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Intermittency of a passive scalar advected by a quasifrozen velocity field
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We use a two-dimensional lattice model to study the intermittency problem of a passive scalar
advected by a velocity field of finite correlation time. The stream function generating the
incompressible velocity field is modeled by a random Gaussian noise that is identically
independently distributed at each lattice point and is updated every certain finite time interval. A
fixed scalar difference is maintained across one direction of the lattice. There are three time scales
in the problem: the correlation or update time of the velocity fieldtc , the diffusion time of the scalar
tdiff , and the advection time of the velocity fieldtadv. Interesting behavior is observed when
tdiff,tc . In this regime the passive scalar field is found to be intermittent while its dynamics
between the updates of the velocity field is dominated by diffusion. The intermittency can be
described by log-Poisson statistics and is independent of the ratiotc /tadv. On the other hand, the
passive scalar field exhibits dissipative scaling and is thus nonintermittent whentdiff>tc . © 1999
American Institute of Physics.@S1070-6631~99!00408-0#
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I. INTRODUCTION

A major problem in turbulence theory is to understa
the statistical properties of the inertial range, the range
length scales that are smaller than those of energy input
larger than those affected directly by molecular dissipati
Kolmogorov’s seminal work in 19411 predicted simple
power-law scaling for the velocity structure functions wh
the separating distance is within the inertial range, and
scaling exponent isn/3 for the structure function of ordern.
Power-law behavior has been confirmed by experime
measurements but there has been evidence that the sc
exponents are different fromn/3. Such a deviation is known
as anomalous scaling and reveals that a turbulent velo
field is intermittent. The intermittency manifests itself as
change in shape or form of the probability density functi
~pdf! of the velocity difference with the separating distanc

The inertial-range dynamics of an advected passive
lar is believed to be more tractable theoretically. Much rec
effort2–12 has been devoted to the study of the Kraichn
model13 in which the advecting velocity field is incompres
ible and rapidly changing or delta-correlated in time. In th
rapid-change limit, the effect of the velocity field on th
passive scalar is described solely by an eddy diffusiv
Moreover, any equal-time multipoint correlation function
the scalar satisfies a closed linear differential equatio14

which renders an analytical study of the inertial-range pr
erties possible. In this model, the eddy diffusivity was tak
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to have a power-law scaling with exponent 0,z(h),2. The
second-order scalar structure function was found to exh
power-law scaling with exponentz2522z(h).13 The scal-
ing of the higher-order structure functions has been stud
by perturbation theory around three limiting cases:~i! infinite
space dimensionality,2,9 ~ii ! smooth scalar fieldz(h)→0,5,6

and ~iii ! smooth velocity fieldz(h)→2.10 Anomalous scal-
ing has been found which is understood to result from
dominance of the homogeneous solutions of the differen
equation.

A velocity field that is delta-correlated in time is no
physical. In any realistic turbulent flow, the velocity field h
a finite correlation time. However, analytical simplicit
would be lost when we move away from the rapid-chan
limit.

In this paper, we report our numerical study of the inte
mittency problem of a passive scalar when the advec
velocity field has a finite correlation time. We use a tw
dimensional lattice model15–17 in which the stream function
generating the incompressible velocity field is modeled b
random Gaussian noise that is identically independently
tributed at each lattice point and is updated every cer
finite time interval. The velocity field remains the sam
within the time intervals between the updates and thus h
finite correlation time equals to the time between update

This model is simple to study numerically and has be
found to produce interesting results in earlier studies. It w
found15 that the passive scalar fluctuation becomes n
Gaussian for a certain range of parameters of the mo
Moreover, such a change was shown16 to be independent o
the statistics prescribed for the velocity field. More recen
with the stream function suitably modified, the effects of
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large-scale mean circulating flow on the passive scalar
tistics have been studied.17

In the present study, we focus on the problem of int
mittency and study the statistics of the passive scalar dif
ence at the center of the lattice as the parameters of
model are varied. There are three time scales in the prob
the correlation or update time of the velocity fieldtc , the
diffusion time of the passive scalartdiff , and the advection
time of the velocity fieldtadv. We find that the passive scala
is intermittent whentdiff,tc in that the pdf of the scala
difference changes its shape with the time separationt for
t,tc . Moreover, the intermittency can be described by lo
Poisson statistics and is independent of the ratiotc /tadv. On
the other hand, the passive scalar field exhibits dissipa
scaling and is thus nonintermittent whentdiff>tc .

II. MODEL

The two-dimensional lattice model that we use was d
cussed in Refs. 15–17 so we shall only outline the m
points here. We solve numerically the discrete advecti
diffusion equation for the scalar fieldT( i , j ,t) on a N3N
square lattice of spacingj:

]T~ i , j ,t !

]t
1u~ i , j ,t !•¹ i j T~ i , j ,t !5D¹ i j

2 T~ i , j ,t !, ~1!

whereD is an effective diffusivity, andi , j 51, . . . ,N. One
should not identifyD with the molecular diffusivity since, by
construction, the smallest spatial scales are not resolved

The velocity fieldu( i , j ,t) is generated from the stream
function f( i , j ,t) which is modeled by a random Gaussi
noise with zero mean and standard deviationf0 , identically
independently distributed at each lattice point (i , j ), and is
updated every time intervaltc . The typical size of the ve-
locity fluctuation is given byu05f0 /j. The correlation
length of the velocity field isj. Besides the velocity corre
lation or update timetc , the two other time scales in th
problem are the diffusion time of the passive scalartdiff

5j2/D, and the advection time of the velocity fieldtadv

FIG. 1. The pdfs of normalized scalar differenceP(Xt) for C51 andK
51. P(Xt) is the same forK 5 0.1 and 1, and is independent oft for 0
,t,10.
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5j/u0 . Thus, two independent dimensionless paramete
can be constructed which are taken to beC[tdiff /tc and
K[tc /tadv.

Equation~1! is integrated in time using the finite differ-
ence method with a small time stepDt50.005. We takej
51 andN531. Such a relatively smallN is sufficient as we
shall evaluate the statistics by averaging over time. T
stream function is updated everym520 000 time steps at
each lattice site so thattc5mDt5100. The boundary condi-
tion for both the velocity and the scalar fields is periodic i
the i direction. In thej direction, the velocity field is no-slip
on both the ‘‘top’’ and ‘‘bottom’’ boundaries, while the sca-
lar field satisfies a fixed-difference condition:T( i , j 50,t)
50 andT( i , j 5N11,t)51. We measureT(t) at the center
of the lattice as a function of time after the system reach
the steady state. The scalar differenceTt(t) is defined as
T(t1t)2T(t). Long time series with at least 107 data points
are used for calculating the statistics.

III. RESULTS AND DISCUSSION

As discussed in earlier work,15–17the mean scalar profile
is almost linear in thej direction and has a slight dependenc
on i. The one-point scalar pdf changes from Gaussian
exponential, and to stretched exponential asC increases
whenK is fixed. The change from Gaussian to non-Gaussi
statistics occurs at a smaller value ofC asK increases. More-
over, the pdf is found to be the same at every lattice po

FIG. 2. The pdfs of normalized scalar differenceP(Xt) for: ~a! C510, K
50.1 and~b! C510, K51. P(Xt) is independent oft for 0,t<300. The
symbols used in~b! are the same as those in~a!.
IP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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within the bulk of the lattice, but becomes positively~nega-
tively! skewed near the bottom~top! boundary.

To study whether the passive scalar field exhibits int
mittency, we consider the pdf of the scalar difference a
investigate whether there is a change in its shape as the
separation changes. Since we are interested in the sha
the pdf, it is more convenient to evaluate the pdf of t

FIG. 3. P(Tt /t) for ~a! C51 with t50.05 ~solid line!, t50.3 ~circles!,
t53 ~triangles!, and t55 ~dashed line!; ~b! C510 with t50.05 ~solid
line!, t51 ~circles!, t510 ~triangles!, andt550 ~dashed line!.
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normalized scalar differenceXt[Tt /^Tt
2&1/2, i.e., the tem-

perature difference normalized by its standard deviation.
shall see that the result depends crucially on whether
parameterC is larger than 1 or not.

We first present and discuss the results forC>1. In this
regime, the pdfs of the normalized scalar differenceP(Xt)
are found to be independent oft for t ranging from 0 to
abouttc . We plot P(Xt) for C51 andC510, respectively
in Figs. 1 and 2. ForC51, P(Xt) is the same forK50.1 and
K51, whereas forC510, P(Xt) is Gaussian forK50.1 and
exponential forK51. SinceP(Xt) is related to the one-poin
pdf P(T) whent is large, the latter result is consistent wi
the previous finding15 thatP(T) is Gaussian and exponentia
respectively, forK50.1 andK51 whenC510. The inde-
pendence ofP(Xt) on t leads to

^Tt
2n&5C2n ^Tt

2&n, ~2!

whereC2n5^Ṫ2n&/^Ṫ2&n is independent oft. Here, the over-
dot indicates time derivative. When scaling behavior exis
that is,^Tt

2n&;tz2n, ~2! implies simple scaling:z2n5nz2 .
We evaluateP(Tt /t) in Fig. 3 and find that it remains

the same for 0,t,td , wheretd'3 and 30, respectively
for C51 and 10. Therefore,
FIG. 4. The scalar structure functions^Tt
n& for ~a! n52, ~b! n54, ~c! n56, and~d! n58. The dashed lines aretn^Ṫn& @see~6!#.
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PS Tt

t D5P~ Ṫ! for t,td . ~3!

Equation~3! suggests that the scalar field changes appr
mately linear in time between each update of the veloc
field. Another relation betweenP(Tt /t) and P(Ṫ) can be
obtained via their respective relations toP(Xt):

A^Tt
2&

t
PS Tt

t D5P~Xt!5 lim
t→0

P~Xt!

5A^Ṫ2& P~ Ṫ! for t,tc . ~4!

The second equality holds sinceP(Xt) remains the same fo
t ranges from 0 to close totc . Comparing~3! and ~4!, we
find

^Tt
2&5t2 ^Ṫ2& for t,td . ~5!

Equations~2! and ~5! imply that for C>1, the passive
scalar exhibits simple dissipative scaling:

^Tt
2n&5^Ṫ2n& t2n for t,td . ~6!

This result is confirmed by the plots of the scalar struct
function, some of which are shown in Fig. 4. The correlati
time of the scalar field, corresponding to the time at wh
the flat region starts, is also seen to be approximatelytc as
one would have guessed.

Result~6! for C>1 could be put in perspective using th
perturbation result around thez(h)→0 limit. The velocity
field in our model is not correlated in space so we may t
z(h)50, and it becomes rapidly changing in time whenC
@1. In thez(h)→0 limit, the anomalous scaling exponen
nz22z2n have been found6,7 to be proportional toz(h).
Hence, forz(h)50 in the rapid-change limit, we anticipat
z2n5nz252n, which is in agreement with~6!.

Next, we considerC,1. In this regime, the update tim
of the velocity field is longer than the diffusion time of th
scalar. In the limitC!1, the velocity field is quasifrozen
with infrequent updates. Between these infrequent update
the velocity field, the dynamics of the scalar is dominant
diffusion. One might then expect smooth nonintermitte
scalar statistics. However, the occasional updates of the
locity field instill discontinuous randomness into the dyna
ics, which become rare events when the update time is v
long compared to the diffusion time. The interplay of the tw
effects can lead to interesting results. Indeed, we find
P(Xt) changes witht in this regime. In Fig. 5, we plot
P(Xt) for C50.01 and C50.1. In both cases, the pd
changes from stretched exponential to Gaussian ast in-
creases. For a given value ofC, it is found thatP(Xt) is the
same forK 5 0.1, 1, and 10. The change in shape or form
the pdf with t indicates that the statistics are different
different time scales and the passive scalar field is thus
termittent. It is interesting to note that this change in shap
the pdf is similar to that of an active scalar observed
turbulent convection experiments.18

To quantify the intermittency, we study thet depen-
dence of the momentŝuXtun&. Some of the plots forC
50.1 are shown in Fig. 6. As can be seen, only a sh
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power-law region over about a decade can be fitted. T
exponentmp , defined by^uXtup&;tmp, is a measure of the
intermittency. From Fig. 7, we see thatmp is a nonlinear
function ofp. An interesting feature is the linear dependen
of mp for largep. This feature, as noted in Ref. 13, gives t
lowest possible rate of growth of intermittency towar
smaller scale.

The idea of the infrequent update of the velocity fie
being a rare event in the discontinuous random dynam
prompts us to suspect that the intermittency might be
scribed by a log-Poisson distribution. Thus, we fitmp by the
form a1bp1abp19–21 which also automatically gives th
linear asymptotics whenubu,1. By definition,m05m250,
so there are only two independent fitting parameters wh
we choose to bea andb, and expressa andb asa52a and
b52a(12b2)/2, respectively. The fitting form is thus

mp
~fit!5aF12

~12b2!

2
p2bpG ~7!

and can be seen to describe the exponentmp quite well ~see
Fig. 7!. The good fit ofmp by ~7! confirms that the statistics
of pt , defined by

pt[
uTtu

uTtu(`)
~8!

with

FIG. 5. The pdfs of normalized scalar differenceP(Xt) for ~a! C50.01,
K51 and~b! C50.1, K51. The symbols used are:t50.05 ~solid line!, t
53 ~dotted line!, t530 ~dot-dashed line!, t5100 ~circles!, and t5300
~triangles!. For a given value ofC, P(Xt) is found to be independent ofK
for K 5 0.1, 1, and 10, and changes from stretched-exponential to Gaus
ast increases.
IP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Thet dependence of the moments^uXtup& for C50.1: ~a! p50.1, ~b! p51, ~c! p52.5, and~d! p54. A short power-law region over about a deca
is fitted ~solid line!.
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uTtu(`)[ lim
p→`

^uTtup11&

^uTtup&
, ~9!

can be given by a log-Poisson distribution.20 We note that
log-Poisson statistics have been reported for a passive s
in realistic flows.22

IV. SUMMARY

We have studied numerically the intermittency proble
of a passive scalar advected by a random incompress
velocity field using a two-dimensional lattice model. To i
vestigate the effect of an advecting velocity field that ha
finite correlation time, the random stream function is upda
only every certain finite time interval. We find that when t
diffusion time is comparable to or longer than the upd
time, the passive scalar exhibits dissipative scaling that co
be understood using the perturbation result for the Kraich
model around a smooth scalar field.

The more intriguing result of our work is the discove
of the intermittency exhibited by the passive scalar fi
Downloaded 08 Jan 2008 to 137.110.192.168. Redistribution subject to A
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FIG. 7. A plot ofmp as a function ofp for C50.1. The solid line is a fit by
the form ~7!. The fitted values ofa andb are, respectively, 1.13 and 0.39
The inset shows an expanded view for 0,p,2.
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when the update time is long compared to the diffusion tim
At first sight, this seems paradoxical23 as diffusion dominates
the dynamics of the scalar field between the updates of
velocity field. However, the updates of the velocity fiel
which instill discontinuous randomness into the dynami
become rare events in this regime. Interestingly, it turns
that this latter effect leads to an intermittent passive sc
field whose intermittency is described by log-Poisson sta
tics, and is independent of the ratio of the update time to
advection time. It is interesting to understand this mechan
of generating log-Poisson intermittency and also its r
evance to physical turbulent flows. This will be explored a
reported in future publications.
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