly
, 1 Axd distributed stream function which produces a velocity field
B'=-= ﬂ[ (1-e)- Z_AJ (18) that has a triangular distribution.
The mean scalar profiles are again found to be almost
A= \/A22—4A0A4. (190  linear inj. A comparison of the mean profile along the cen-

terline, ati =16, is made for the three kinds of velocity sta-
[Note thatAZ>4AoA, (see Table)iso thatA is real] The tistics and is shown in Fig. 5. We see that the mean profile is
asymptotic behavior oP(x) as|x|—>oo is given byx“‘“'. not affected much by the velocity statistics.

We note that the value @i’ is quite large in these two cases We analyze the scalar measurements as in the case of
such thatP(x) has very fast-decreasing tails which are prac-Gaussian velocity statistics. First, we find that the pdf of the

tically indistinguishable from exponential tails. The values ofscalar fluctuation changes from Gaussian to non-Gaussian

a andg, or ¢’ andg’, for the different values of (except
for C=0.01%%) are shown in Table I. We calculaté3) and
(16) and compare therfdashed linesto the directly calcu-

with flatter tails as observed before. The pdf's are shown in
Figs. 6 and 7, respectively, for exponential and triangular
velocity statistics. Equatiofll) is again verified. Second, we

lated pdf's(solid lineg in Fig. 1. The good agreement is a study the variation of the conditional averaggsndr as a
confirmation that8) or (9) and(10) are good approximations function of C. Results for exponential velocity statistics are

for the conditional averages andr.
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FIG. 9. Similar to Fig. 2 for the case of triangular velocity statistics.
C=0.05 (solid ling), C=3.00 (dotted ling, C=9.00 (dashed ling and
C=13.3(dot—dashed line

TABLE llI. Fitted values of the coefficients, c, e, @, and (see the text
in the case of triangular velocity statistics.

C b c e a B
0.05 0.008 0.02 0.007 12.45 0.40
3.00 0.11 0.23 0.09 1.95 0.32
9.00 0.26 0.18 0.05 2.33 0.08
13.3 0.54 0.23 0.04 1.68 0.03

Following the discussion in the previous subsection, using
(8) or (9) and(10) in (1) lead to analytical result for the pdf
given by (13) or (16). The values fora and 8, or @’ and

B’', are also shown in Tables Il and Il for the two types of
statistics. Comparisons of the analytic forfuashed lines
with the directly calculated pdf'§solid lineg are done in
Figs. 6 and 7. Good agreement is again found.

IV. DISCUSSION AND SUMMARY

We have studied numerically a model of a passive scalar
advected by a random incompressible velocity field in two
dimensions. As the paramet€rin the model increases, the
pdf changes from Gaussian to distribution with flatter-than-
Gaussian tails. This change is qualitatively the same for the
three different velocity statistics studied) Gaussian (ii)
exponential, andiii ) triangular. As expectedl) works for
the pdf of the scalar fluctuation so that the pdf is expressed in
terms of the conditional averaggsandr. Thus, the change
in the pdf is reflected by changes dnandr.

The changes ig andr can be quantified by fitting them
with polynomial forms and then studying the behavior of the
fitted coefficients as a function &. The conditional average
q(x) can generally be well fitted by an even quadratic poly-
nomial except for intermediate values®©ffor which a quar-

shown in Fig. 9. Comparing them with Fig. 2, we find similar tic polynomial is a better fit. In generai(x) deviates more

changes a€ increases.

As before, we fitg andr using polynomials. We find
that (8) and (10) are good fits in general with the exception
that (9) is a better fit forq for intermediate values o€

and more from a constant &sincreases. On the other hand,
the conditional average(x) can be well fitted by an odd
cubic polynomial for all the values @ studied. We find that

r is close to a linear function for both small and large values

(C=1.00,3.00, and 5.00) in the case of exponential velocityof C while for intermediate values &, the cubic term can-

statistics. The parameter has to be treated as an indepen-

dent parameter in the fit;;; for C=9 as discussed before.

not be neglected. The approximate linearity &f) when the
pdf is non-Gaussian is a nontrivial result which has yet to be

The values of the fitted coefficients are displayed in Table llunderstood.

and Table lll, respectively, for the two types of velocity sta-

tistics. AsC increases, the parameterincreases while the

With the form of the fitted polynomials fog andr, we
obtain analytical results for the pdf usirity). We find that

parametee first increases then decreases as observed beforfar small values ofZ, the pdf is a Gaussian, slightly modified

TABLE Il. Fitted values of the coefficients, Aq, Ay, A4, C, €, @, B, @', andB’ (see the tejtin the case of

exponential velocity statistics.

C b A A, A, c e a B a' B’
0.01 0.10 — — — 0.15 0.05 3.08 0.25 — —
0.05 0.16 — — — 0.19 0.07 2.66 0.16 — —
1.00 — 0.71 0.27 0.005 0.31 0.11 — — 4.43 2.40
3.00 — 0.67 0.31 0.006 0.37 0.13 — — 4.39 2.59
5.00 — 0.69 0.26 0.01 0.30 0.08 — — 197 -0.57
9.00 0.43 — — — 0.19 0.05 1.89 0.05 — —
11.0 0.45 — — — 0.25 0.05 1.79 0.04 — —
13.3 0.68 — — — 0.16 0.03 1.60 0.02 — —
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