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Intermittency of a passive scalar advected by a quasifrozen velocity field
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We use a two-dimensional lattice model to study the intermittency problem of a passive scalar
advected by a velocity field of finite correlation time. The stream function generating the
incompressible velocity field is modeled by a random Gaussian noise that is identically
independently distributed at each lattice point and is updated every certain finite time interval. A
fixed scalar difference is maintained across one direction of the lattice. There are three time scales
in the problem: the correlation or update time of the velocity fieldthe diffusion time of the scalar

74if » @and the advection time of the velocity fieldq,. Interesting behavior is observed when
T4 <7c. In this regime the passive scalar field is found to be intermittent while its dynamics
between the updates of the velocity field is dominated by diffusion. The intermittency can be
described by log-Poisson statistics and is independent of thenatiqy,. On the other hand, the
passive scalar field exhibits dissipative scaling and is thus nonintermittentxyhenr.. © 1999
American Institute of Physic§S1070-663(99)00408-0

I. INTRODUCTION to have a power-law scaling with exponent@(»)<2. The
second-order scalar structure function was found to exhibit
A major problem in turbulence theory is to understandpower-law scaling with exponert,=2— (7). The scal-
the statistical properties of the inertial range, the range ofng of the higher-order structure functions has been studied
length scales that are smaller than those of energy input ang; perturbation theory around three limiting cag@sinfinite
larger than those affected directly by molecular d|ss,|pat|onspace dimensionali§? (i) smooth scalar field(7)—0,°
Kolmogorov’s _seminal work in 1941 predicted_ simple  gnq (i) smooth velocity fieldZ(7)— 2.2° Anomalous scal-
power-law scaling for the velocity structure functions whenjng has peen found which is understood to result from the
the separating distance is within the inertial range, and thgsminance of the homogeneous solutions of the differential
scaling exponent is/3 for the structure function of order. ation.
Power-law behavior has been confirmed by experimental = 5 yejocity field that is delta-correlated in time is not

measurementsdpfl;t therfe hm?VSS bSeenhewgen_ce_ that Lhe scaliffy sical. In any realistic turbulent flow, the velocity field has
exponents are different from'3. Such a deviation IS KnNown , gnite correlation time. However, analytical simplicity

as anomalous scaling and reveals that a turbulent velocity, 14 e |ost when we move away from the rapid-change
field is intermittent. The intermittency manifests itself as &jimit

change in shape or form of the probability density function In this paper, we report our numerical study of the inter-

(pdf) of the velocity difference with the separating d'Stance'mittency problem of a passive scalar when the advecting

The inertial-range dynamics of an advected passive sca-_, ..~ . L : :

. ; : elocity field has a finite correlation time. We use a two-
lar is believed to be more tractable theoretically. Much recent,. . . 17 . .
_ . i si i in whi uncti

effor? "2 has been devoted to the study of the Kraichnardimensional lattice mod&i™7in which the stream function

model3 in which the advecting velocity field is incompress- generating the incompressible velocity field is modeled by a

ible and rapidly changing or delta-correlated in time. In thisrandom Gaussian noise that is identically independently dis-

rapid-change limit, the effect of the velocity field on the tributed at each lattice point and is updated every certain

passive scalar is described solely by an eddy diffusivity.f'r.]t':? ttlrr? etllnte.rv?I. Tlh ebv:alocnytrf]leld (rjertnams dthtﬁ sar:n €
Moreover, any equal-time multipoint correlation function of within the ime intervals between the upgates and thus has a

the scalar satisfies a closed linear differential equafion, finite correlation time equals to the time between updates.

which renders an analytical study of the inertial-range prop- This model is simple to study numerically and has been

erties possible. In this model, the eddy diffusivity was takenfound to produce interesting results in earlier studies. It was

found® that the passive scalar fluctuation becomes non-
Gaussian for a certain range of parameters of the model.

dAuthor to whom correspondence should be addressed; electronic maiMoreover such a change was shéfvio be independent of
ching@phy.cuhk.edu.hk - . o
Ppresent address: Department of Physics, University of Maryland, Colleg(],;he statistics prescrlbed for the Ve|0C|ty field. More recemly’

Park, Maryland 20742. with the stream function suitably modified, the effects of a
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FIG. 1. The pdfs of normalized scalar differeneé¢X,) for C=1 andK
=1. P(X,) is the same foK = 0.1 and 1, and is independent offor O
<7<10.

log,, P(X,)

large-scale mean circulating flow on the passive scalar st
tistics have been studiéd.

In the present study, we focus on the problem of inter-
mittency and study the statistics of the passive scalar differ
ence at the center of the lattice as the parameters of tt
model are varied. There are three time scales in the problen
the correlation or update time of the velocity field, the
diffusion time of the passive scalag;;, and the advection
time of the velocity fieldr,q4,. We find that the passive scalar
is intermittent whenrg<<7. in that the pdf of the scalar
difference changes its shape with the time separatidor

7<1.. Moreover, the intermittency can be described by log-=¢/u,. Thus, two independent dimensionless parameters
Poisson statistics and is independent of the ratir,q,- On can be constructed which are taken to ®e 74 /7, and

FIG. 2. The pdfs of normalized scalar differeneéX,) for: (a) C=10, K
=0.1 and(b) C=10,K=1. P(X,) is independent of for 0<r<300. The
symbols used irfb) are the same as those (@.

the other hand, the passive scalar field exhibits dissipativg = r_/7,q,.

scaling and is thus nonintermittent wheg;= 7. . Equation(1) is integrated in time using the finite differ-
ence method with a small time stéyg=0.005. We takef

Il. MODEL =1 andN=31. Such a relatively small is sufficient as we

. . . . shall evaluate the statistics by averaging over time. The
The two-dimensional lattice model that we use was diSgiraam function is updated everg=20000 time steps at
cussed in Refs. 15-17 so we shall only outline the main,,cp |attice site so that=mAt=100. The boundary condi-
points here. We solve numerically the discrete advectiongiq, for poth the velocity and the scalar fields is periodic in
diffusion equation for the scalar fiefdi(i.j,t) on aNXN  hej girection. In thej direction, the velocity field is no-slip
square lattice of spacing on both the “top” and “bottom” boundaries, while the sca-

aT(i,j,t) lar field satisfies a fixed-difference conditiofi{i,j=0,)

it +u(i,j,0)-VyT(,j,)=DVET(,j,), (1) =0 andT(i,j=N+1t)=1. We measurd(t) at the center
' . o . of the lattice as a function of time after the system reaches
whereD is an effective diffusivity, and,j=1,... N. One  the steady state. The scalar differeriEgt) is defined as

should not identifyD with the molecular diffusivity since, by T(t+ 7) - T(t). Long time series with at least 1@ata points
construction, the smallest spatial scales are not resolved. are used for calculating the statistics.

The velocity fieldu(i,j,t) is generated from the stream
funct|on_¢(|,1,t) which is modeled by a re_md(_)m G_aussmn Ill. RESULTS AND DISCUSSION
noise with zero mean and standard deviaif) identically
independently distributed at each lattice point), and is As discussed in earlier work;1"the mean scalar profile
updated every time interval,. The typical size of the ve- is almost linear in th¢ direction and has a slight dependence
locity fluctuation is given byug= ¢o/&. The correlation  on i. The one-point scalar pdf changes from Gaussian to
length of the velocity field i€. Besides the velocity corre- exponential, and to stretched exponential @sincreases
lation or update timer;, the two other time scales in the whenK is fixed. The change from Gaussian to non-Gaussian
problem are the diffusion time of the passive scalgk statistics occurs at a smaller value@asK increases. More-
=¢?/D, and the advection time of the velocity fielq,  over, the pdf is found to be the same at every lattice point
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FIG. 3. P(T,/7) for (a) C=1 with 7=0.05 (solid line), 7=0.3 (circles,
7=3 (triangles, and 7=5 (dashed ling (b) C=10 with 7=0.05 (solid

line), 7=1 (circles, =10 (triangles, and =50 (dashed ling

within the bulk of the lattice, but becomes positivéhega-

tively) skewed near the bottoitop) boundary.
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normalized scalar differenck,=T,/(T2)'2 i.e., the tem-
perature difference normalized by its standard deviation. We
shall see that the result depends crucially on whether the
parametelC is larger than 1 or not.

We first present and discuss the results@er 1. In this
regime, the pdfs of the normalized scalar differefiex,)
are found to be independent effor r ranging from O to
about7,. We plotP(X,) for C=1 andC=10, respectively
in Figs. 1 and 2. Fo€=1, P(X,) is the same foK=0.1 and
K=1, whereas fo€=10, P(X,) is Gaussian foK=0.1 and
exponential folK =1. SinceP(X,) is related to the one-point
pdf P(T) whenr is large, the latter result is consistent with
the previous findinty that P(T) is Gaussian and exponential,
respectively, forK =0.1 andK=1 whenC=10. The inde-
pendence oP(X,) on 7 leads to

(T2 =Cpn(TH, 2

whereC,,=(T2")/(T?)" is independent of. Here, the over-

To study whether the passive scalar field exhibits inter-dot indicates time derivative. When scaling behavior exists,
mittency, we consider the pdf of the scalar difference andhat is,(T2")~ r¢2n, (2) implies simple scaling{,,=n¢,.
investigate whether there is a change in its shape as the time We evaluateP(T,/7) in Fig. 3 and find that it remains
separation changes. Since we are interested in the shapetbe same for 8. 7<7y, where ry=3 and 30, respectively,
the pdf, it is more convenient to evaluate the pdf of thefor C=1 and 10. Therefore,
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FIG. 4. The scalar structure functiofi") for (a) n=2, (b) n=4, (c) n=6, and(d) n=8. The dashed lines ard(T") [see(6)].
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P(Tf) =P(T) for 7<rq. 3

Equation(3) suggests that the scalar field changes approxi-
mately linear in time between each update of the velocity

field. Another relation betweeR(T./7) and P(T) can be
obtained via their respective relationsRgX.,):

WP(T_T

T

log,, P(X))

=P(X,)=limP(X,)

7—0

=T P(T) for 7<7,. (4)

The second equality holds sinE€X ) remains the same for
7 ranges from O to close te,. Comparing(3) and(4), we
find

(TH=7(T3) for 7<1q. (5)

Equations(2) and (5) imply that for C=1, the passive
scalar exhibits simple dissipative scaling:

(T2 =(T?™ 72" for 7<r7g. (6)

This result is confirmed by the plots of the scalar structure
function, some of which are shown in Fig. 4. The correlation
time of the scalar field, corresponding to the time at which
the flat region starts, is also seen to be approximatglss
one would have guessed. _ _

Result(6) for C=1 could be put in perspective using the Elgii{ng?s) pcd:fso_olf’ Eozml"_"’“T'idsiﬁflSdbzzrsrﬁgi%_g%r(glig;n%flT'

perturbation result around thi{»)—0 limit. The velocity 3 (qotted ling, 7—30 (dot-dashed ling =100 (circles, and =300
field in our model is not correlated in space so we may taketriangles. For a given value o€, P(X,) is found to be independent éf

£(n)=0, and it becomes rapidly changing in time whg&n forK=0.1, 1, and 10, and changes from stretched-exponential to Gaussian
>1. In the(7)—0 limit, the anomalous scaling exponents s 7 Ncreases.
né,— ¢, have been fourftf to be proportional tof(7).

log,, P(X)

i . - . power-law region over about a decade can be fitted. The
Hence, forg(n):(? m_thg rapid-change .I|m|t, we anticipate exponenty,, defined by(|X,|P)~ 7#», is a measure of the
{2n=N¢=2n, which is in agreement witk6). __intermittency. From Fig. 7, we see thai, is a nonlinear
Next, we consideC <1. In this regime, the update time ¢ q1ion ofp. An interesting feature is the linear dependence
of the velocity field is longer than the diffusion time of the of u, for largep. This feature, as noted in Ref. 13, gives the
p . y . il

scalar. In the limitC<1, the velocity field is quasifrozen lowest possible rate of growth of intermittency towards
with infrequent updates. Between these infrequent updates %fmaller scale

the velocity field, the dynamics of the scalar is dominant by the idea of the infrequent update of the velocity field
diffusion. One might then expect smooth nomntermlttentbeing a rare event in the discontinuous random dynamics

scalar statistics. However, the occasional updates of the V&rompts us to suspect that the intermittency might be de-

locity field instill discontinuous randomness into the dynam'scribed by a log-Poisson distribution. Thus, wes by the
ics, which become rare events when the update time is veny a+bp+ P2 which also automati,cally gives the

long compared to the diffusion time. The interplay of the tWO|inear asymptotics whety|<1. By definition, o= ,=0

effects can lead to interesting results. Indeed, we find tha§0 there are only two independent fitting parameters which

P(X,) changes withr in this regime. In Fig. 5, we plot we choose to ba andg, and expresa andb asa=—a and
P(X,) for C=0.01 andC=0.1. In both cases, the pdf ,__51_ g2)/> respectively. The fitting form is thus
changes from stretched exponential to Gaussianr as-

creases. For a given value ©f it is found thatP(X.,) is the (i0_ o 1 (1-5% o 7
same forK = 0.1, 1, and 10. The change in shape or form of Mp =2 2 P B ™
the pdf with 7 indicates that the statistics are different at

different time scales and the passive scalar field is thus in"flnd can be seen to describe the expopgnquite well (see

termittent. It is interesting to note that this change in shape o'f:'g' 7. Th? good fit ofup, by (7) confirms that the statistics
T . .—of 7., defined by
the pdf is similar to that of an active scalar observed in
turbulent convection experiments. T,
To quantify the intermittency, we study the depen- ™=
dence of the moment§/X,|"). Some of the plots foiIC
=0.1 are shown in Fig. 6. As can be seen, only a shorwith

®
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T, p+1 0.25

|TJ@Enmﬂ—L—l, (9) ‘
p—ee (| T")

can be given by a log-Poisson distributithwe note that

log-Poisson statistics have been reported for a passive scali 025

in realistic flows??

IV. SUMMARY

We have studied numerically the intermittency problem
of a passive scalar advected by a random incompressibl -1
velocity field using a two-dimensional lattice model. To in-
vestigate the effect of an advecting velocity field that has a -5
finite correlation time, the random stream function is updated
only every certain finite time interval. We find that when the 15, 1 2 3 4 5
diffusion time is comparable to or longer than the update P
time, the passive scalar exhibits dissipative scaling that could
be understood using the perturbation result for the Kraichnan

model around _a S_mO_Oth scalar field. . i FIG. 7. A plot of u, as a function op for C=0.1. The solid line is a fit by
The_ more intriguing r_es_ult of our work IS the dISCOVQI‘y the form (7). The fitted values of and 8 are, respectively, 1.13 and 0.39.
of the intermittency exhibited by the passive scalar fieldThe inset shows an expanded view for p<2.
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