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A B S T R A C T

Convection driven geodynamo models in rotating spherical geometry have regimes in which reversals occur. 
However, reversing dynamo models are usually found in regimes where the kinetic and magnetic energy is 
comparable, so that inertia is playing a significant role in the core dynamics. In the Earth’s core, the Rossby 
number is very small, and the magnetic energy is much larger than the kinetic energy. Here we investigate 
dynamo models in the strong-field regime, where magnetic forces have a significant effect on convection. In the 
core, the strong field is achieved by having the magnetic Prandtl number Pm small, but the Ekman number E 
extremely small. In simulations, very small E is not possible, but the strong-field regime can be reached by 
increasing Pm. However, if Pm is raised while the fluid Prandtl number Pr is fixed at unity, the most common 
choice, the Péclet number becomes small, so that the linear terms in the heat (or composition) equation 
dominate, which is also far from Earth-like behaviour. Here we increase Pr and Pm together, so that nonlinearity 
is important in the heat equation and the dynamo is strong-field. We find that Earth-like reversals are possible at 
numerically achievable parameter values, and the simulations have Earth-like magnetic fields away from the 
times at which it reverses. The magnetic energy is much greater than the kinetic energy except close to the 
reversal times.

1. Introduction

The first spherical convection-driven geodynamo model to exhibit a 
reversal similar to those revealed in the paleomagnetic record was that 
of Glatzmaier and Roberts (1995a). This simulation used nominal large 
values of Prandtl number Pr = 5000 and magnetic Prandtl number Pm =

500 (Glatzmaier and Roberts, 1995b), but as hyperdiffusion was used 
the effective values of these parameters might have been different. 
Kutzner and Christensen (2002) also found dynamo models with occa-
sional reversals without the use of hyperdiffusion, with Pr = 1, Pm = 3. 
Following this work, reversing dynamo models at Pr = 1 have been 
explored further, see e.g. Driscoll and Olson (2009b) and Sprain et al. 
(2019). However, in all these Pr = 1 dynamo reversal models, the 
magnetic and kinetic energies are comparable, and inertia may play an 
important role in inducing the reversals. In the Earth’s core, the mag-
netic energy is much larger than the kinetic energy, and inertia is un-
important, except on very short length scales. Indeed, Schaeffer et al. 
(2017) say this about reversing dynamo models ‘Furthermore, we 
emphasize that, to our knowledge, no simulation with strong field (i.e. 
magnetic energy larger than kinetic energy) has ever exhibited polarity 

reversals’.
Sarson and Jones (1999) and Sarson (2000) found reversing 

dynamos when the inertial term was removed, and the momentum 
equation is solved as a diagnostic equation for the velocity u rather than 
a prognostic equation timestepping u. At the time, computers were such 
that the resolution was limited, and removing inertia entirely leaves the 
question of when it becomes negligible unanswered. So these two papers 
suggested that reversing dynamos might exist when the kinetic energy is 
small compared to the magnetic energy, the low inertia regime, but were 
not conclusive. The main purpose of this paper is to exploit the large 
increase in computer power since 1999 to further investigate, with well- 
resolved models, if reversing strong-field dynamos exist at low inertia, 
and if they have Earth-like magnetic morphology when the dipole is 
strong, as it is currently.

Glatzmaier et al. (1999) found reversals in their dynamo model, 
which were affected by the inhomogeneous boundary condition at the 
core–mantle boundary (CMB), and this could either slow down or speed 
up the reversal rate depending on whether the heat flux taken out of the 
core was enhanced at the poles or the equator. Olson et al. (2010) looked 
again at heterogeneous boundaries, using the moderate E models of 
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Driscoll and Olson (2009a) rather than the Glatzmaier-Roberts dynamo 
model, finding similar results to those of Glatzmaier et al. (1999). The 
same may well be true of the models studied here, but we have not 
explored this yet, preferring to study the simpler homogeneous case 
first.

Christensen and Aubert (2006) (see also Olson and Christensen 
(2006)) introduced the concept of the local Rossby number with Rol ≈

0.1 as the boundary between dipolar and multipolar dynamos. Earth-like 
reversing dynamos were found near this boundary. Since then, this 
boundary region has been taken as the criterion for Earth-like dynamos 
to exist. The global Rossby number can be written in terms of the 
standard dynamo parameters as Ro = ERm/Pm, E being the Ekman 
number, Rm the magnetic Reynolds number and Pm being the magnetic 
Prandtl number. For the parameters where reversal simulations are 
feasible, the local Rossby number is typically between 2 and 8 times 
larger than Ro itself. It is not practical to reduce E much below 10− 4 if 
very long runs, needed to investigate whether reversals occur, are 
required. Unless Rm is over about 50 dynamo action does not occur in 
spherical dynamo simulations, and it has to be several hundred to get a 
strong-field dynamo needed to give a realistic model. So to reduce 
inertia, the only practical option is to increase Pm and this is what we do 
here. However, if Pm is large and Pr is left at unity, the codensity 
equation is dominated by the diffusive term rather than the codensity 
advection term. This is certainly not the correct balance in planetary 
cores, and it has the effect of reducing the fluctuations introduced 
through the buoyancy. So as well as increasing Pm we also increase Pr so 
that the ratio, the Roberts number q = Pm/Pr is of order 1 or less. This 
has the effect of making the Péclet number comparable to Rm, rather 
than having a very small Péclet number. It might seem odd to study 
dynamos at large Pm and Pr since in the Earth’s core Pm is O

(
10− 6) and 

Pr is small for liquid metals though its value in the compositional driving 
case is larger. However Dormy (2016) showed that because the Ekman 
number in dynamo models is much larger than its true value, Pm needs 
to be large to achieve the strong-field regime in which Lorentz forces 
play a significant role. It is more important for the force balances that 
hold in the core to be respected than it is for Pm and Pr to have their 
correct values. Aubert (2019) has demonstrated that there is evidence 
for a one parameter family of solutions which show Earth-like behaviour 
with Pm gradually reducing with Ekman number (Pm ∼ E1/2 was sug-
gested) so that very small Pm is reached when E achieves its O

(
10− 15)

value. Here we propose that for reversing dynamos a scaling in which Pr 
reduces with E might also be appropriate, leading to a path from large to 
small Pr along which Earth-like reversal behaviour might be found.

Driscoll and Olson (2009a) looked at a range of dynamos with E ∼

10− 3 and explored where reversing dynamos occur, and Driscoll and 
Olson (2009b) considered the variation of reversal frequency with an 
evolving core model. The local Rossby number criterion highlighted the 
importance of the balance between inertia and Coriolis forces being 
appropriate for reversals to occur. This was a somewhat worrying 
development, because reversals certainly occur in the geomagnetic field 
even though the inertial forces are very small compared to the Coriolis 
forces, thus raising the issue of whether the whole picture of the geo-
dynamo being driven by convection influenced by rotation might be 
incorrect. However, Sreenivasan et al. (2014) argued that although 
inertia was significant in their Pr = 1, Pm = 5 simulations, it was 
actually the buoyancy force rather than inertia that was breaking down 
the dipole dominance and allowing the dynamo to reverse. We are 
building on this picture by letting Pr increase, so that nonlinear advec-
tion in the buoyancy equation becomes important.

Christensen et al. (2010) gives some parameters which generate 
models with magnetic fields similar to that at the Earth’s CMB, but 
which do not reverse. Some of these models satisfied a particular set of 
criteria which are satisfied by the current geomagnetic field. These 
criteria can be used to decide whether it is Earth-like or not, providing a 
useful simple test of whether the generated field looks like the 

geomagnetic field at the current time. We take the view that for a 
reversing geodynamo model to be described as Earth-like, there must be 
some times when the field satisfies the Christensen et al. (2010) criteria.

Sheyko et al. (2016) found reversing (almost periodic) dynamos at 
very low E which had the form of dynamo waves. Inertia is important in 
these models, because it drives a zonal flow, and the zonal flow stimu-
lates the α − ω dynamo waves. Because of the dynamo-wave origin, the 
reversals were rather regular, almost periodic, which is quite unlike the 
behaviour of geomagnetic reversals, which is more like that of a Poisson 
process (Cox, 1968; Constable, 2000). Sprain et al. (2019) gave an 
assessment of how Pr = 1 dynamos have performed compared to 
paleomagnetic data, considering whether the reversal behaviour was 
compatible with the geomagnetic reversal record or not. An important 
criterion was the amount of time spent during the reversal process 
compared with the average time between reversals. For the geomagnetic 
field this ratio is quite small, as the average interval between reversals is 
around 3 × 105 years, while the duration of a reversal is generally less 
than 104 years.

There have also been a number of stochastic models of geomagnetic 
reversals, of varying degrees of sophistication. In these models, the 
fluctuations are added by an explicit random term pushing the solution 
off a steady dipole. An early one is Schmitt et al. (2001), which is based 
on the idea of a particle trapped in a potential well with two symmetric 
minima and a local maximum at the origin. The particle is randomly 
forced, and with small forcing remains near one of the minima. An 
exceptionally large fluctuation can get the particle over the central 
maximum corresponding to a reversal. By tuning the forcing, the sta-
tistics of geomagnetic reversals can be reproduced. More sophisticated 
models are Benzi and Pinton (2010), Meduri and Wicht (2016) and 
Carbone et al. (2020), (see also references within). Molina-Cardin et al. 
(2021) propose a stochastic model that reproduces the temporal asym-
metry of geomagnetic reversals, with slower decaying rates before the 
reversal and faster growing rates after it. As we see below, numerical 
dynamo models also have random fluctuations, and occasionally reverse 
like the stochastic models. However, the stochastic models are essen-
tially just a description of the observed behaviour, and they are not able 
to give much insight into the physics of why reversals occur, and 
whether they are likely to occur on other planets or are unique to the 
geodynamo.

In section 2 we discuss the model equations and the diagnostic 
quantities we use to analyse the results. In section 3 we give the results 
for models driven by a fixed heat flux through the core, and in section 4 
we discuss models based upon compositional convection, where a 
buoyancy flux at the inner core boundary is mixed into the core interior. 
In section 5 we compare our high Pr dynamos with a Pr = 1 case, dis-
cussing possible reasons why the high Pr dynamos reverse more readily 
than the Pr = 1 case considered. Section 6 contains the discussion and 
conclusions.

2. Equations solved

2.1. Dimensional Boussinesq equations with codensity Cʹ

The equations on which our dynamo simulations are based are 

ρ
(

Du
Dt

+ 2Ω × u
)

= − ∇p’ + ρgC’ r̂ +
1
μ (∇ × B) × B + ρν∇2u, (1) 

∂B
∂t

= ∇×(u×B)+ η∇2B, (2) 

DCʹ

Dt
= κ∇2Cʹ −

S
ρ, (3) 

∇⋅u = 0, ∇⋅B = 0. (4) 
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Here u is the fluid velocity, Ω the rotation vector of the Earth, pʹ the 
pressure, ρ the density, g the gravity, which increases linearly with r, 
consistent with the almost constant density assumption, Cʹ is the 
codensity, the mass fraction of light element in the compositional case, 
and proportional to temperature for thermal convection. μ = 4π ×

10− 7 Hm− 1 is the permeability of free space, B is the magnetic field, ν the 
kinematic viscosity, η the magnetic diffusivity, κ the mass diffusion co-
efficient of the light material in the compositional case and the thermal 
diffusivity in the thermal convection case, and S is the sink (or source) 
term. κ is much lower in the compositional case than it is in the thermal 
case.

These are the standard Boussinesq dynamo equations for a spherical, 
convecting, rotating shell in the codensity formulation. We consider two 
cases, motivated by previous work on dynamo reversals (Sprain et al., 
2019). The first corresponds to thermal convection driven by a fixed flux 
of heat through the inner core boundary (ICB), and leaving at the CMB. 
There is no internal heat source in this model, so the time-averaged total 
heat flux entering the ICB equals the time-averaged heat flux passing 
through the CMB. Following Sprain et al. (2019) we denote this case as 
FFFF. The second model we consider is motivated by compositional 
convection. Here a flux of light element is released at the ICB as the outer 
core solidifies, and this light material is mixed into the outer core. There 
is therefore a sink of buoyancy in the interior, which balances the input 
light element flux released at the ICB as outer core material freezes, so 
on average there is no flux of light material through the CMB. We denote 
this case of compositional convection boundaries by CCB.

2.2. Dimensionless Boussinesq equations

The unit of length is d = ro − ri, ro being the outer core radius and ri 

being the inner core radius, and the unit of time is d2/η, the magnetic 
diffusion time. The unit of magnetic field is (μρΩη)1/2. In the thermal 
convection case Cʹ = αT, where α is the coefficient of thermal expansion 
and T is the temperature, then the unit of Cʹ is καβd/η, where − β is the 
temperature gradient at r = ro. In the compositional case, the unit of Cʹ is 
Sd2

/ρη. The unit of pressure pʹ is ρΩη, the unit of density is ρ and ẑ is the 
unit vector parallel to the rotation axis. The dimensionless equations are, 
in the form solved in the code, 

Du
Dt

+ 2
Pm
E

ẑ × u = −
Pm
E
∇pʹ +

(
RaPm2

Pr

)

Cʹr

+
Pm
E

(∇ × B) × B + Pm∇2u,
(5) 

∂B
∂t

= ∇×(u×B)+∇2B, (6) 

Pr
Pm

DCʹ

Dt
= ∇2Cʹ, FFFF case, (7) 

Pr
Pm

DCʹ

Dt
= ∇2Cʹ −

Pr
Pm

, CCB case, (8) 

∇⋅u = 0, ∇⋅B = 0. (9) 

The dimensionless parameters are the Ekman number, the Prandtl 
number and the magnetic Prandtl number, 

E =
ν

Ωd2, Pr =
ν
κ
, Pm =

ν
η, (10) 

and the Rayleigh numbers in the fixed flux thermal convection model 
and the compositional convection model are respectively 

Ra =
g0αβd5

roην , Ra =
g0Sd6

roρηκν. (11) 

Here g0 is gravity at the CMB (r = ro). Note there is variation in the 
definition of these parameters in the literature, particularly the Rayleigh 
number, so when comparing results using different codes it is important 
to ensure that equivalent parameter values are used. The dimensionless 
velocity is in magnetic Reynolds number units, so that the root mean 
square value of |u|, the dimensionless velocity over the outer core, is Rm. 
The magnetic field is in Elsasser number units, so the root mean square 
value of ∣B∣ is the Elsasser number. The magnetic energy is output in 
units of ρη2/d2, as is the kinetic energy, so magnetic energy ME and the 
kinetic energy KE are 

ME =

∫

V

Pm
2E

|B|2 r2sinθdϕdθdr,

KE =

∫

V

1
2
|u|2 r2sinθdϕdθdr.

(12) 

The dimensionless volume V = 4π
(
r3
o − r3

i
)
/3d3 = 14.5988 for the 

standard radius ratio λ = ri/ro = 0.35, so the magnetic Reynolds num-
ber, Rm, the Péclet number Pe, the global Rossby number Ro, and the 
Elsasser number Λ, which all play a significant role in this problem, are 

Rm =

(
2KE
V

)1/2

, Pe =
RmPr
Pm

,

Ro =
ERm
Pm

, Λ =

(
E

Pm
2ME

V

)1/2

.

(13) 

We also define the local Rossby number Rol (Christensen and Aubert, 
2006), 

Rol =
lu
π Ro, lu =

∑
ll〈ul⋅ul〉

2KE
, (14) 

where the sum is over the spherical harmonic contributions, ul is the 
component of the velocity of degree l and the angle brackets denote the 
volume integral over the outer core, so that lu is a weighted mean 
spherical harmonic degree, representing a ‘typical’ wavenumber of the 
velocity field.

2.3. Boundary conditions

The boundary conditions are no-slip, so u = 0 at the CMB and ICB, 
and electrically insulating, so B matches onto a current-free potential 
field inside the inner core and outside the CMB in all runs. Two types of 
codensity boundary conditions were used. The runs in Tables 1 and 2
used fixed flux FFFF boundary conditions, so the codensity fluctuations 
satisfy ∂Cʹ/∂r = 0 at the ICB and CMB for all spherical harmonics except 
for l = m = 0, and there is no source, so the total flux through the ICB 
equals that through the CMB on average. For the l = m = 0 component 
we set the dimensionless codensity gradient to − Pr/λ2Pm on the ICB and 
then the zero source means that on average (but not instantaneously) the 
CMB temperature gradient is − Pr/Pm. Additionally we impose the l =
m = 0 component of the codensity to be zero on the CMB, to fix the 
arbitrary constant in Cʹ that would be present if flux conditions are used 
exclusively.

The runs in Table 3 used boundary conditions mimicking composi-
tional convection, the CCB boundaries, where ∂Cʹ/∂r = 0 at the ICB and 
CMB for every l,m spherical harmonic coefficient except l = m = 0. For 
the component l = m = 0, the compositional flux on the ICB equals the 
total absorbed by the sink, so 

∂Cʹ

∂r
= −

Pr
Pm

1 − λ3

3λ2(1 − λ)
. (15) 

The other boundary condition is that the l = m = 0 component of Cʹ is 
zero at the CMB as with the FFFF conditions.
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2.4. Conversion to dimensional units

The core radii are ro = 3.485 × 106 m, ri = 1.220 × 106 m, so the 
unit of length, d = 2.265 × 106 m. Pozzo et al. (2012) give the electrical 

conductivity as 1.1 × 106 S m− 1. Since η = 1/σμ, η = 0.723 m2 s− 1. Note 
this value is lower than the value of 2 m2 s− 1 commonly used before 
2012, and some believe the older value of 2 m2 s− 1 may be correct. 
However, we adopt η = 0.723 m2 s− 1 here. The diffusion time d2/η =

Table 1 
Runs with fixed flux boundaries and no source, at E = 2 × 10− 4 and Pm = 40. Rayleigh number Ra and modified Rayleigh number R , Prandtl number Pr and Roberts 
number q are shown. Rm is the magnetic Reynolds number, Pe is the Péclet number, Dip is the dipolarity, Ro is the Rossby number and τ is the number of diffusion times 
for the whole run. Reversal: N means no reversal, M means a multipolar dynamo with many reversals but no Earth-like fields, E means a reversing dynamo with Earth- 
like magnetic fields for some time intervals. N* means the dipole component just changed sign briefly, but then returned to its original polarity. All runs in this table 
used a resolution of Nr × Nl × Nm = 160 × 128 × 128.

Run Pr Ra R q Rm Pe Dip Ro τ Reversal

A1 20 2.5× 107 10,000 2 354 177 0.105 1.77× 10− 3 3.03 N
A2 20 4.0× 107 16,000 2 450 225 0.087 2.25× 10− 3 2.24 N
B1 30 3.0× 107 8000 1.333 331 248 0.101 1.66× 10− 3 5.86 N
B2 30 5.0× 107 13,333 1.333 440 330 0.060 2.20× 10− 3 8.35 N*
C1 35 3.0× 107 6857 1.143 315 276 0.095 1.57× 10− 3 8.97 N
C2 35 4.0× 107 9143 1.143 364 318 0.157 1.82× 10− 3 3.35 N
C3 35 4.5× 107 10,286 1.143 404 353 0.051 2.02× 10− 3 14.23 E
C4 35 5.0× 107 11,429 1.143 424 371 0.049 2.12× 10− 3 11.17 M
C5 35 6.0× 107 13,714 1.143 465 407 0.035 2.32× 10− 3 5.87 M
D1 40 2.0× 107 4000 1 239 239 0.119 1.19× 10− 3 10.89 N
D2 40 3.0× 107 6000 1 315 315 0.073 1.58× 10− 3 20.94 E
D3 40 4.0× 107 8000 1 361 361 0.063 1.80× 10− 3 11.09 E
D4 40 4.5× 107 9000 1 394 394 0.033 1.97× 10− 3 2.46 M
D5 40 5.0× 107 10,000 1 401 401 0.041 2.01× 10− 3 10.71 M
D6 40 6.0× 107 12,000 1 437 437 0.030 2.18× 10− 3 7.71 M
D7 40 8.0× 107 16,000 1 484 484 0.037 2.41× 10− 3 3.60 M
E1 50 1.0× 107 1600 0.8 155 194 0.151 0.77× 10− 3 9.17 N
E2 50 1.2× 107 1920 0.8 168 210 0.145 0.84× 10− 3 4.38 N
E3 50 1.25× 107 2000 0.8 200 250 0.047 1.00× 10− 3 11.09 M
E4 50 1.5× 107 2400 0.8 217 271 0.055 1.09× 10− 3 9.28 M
E5 50 2.0× 107 3200 0.8 247 309 0.052 1.23× 10− 3 7.34 M
E6 50 3.0× 107 4800 0.8 299 374 0.027 1.49× 10− 3 5.62 M
E7 50 4.0× 107 6400 0.8 340 425 0.020 1.70× 10− 3 3.22 M
F1 80 3.0× 107 3000 0.5 242 484 0.012 1.21× 10− 3 2.76 M
F2 80 6.0× 107 6000 0.5 312 624 0.030 1.56× 10− 3 2.86 M
F3 80 8.0× 107 8000 0.5 345 690 0.018 1.73× 10− 3 2.61 M
F4 80 10.0× 107 10,000 0.5 375 750 0.041 1.87× 10− 3 4.16 M

Table 2 
Runs with fixed flux boundaries and no source, at E = 10− 4 and Pm = 40. Rayleigh number Ra and modified Rayleigh number R , Prandtl number Pr and Roberts 
number q are shown. Rm is the magnetic Reynolds number, Pe is the Péclet number, Dip is the dipolarity, Ro is the Rossby number and τ is the number of diffusion times 
for the whole run. Reversal: N means no reversal, M means a multipolar dynamo with many reversals but no Earth-like fields, E means a reversing dynamo with Earth- 
like magnetic fields for some time intervals. N* means the dipole component just changed sign briefly, but then returned to its original polarity. All runs in this table 
used a resolution of Nr × Nl × Nm = 160 × 128 × 128.

Run Pr Ra R q Rm Pe Dip Ro τ Reversal

G1 40 6.0× 107 6000 1 316 316 0.123 0.79× 10− 3 1.96 N
H1 50 7.0× 107 5600 0.8 315 394 0.116 0.79× 10− 3 4.08 N
H2 50 1.0× 108 8000 0.8 389 486 0.085 0.97× 10− 3 2.11 N
H3 50 1.2× 108 9600 0.8 421 526 0.081 1.05× 10− 3 2.49 N
H4 50 1.5× 108 12,000 0.8 466 582 0.073 1.16× 10− 3 3.14 N
H5 50 2.5× 108 20,000 0.8 588 735 0.054 1.47× 10− 3 1.94 E
I1 55 1.0× 108 7272 0.727 370 509 0.087 0.92× 10− 3 1.15 N
I2 55 1.5× 108 10,909 0.727 449 618 0.072 1.12× 10− 3 5.04 N
I3 55 2.5× 108 18,182 0.727 562 773 0.056 1.41× 10− 3 6.09 E
J1 60 5.0× 107 3333 0.667 253 379 0.121 0.63× 10− 3 1.74 N
J2 60 5.5× 107 3667 0.667 258 387 0.129 0.64× 10− 3 2.81 N
J3 60 5.75× 107 3833 0.667 310 465 0.029 0.77× 10− 3 3.73 M
J4 60 6.0× 107 4000 0.667 314 471 0.038 0.78× 10− 3 4.81 M
J5 60 8.0× 107 5333 0.667 354 531 0.031 0.88× 10− 3 2.21 M
J6 60 1.0× 108 6667 0.667 389 583 0.020 0.97× 10− 3 8.33 M
J7 60 1.5× 108 10,000 0.667 434 651 0.069 1.09× 10− 3 6.56 E
J8 60 2.5× 108 16,667 0.667 542 813 0.056 1.35× 10− 3 6.11 E
K1 70 1.5× 108 8571 0.571 407 713 0.066 1.02× 10− 3 6.01 E
K2 70 2.0× 108 11,429 0.571 461 807 0.058 1.15× 10− 3 9.34 E
K3 70 3.0× 108 17,143 0.571 540 946 0.060 1.35× 10− 3 6.72 E
L1 80 2.5× 108 12,500 0.5 468 936 0.066 1.17× 10− 3 3.38 N*
L2 80 3.5× 108 17,500 0.5 537 1074 0.065 1.34× 10− 3 2.84 N
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7.096 × 1012 s, which is 225,000 years.
To get the magnetic field unit, we need ρ. The mass of the whole core 

is 1.941 × 1024 kg, so the mean density of the core is 10,950 kg m− 3, and 
since the inner core is small we take this as the mean density of the outer 
core. Ω = 7.29 × 10− 5 s− 1, so the unit of magnetic field is 

(Ωμρη)1/2
= 0.85mT. (16) 

A typical estimate for the velocity in the core is U0 = 5 × 10− 4 m s− 1, so 
the magnetic Reynolds number U0d/η ≈ 1600. This is high for numerical 
simulations, and we mostly work in the range Rm : 200 − 1000. Note 
that the effectively larger value of η than the true value may have the 
effect of reducing the effective diffusive timescale in our simulations, so 
that although a simulation of one diffusion time is nominally 225,000 
years it might really only represent a somewhat shorter time.

2.5. Dipole moment

At the Earth’s surface, 

Br =
μ
4π

2m0cosθ
r3
e

, (17) 

where m0 is the dipole moment in A m2, and Br is the radial field due to 
the axial dipole component only, and re is the radius of the Earth. The 
magnetic field at the Earth’s surface from the axial dipole Gauss coef-
ficient g10 is 

Br = 2g10cosθ, (18) 

so the dipole moment can be expressed in terms of g10 as 

m0 =
4π
μ re

3g10 = 7.614× 1022Am2 (19) 

setting re = 6.371 × 106 m and g10 = 29,442 nT which is the value in 
IGRF for the year 2015. Note that if the geomagnetic field was purely 
dipolar, the radial field at the pole at the Earth’s surface would be 5.89 ×

10− 5 T, not far off its actual value, and 3.6 × 10− 4 T at the pole of the 
CMB. Actually the CMB field is only roughly dipolar, but this is a crude 
estimate of the CMB field strength. In the results below, since the CMB is 
the upper boundary of our computation, we show the dimensionless 
value of g10 evaluated at the CMB rather than the Earth’s surface, where 
g10
⃒
⃒
cmb =

(
r3
e /r3

o
)
g10
⃒
⃒
surf . This gives g10

⃒
⃒
cmb = 1.8 × 10− 4 T in the year 

2015, and using eq. (16) the dimensionless g10
⃒
⃒
cmb = 0.2116 then. This 

result does depend on the somewhat uncertainly known value of η; with 
η = 2 m2 s− 1, then the dimensionless dipole coefficient was 0.127 in 
2015. These values are in the right ball-park looking at the results figures 
below, which is quite surprising given how far off the dimensionless 
parameters are.

A further point to bear in mind is that the current geomagnetic field 
has a strong dipole compared to that found by paleomagnetic data, the 
current value being approximately twice the average value over the last 
160 million years (Juarez et al., 1998).

2.6. Alternative form of the dimensionless Boussinesq equations

An alternative but equivalent set of equations is 

Em
Du
Dt

+2ẑ ×u = − ∇pʹ+R Cʹr+(∇×B)×B+E∇2u, (20) 

∂B
∂t

= ∇×(u×B)+∇2B, (21) 

DCʹ

Dt
= q∇2Cʹ, FFFF;

DCʹ

Dt
= q∇2Cʹ − 1, CCB; (22) 

∇⋅u = 0, ∇⋅B = 0. (23) 

Here 

R = RaE
Pm
Pr

, Em =
E

Pm
, q =

Pm
Pr

. (24) 

There is a one-to-one correspondence between [Ra,E,Pr, Pm] and 
[R ,E, Em, q]. Here R is the rotationally modified Rayleigh number, Em is 
the magnetic Ekman number η/Ωd2, and q is the Roberts number κ/η 
(small in the Earth’s core).

The advantage of this formulation is that it makes it clearer how 
balance between the Coriolis, Lorentz and buoyancy forces (more pre-
cisely between the curls of these forces, MAC balance) is to be achieved. 
Clearly Em and E must be small. Note that inertia scales like (u⋅∇)u, and 
the dimensionless u is comparable with Rm which has to be at least 200 
in Earth-like dynamos, so it is EmRm = Ro, the Rossby number which 
must be small. Actually, since there is a derivative in the inertial term, 
and it is the vorticity balance from eq. (20) that must be respected, Ro 
must be quite small for inertia to be really negligible.

2.7. Criteria for Earth-like reversals

As noted by Sprain et al. (2019), many dynamos have a small dipolar 
component and reverse frequently. These are commonly known as 
multipolar dynamos. This is not Earth-like behaviour, as the Earth has a 
mean reversal time comparable with a magnetic diffusion time, and has 
had superchron periods lasting hundreds of magnetic diffusion times. 
Superchrons may well be caused by processes not included in elemen-
tary models such as those discussed here, so we do not insist on the 
existence of superchrons for an Earth-like reversal model. We classify 
our models into three types, non-reversing (type N), Earth-like (type E) 
and multipolar (type M) in a way that is broadly similar (but not iden-
tical to) Sprain et al. (2019). For a dynamo to be of type E, it must 
reverse, but it must also have periods of at least one magnetic diffusion 
time in which it stays in one polarity, and there must be at least one such 
period for both polarities. This excludes frequently reversing multipolar 
dynamos. We know that the Earth’s dynamo has periods when it is 
strongly dipole dominant, and indeed it is currently in such a state. 
There may have been times when the geomagnetic field was weaker, and 
reversed more frequently (e.g. Gallet et al., 2019), so occasional in-
tervals of multipolar behaviour are not necessarily incompatible with 

Table 3 
Runs with compositional convection boundaries. Rayleigh number Ra and modified Rayleigh number R , Prandtl number Pr and Roberts number q are shown. Rm is the 
magnetic Reynolds number, Pe is the Péclet number, Dip is the dipolarity, Ro is the Rossby number and τ is the number of diffusion times for the whole run. Reversal: N 
means no reversal, M means a multipolar dynamo with many reversals but no Earth-like fields, E means a reversing dynamo with Earth-like magnetic fields for some 
time intervals. All runs used a resolution of Nr × Nl × Nm = 160 × 192 × 192, except CCB0, where a resolution of 162 × 176 × 176 was used, and CCB4, where a 
resolution of 160 × 192 × 128 was used.

Run E Pm Pr Ra R q Rm Pe Dip Ro τ Reversal

CCB0 2.5× 10− 5 2.5 1 6.75× 108 4.219× 104 2.5 504 202 0.112 0.0040 2.75 N
CCB1 7× 10− 5 20 40 3.0× 109 1.05× 105 0.5 766 1532 0.033 0.0027 4.93 E
CCB2 2× 10− 4 57 114 1.25× 109 1.25× 105 0.5 686 1372 0.008 0.0024 1.57 M
CCB3 7× 10− 5 20 40 1.4× 109 4.9× 104 0.5 545 1090 0.039 0.0019 7.08 N
CCB4 7× 10− 5 20 35 2.0× 109 8× 104 0.5714 683 1195 0.032 0.0027 7.07 E
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the paleomagnetic data.
Christensen et al. (2010) give a convenient measure of dipole 

dominance, the ratio of the power of the axial dipole field to the rest of 
the field up to degree and order 8, 

AD

/

NAD = P10

/(

P11 +
∑8

l=2

(
re

ro

)(2l− 2)∑l

m=0
Plm

)

(25) 

where re is Earth’s radius, ro is the core radius, and 

Plm = (l+1)
(
g2

lm + h2
lm
)

(26) 

is the power in a component of degree l and order m at the Earth’s 
surface. This ratio is currently about 1, though it has been 1.5 in the 
recent past. The dipole is currently quite strong compared to the mean 
value over the paleomagnetic record. We consider that a field model is 
acceptable as an Earth-like reversing dynamo provided that AD/NAD 
has been greater than 1 in polarity states of opposite signs. We did test 
the models for equatorial symmetry and zonality (Christensen et al., 
2010), but most of the dynamos passed these tests, so they were not very 
discriminating. The test for flux concentration depends strongly on how 
the field model is derived from the data (almost all numerical dynamo 
models have very high flux concentration if run at high resolution) so 
this was not used as a criterion. To summarise, a dynamo model gets an 
‘E’ classification if (a) the axial dipole changes sign, (b) there are periods 
of at least one magnetic diffusion time during which the dynamo does 
not reverse, and there must be such periods with g10 both positive and 
negative, (c) the ratio AD/NAD must be greater than unity at some time 
both when g10 positive and when it is negative. For some runs, the dy-
namo mostly had an axial dipole of one sign, except for one or two ex-
cursions where it briefly changed sign but did not establish the opposite 
polarity regime. We denote these as N*. If they were run for much 
longer, these N* models might become Earth-like, but they would be 
very expensive to study in detail.

Another simple measure of dipolarity was used, based on the relative 
strength of the g10 coefficient to the mean magnetic field. 

Dip =
diprms

B
, diprms =

(
1
τ

∫ τ

0
g2

10 dt
)1/2

,

B =

(
1

τV

∫ τ

0

∫

V
|B|2 r2sinθdϕdθdrdt

)1/2

,

(27) 

where the integrals are over the whole length of the run and the whole 
volume of the outer core. Because the field inside the core is stronger 
than the surface field, a value of Dip ≈ 0.04 or above gives a field pattern 
which is Earth-like for some of the time.

Another useful diagnostic is the dipole tilt angle. The dipole tilt angle 
φ is related to the Gauss coefficients, as follows: 

cosφ =
g10

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

g2
11 + h2

11 + g2
10

√ . (28) 

The dipole tilt angle provides a simple way to test whether the field is in 
a dipolar or multipolar regime. In a dipolar regime, φ remains close to 
0◦ or 180◦, but in a multipolar regime φ fluctuates wildly.

2.8. Kinetic and magnetic energy spectra

We define the magnetic energy spectrum FB(l, r, t) and the kinetic 
energy spectrum Fu(l, r, t) at radius r and time t by the following re-
lations: 

∑

l
Fu(l, r, t) =

1
4π

∫ π

0

∫ 2π

0

1
2
|u|2sinθdϕdθ, (29) 

∑

l

FB(l, r, t) =
1
4π

∫ π

0

∫ 2π

0

Pm
2E

|B|2sinθdϕdθ. (30) 

Then the time-averaged magnetic energy spectrum is given by 

〈FB〉t(l, r) =
1

t2 − t1

∫ t2

t1
FB(l, r, t)dt. (31) 

It is also useful to consider the average magnetic energy spectrum over 
both time and a spherical shell S of inner radius r1 and outer radius r2, 

〈FB〉S ,t(l) =
4π

(t2 − t1)VS

∫ t2

t1

∫ r2

r1

FB(l, r, t)r2drdt, (32) 

where VS = 4π
(
r3
2 − r3

1
)
/3d3 is the dimensionless volume of S . In all 

the results shown below, the time average is taken over a period of time 
when the magnetic field is dipole-dominated. Moreover, we are mainly 
interested in spatial averages far away from the boundaries. So we take 
r1 = ri + 0.2 and r2 = ro − 0.2, recalling that ro − ri = 1 in our dimen-
sionless unit. The average kinetic energy spectra 〈Fu〉t(l, r) and 〈Fu〉S ,t(l)
are similarly defined.

3. Results from the dynamos driven from below

Eqs. (5–9) were solved numerically using the pseudo-spectral Leeds 
spherical dynamo code (Willis et al., 2007). Table 1 gives a list of the 
runs performed with E = 2× 10− 4, and Table 2 the list for E = 10− 4. The 
code uses a high-order finite difference scheme in the radial direction, 
with Nr points spaced at the zeroes of a Chebyshev polynomial. Nr =
160 radial points was found to be sufficient for all the runs reported 
here. The variables are expanded in spherical harmonics, and the 
maximum degree is Nl and the maximum order is Nm. For most of these 
runs Nl = Nm = 128 was adequate, but for E = 10− 4 some runs were 
checked with Nl = Nm = 192 to make sure there was no significant 
difference.

All runs generated long lasting magnetic fields, so they are all 
dynamos. These runs use the fixed flux, no-slip boundaries with no in-
ternal heat source, the FFFF conditions. Originally, it was intended to 
use the compositional convection boundary conditions only. However, it 
emerged that Earth-like dynamo reversals with FFFF conditions 
occurred at lower Rm and slightly higher E than CCB conditions, which 
meant that it was feasible to explore the parameter space with FFFF 
boundary conditions, whereas this was not possible for the more 
numerically demanding CCB case. However, we did some long runs with 
compositional convection boundaries, see section 4 below. The criterion 
for deciding on the resolution necessary is that the energy spectra of the 
spherical harmonic decomposition should be such that all quantities had 
less than 1% magnitude at the highest harmonics than they had at the 
maximum harmonic. In practice, high resolution of the magnetic field is 
the hardest to achieve (the flow was well-resolved) and this determined 
the number of spherical harmonics required.

The tables give the three input parameters, Pr, Ra and q (Pm = qPr), 
the modified Rayleigh number R and the output parameters magnetic 
Reynolds number Rm, Péclet number Pe = Rm/q, and global Rossby 
number Ro. Since lu (see eq. (14)) is typically between 15 and 20 in these 
runs, the local Rossby number is typically a little less than 0.01, much 
smaller than the 0.1 figure that signalled Earth-like reversing dynamos 
at Pr = 1. τ is the length of the run in the dimensionless unit, so the 
nominal dimensional time of the run is τη/d2. Note that all runs were for 
at least several magnetic diffusion times, and at the large Pr and Pm this 
corresponds to a great many thermal and viscous diffusion times and at 
least a thousand convective turnover times. These are very long runs 
which unfortunately do consume a significant amount of computational 
resource. The output parameter Dip is given by (27). In the reversal 
column in the tables, an N indicates a non-reversing dynamo (no 
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reversal throughout the whole run), an M denotes a multipolar dynamo, 
frequently reversing, and an E denotes an ‘Earth-like’ dynamo that re-
verses occasionally but has long periods (at least a whole magnetic 
diffusion time) when it has a strong dipole moment of constant sign. If 
we adopt the Pozzo et al. (2012) value of η the magnetic diffusion time 
d2/η is 225,000 years and Rm ≈ 1600. It can be argued that the 
convective turnover time is the most relevant timescale in the dynamo 
process, and with the values used in section 2.4, d/U0 ≈ 140 years. In 
our simulations the value of Rm used is less than 1600 for numerical 
reasons, so our convective turnover time is a factor 1600/Rm longer 
than that of the real Earth. It is therefore possible to argue that one unit 
of dimensionless time corresponds to only 225,000Rm/1600 years, 
typically around 50,000 years only.

In Figs. 1 and 2, the axial dipole coefficient g10 at the CMB is plotted 
as a function of time, as a change of sign of g10 corresponds to a reversal.

3.1. E = 2 × 10− 4 runs

Six series of runs were performed with E = 2× 10− 4, with Pr varying 
from Pr = 20 to Pr = 80, see Table 1. All these runs had Pm = 40, so the 
Roberts number q lies in the range 0.5 ≤ q ≤ 2. For each value of Pr the 
Rayleigh number was varied so that the magnetic Reynolds number 
(which increases with Ra) lies in the range 150 < Rm < 500, large 
enough to give reversing dynamos but not so large as to be too 
computationally demanding. Pm = 40 is sufficient to ensure a low 
enough Rossby number so that inertia does not play a significant role, 
and makes the magnetic energy much larger than the kinetic energy. 
None of our runs have the huge ratio of magnetic to kinetic energy 

expected in the real Earth, but they are at least in the correct regime as 
regards energy ratio. At the smallest value of Pr = 20 (runs A1 and A2) 
the dynamo did not reverse. It may be that at higher values of Rm than 
we could reach there may be reversals, as expected from previous work. 
Fig. 1a shows two runs at Pr = 30, B1 and B2, one at Ra = 3 × 107 which 
did not reverse, and one at Ra = 5 × 107 which did reverse and had 
marginally ‘Earth-like’ reversal behaviour in that it did reverse occa-
sionally, but it did not have sustained times with both polarities.

Fig. 1b has runs C1, C3, C4 and C5 at Pr = 35 so q has been reduced 
to 1.143 and the Péclet number is almost as large as Rm. Run C1 at Ra =

3 × 107 did not reverse, but C3 at Ra = 4.5 × 107 is reasonably Earth- 
like, reversing and with a large dipolar component most of the time. 
More information about runs C3 and D2 is shown in Fig. 4. Run C4 at 
Ra = 5 × 107 is on the border between Earth-like and multipolar. It does 
have significant periods with a large dipole component, though the 
positive g10 interval was less than a full diffusion time, but there are also 
long periods where the field is definitely not dipole dominated, and so 
the field pattern at the CMB would fail the Christensen et al. (2010)
criteria for an Earth-like dynamo then. Run C5 at Ra = 6 × 107 has oc-
casional periods of dipole dominance, but most of the time it is multi-
polar. The conclusion is that there is a sweet spot at around Rm ≈ 400, 
corresponding to Pe ≈ 370, where Earth-like behaviour is found. For Rm 
smaller the fluctuations of the dipole about the mean are too small to get 
reversals, while for Rm larger, the fluctuations are too large and the 
dynamo is multipolar and not Earth-like.

Fig. 1c is for the four D1, D2, D3 and D6 runs at Pr = 40. Run D1 at 
Ra = 2 × 107 never reversed, but D2 at Ra = 3 × 107 has quite Earth- 
like reversal behaviour, see also Fig. 4, and it was also run using the 

Fig. 1. Axial dipole coefficient g10 at the CMB as a function of magnetic diffusion time t with E = 2× 10− 4, Pm = 40. (a) Pr = 30, Ra = 3 × 107 and Ra = 5× 107, 
runs B1, B2. (b) Pr = 35, Ra = 3× 107, Ra = 4.5× 107, Ra = 5× 107, and Ra = 6× 107, runs C1, C3, C4, C5. (c) Pr = 40, Ra = 2× 107, Ra = 3× 107, Ra = 4 ×

107 and Ra = 6× 107, runs D1, D2, D3, D6. (d) Pr = 50, Ra = 107, Ra = 1.2× 107, Ra = 1.25× 107, and Ra = 1.5× 107, runs E1, E2, E3, E4. The grey dashed line 
is where g10 = 0.
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MAGIC code (see Fig. 11) to check that the reversal behaviour was 
robust between two independent numerical codes. Run D3 was on the 
border between Earth-like and multipolar, reversing but with uncom-
fortably long times with a rather weak dipolar component, and run D6 is 
definitely multipolar. So as with the C runs, there is a sweet spot for 
Earth-like behaviour for the D runs, but it happens at a slightly lower 
value of Rm between 300 and 350. The value of Pe is a better guide than 
Rm to when the field transitions from the non-reversing N state to an 
Earth-like E state. Run A2 is non-reversing despite having an Rm = 450, 
while run D2 with Rm only 315 has Earth-like reversals. Run A2 has a 
smaller Pe = 225 than run D2, where Pe = 315. This suggests that the 
fluctuation levels, and hence the ability to reverse, are more controlled 
by Pe than Rm. However, the transition from N to E is not simply a 
matter of Pe crossing a threshold, for run C2 did not reverse while D2 
did, despite them having similar Pe.

Fig. 1d shows results for Pr = 50 so q is reduced to 0.8, runs E1, E2, 
E3 and E4. None of these runs showed Earth-like behaviour, but they did 
have interesting features. Run E1 at Ra = 1.0 × 107 had a small g10 
which stayed small for 4 diffusion times, but it then grew to a larger 
value, and ended up as a strongly dipolar solution. Run E2 at Ra = 1.2 ×

107 was started from a strongly dipolar solution and showed no sign of 
reversing. Run E3, despite having only a very slightly larger Ra = 1.25×

107, had a completely different behaviour, almost entirely multipolar, 
with only a few weakly dipolar stretches. This strongly suggests 
subcritical behaviour with two different solutions existing. For compu-
tational reasons it was not possible to do a full investigation of exactly 
when the two branches become unstable, but no Earth-like reversal 

behaviour was found at this (or larger) values of Pr because there is no 
stable sweet spot between the non-reversing and multipolar solutions. 
The larger Ra solution E4 was mainly multipolar, as were the higher Ra 
runs, E5 and E6, and all the F runs at Pr = 80, q = 0.5 were multipolar 
also.

3.2. E = 10− 4 Runs

With currently available computational resources it is not possible to 
reduce E very much, but by making a modest reduction to E = 10− 4 we 
can see whether the reversal behaviour is becoming more Earth-like at 
lower E or less Earth-like. From Table 2 and Fig. 2 we see that Earth-like 
reversal behaviour was found for all Pr between 50 and 70, so the 
desired reversal behaviour is more common at lower E, though of course 
the runs are computationally more expensive. However, it is necessary 
to reduce q to get reversing dynamos at lower E. At E = 2 × 10− 4 Earth- 
like reversals were found at q > 1 but at E = 10− 4 runs at q = 1 or above 
were non-reversing for the feasible range of Rm. Since the values of q and 
E are both very low in the Earth’s core, it is possible that an asymptotic 
path leading to Earth-like values may exist. In Fig. 2a at Pr = 50, q =

0.8, we see that the two lower Rayleigh number runs H1 and H4, with 
Rm = 315 and 466 did not reverse, but run H5 with Rm = 588 had 
Earth-like reversals. Similar behaviour was found at Pr = 55 for the two 
runs I2 and I3, see Fig. 2b. Run I3, which has Earth-like reversals, has a 
slightly lower Rm than run H5, but a slightly higher Pe which may be 
why it reverses.

The situation at Pr = 60, Fig. 2c is a little more complicated. At Ra =

Fig. 2. Axial dipole coefficient g10 at the CMB as a function of magnetic diffusion time t with E = 10− 4, Pm = 40. (a) Pr = 50, Ra = 7× 107, Ra = 1.5 × 108 and 
Ra = 2.5× 108, runs H1, H4, H5. (b) Pr = 55, Ra = 1.5 × 108 and Ra = 2.5× 108, runs I2, I3. (c) Pr = 60, Ra = 6× 107, Ra = 108, Ra = 1.5 × 108 and Ra = 2.5×

108, runs J4, J6, J7, J8. (d) Pr = 70, Ra = 1.5× 108, Ra = 2× 108, Ra = 3× 108, runs K1, K2, K3.
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5 × 107 where Rm = 253 only, the dynamo is a non-reversing rather 
steady dipole dominated dynamo. But by Ra = 6× 107, run J4, the 
dipole component collapsed to leave a multipolar dynamo with only 
occasional excursions to a dipolar state, which is though less dipolar 
than the current Earth. Increasing Ra to 108, run J6, still gave a multi-
polar dynamo, but further increasing to Ra = 1.5× 108, run J7, led to an 
Earth-like dynamo, as did the run at Ra = 2.5× 108, run J8. This re- 
establishment of reversing dynamos with strong dipolar states at E =

10− 4 was not found at E = 2 × 10− 4 and it is why Earth-like dynamos are 
more common at the lower Ekman number. This behaviour was also 
found at Pr = 70, see Fig. 2d runs K1, K2 and K3, which were all Earth- 
like, though the higher Ra runs had a stronger dipolar component when 
they were not in the reversal phase.

Somewhat unexpectedly, further increasing Pr to 80, thus reducing q 
to 0.5, led to a non-reversing dynamo even with Rm = 537, though we 
caution that these Pr = 80 runs were shorter, as this part of the 
parameter space is even more computationally demanding. It would be 
interesting to discover why non-reversing dynamos are found here, 
where we expect strong fluctuations because both Pe and Re are large. 
Possibly the fluctuations here are centred on shorter wavelength modes, 
and so do not affect the dipole component so much. Our main conclusion 
from all these runs is that reversing dynamos with long periods of dipole 
dominance do occur at the lowest values of E that are numerically 
feasible. Within the range 0.8 ≥ q ≥ 0.571 all dynamos with Pe > 650 
had Earth-like behaviour. As with the E = 2 × 10− 4 runs there is a 
preferred interval of q values where Earth-like reversals occur at mod-
erate (and therefore numerically accessible) Rm. Fortunately, the in-
terval of q seems to broaden out as E is reduced, as well as being centred 
on a lower value of q.

3.3. Dynamos in the q − R plane

We can summarise the results from Tables 1 and 2, and Figs. 1 and 2, 
by showing the locations of Earth-like, non-reversing and multipolar 
dynamos in the q − R plane, Figs. 3a and b. The dynamos are plotted as 
circles centred on their q and R values, with radius proportional to 
Dip = diprms/B which measures how dipolar the field is. Typically the 
non-reversing (blue) dynamos are the most dipole-dominated and the 
green multipolar dynamos the least dipolar. The Earth-like (red) 
dynamos have moderate dipolarity, and their ratio of the axial dipole to 
the non-axial terms is broadly similar to that of the Earth. The location of 
the Earth-like reversing dynamos is similar in Fig. 3a and b except that it 

is peaked around a lower q in the lower Ekman number case, and the 
region is also broader at lower E. At the lower value of E not many 
multipolar solutions were found, but they may exist at higher values of 
R where computation is more difficult.

3.4. Characteristics of the Earth-like reversing dynamos

In Fig. 4 we show the magnetic energy (ME) and kinetic energy (KE) 
of some of the reversing Earth-like dynamos, on a logarithmic scale, with 
the CMB axial dipole component g10. The magnetic energy is larger than 
the kinetic energy in all these runs, as it is in the Earth, but the ratio ME/ 
KE is much smaller than in the real Earth. Both KE and ME have fluc-
tuations on the turn-over timescale, which is much shorter than the 
magnetic diffusion timescale. The fluctuations in the magnetic energy 
are relatively bigger than the fluctuations in the kinetic energy. 
Convective plumes can stretch out magnetic field to give locally very 
strong fields, even though the flow speeds in the plumes are not 
particularly big. The axial dipole component contributes a significant 
amount to the total magnetic energy, and so times when g10 is near zero 
correlate well with times of low ME.

Fig. 5 plots the first Christensen et al. (2010) criterion for an Earth- 
like field, the axial dipole to non-axial dipole ratio, AD/NAD, see eq. 
(25). For the Earth’s dynamo, this ratio is now around unity, but it was 
higher in the last few hundred years. Using archaeomagnetic and 
paleomagnetic data we find that the current dipole strength, and hence 
presumably AD/NAD, is larger than normal, so an Earth-like reversing 
dynamo should have periods when AD/NAD is greater than 1, but longer 
periods when it is less than one. As we see in Fig. 5, most of our Earth- 
like dynamos satisfy this criterion. Note that only a chunk of the time- 
series for case D2 is shown, as this enables the fluctuations to be seen 
more clearly. All these dynamos have intervals where the AD/NAD ratio 
is similar to the current value, but the mean value is significantly less. 
The non-reversing dynamos can have significantly larger AD/NAD ra-
tios, (compare the radii of the non-reversing dynamos in Fig. 3 with the 
reversing ones) but no reversing dynamos had a significantly larger AD/ 
NAD ratio. Of the other criteria given in Christensen et al. (2010), the 
ratio of the odd to even spherical harmonics O/E, which measures the 
asymmetry across the equator, and the ratio of the zonal to non-zonal 
coefficients, Z/NZ, give values similar to current Earth values for all 
the runs shown in Fig. 5. As we see below, at full numerical resolution 
the radial magnetic field at the CMB is sometimes highly concentrated 
into intense flux patches, but when viewed at the resolution of only l =

8, defining the flux concentration factor criterion in Christensen et al. 

Fig. 3. Scatter plots of the fixed flux no source dynamos in the q-R plane, non-reversing dynamos are blue circles, multipolar dynamos are green, and Earth-like 
dynamos are red. (a) E = 2× 10− 4. (b) E = 10− 4. The radii of the plotted circles are proportional to Dip = diprms/B, so larger circles correspond to dipole domi-
nated fields, small circles to dynamos with only a relatively small g10 component. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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(2010), these intense patches are no longer visible, so flux concentration 
is highly dependent on the resolution used.

In order to confirm that our reversing dynamos lie in the strong-field 
regime, see Dormy (2016), in Fig. 6 we plot the modified Elsasser 
number Λʹ = Λd/Rmlb, which measures the ratio of the Lorentz and 

Coriolis forces (Dormy, 2016; Menu et al., 2020), where lb is defined by 

l2b =

∫

V |B|
2 r2 sinθdϕdθdr

∫

V|∇ × B|2 r2 sinθdϕdθdr
. (33) 

Fig. 4. Magnetic energy, kinetic energy and axial dipole coefficient g10 at the CMB as a function of magnetic diffusion time for four Earth-like reversing dynamos. (a) 
run C3, Ra = 4.5× 107, Pr = 35, Pm = 40, E = 2× 10− 4. (b) run D2, Ra = 3× 107, Pr = 40, Pm = 40, E = 2× 10− 4. (c) run J8, Ra = 2.5× 108, Pr = 60, Pm = 40, 
E = 10− 4. (d) run K2, Ra = 2× 108, Pr = 70, Pm = 40, E = 10− 4.

Fig. 5. The relative axial dipole power, AD/NAD, as a function of magnetic diffusion time for four Earth-like reversing dynamos. (a) run C3, Ra = 4.5× 107, Pr = 35, 
Pm = 40, E = 2× 10− 4. (b) run D2, Ra = 3× 107, Pr = 40, Pm = 40, E = 2× 10− 4. (c) run J8, Ra = 2.5× 108, Pr = 60, Pm = 40, E = 10− 4. (d) run K2, Ra = 2×

108, Pr = 70, Pm = 40, E = 10− 4.
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In the strong-field regime, both Dormy (2016) and Menu et al. (2020)
found values of Λʹ of around unity in their strong-field dynamos (it was 
less than 0.1 in the weak field regime), so it is clear from Fig. 6 that all 
these dynamos are comfortably in the strong-field situation, where the 
Lorentz force is playing an important role in the dynamics.

3.5. Snapshots of the radial field at the CMB

In Fig. 7 we compare the radial component of the magnetic field at 

the core-mantle boundary in the year 2000, Fig. 7a, with the corre-
sponding quantity at three different times from run D2, one of the 
models that had Earth-like reversing behaviour, Figs. 7b,c,d. The units 
here are dimensionless, but we can see that the unit of 0.85mT given in 
(16) gives results compatible with the field strength in the year 2000. 
Fig. 7b is taken at a time when the dipole is strongly negative, and the 
field, which has been truncated at degree 13, resembles the current field, 
broadly dipolar but with reversed field patches. Fig. 7c corresponds to a 
time when the field was reversing, and the dipole component is quite 

Fig. 6. The modified Elsasser number Λʹ = Λd/Rmlb as a function of t. (a) Run J8, Ra = 2.5× 108, Pr = 60, Pm = 40, E = 10− 4, Rm = 542. (b) Run D2, Ra = 3×

107, Pr = 40, Pm = 40, E = 2× 10− 4, Rm = 315. (c) Run CCB4, Ra = 2 × 109, Pr = 35, Pm = 20, E = 7× 10− 5, Rm = 683. (d) Run CCB0, Ra = 6.75 × 108, Pr = 1,
Pm = 2.5, E = 2.5 × 10− 5, Rm = 504.

Fig. 7. Snapshots of Br at the CMB at selected times for run D2, Ra = 3× 107, Pr = 40, Pm = 40, E = 2× 10− 4, compared with Earth’s magnetic field in the year 
2000. All plots have been truncated above l = 13 which are the degrees reliably known for the geomagnetic field. (a) The geomagnetic Br at the CMB in the year 
2000. (b) Run D2 at time t = 20.476. (c) Run D2 at time t = 18.571. (d) Run D2 at time t = 16.588.
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small. Apart from the lack of the dipole component the field is not so 
different from the strong dipole cases. It seems that there is no strong 
correlation between individual spherical harmonic components during 
the reversal process in these models, so a giant Gaussian process 
(Constable and Parker, 1988) would appear to be a reasonable 
description of the behaviour of these models, though this has not been 
tested in detail. Fig. 7d is a snapshot of the field when the dipole was 
relatively large and positive, and as expected the field is broadly similar 
to that in Fig. 7b except that the sign of the field is reversed.

In Fig. 8 we show the radial field of a lower E reversing dynamo 
model J8 at two times with opposite polarity. Figs. 8a,b are truncated 
above l = 13, and at the two times shown they have an AD/NAD ratio of 
1.2 and 1.6 respectively. They also look reasonably Earth-like at these 
times. In Figs. 8c,d the full resolution fields are shown at the same two 
times and they look remarkably different, with a great deal of small scale 
structure. Careful inspection shows that all the stronger field features in 
the high resolution pictures are present in the truncated snaphots, but 
they are smeared out by the truncation process so they look larger but 
weaker. Note that the peak field of the full resolution plots is three times 
the peak field of the truncated plots. The observed field has to be 
truncated at around degree l = 13 in order to eliminate the (unknown) 
contribution from remanent magnetism in the mantle, but these figures 
indicate that much fine structure in the field is lost during this process.

3.6. Numerical checks and randomness

Because of the need for long runs to establish whether dynamos 
reverse or not, it is not possible to do every run at high resolution. We 
restricted our search of parameter space to those regions where the 
spectrum of the magnetic, velocity and thermal fields were all getting 
small at the highest wavenumbers computed. Hyperdiffusion was not 
used here, though it would be interesting to explore whether it could 
lead to computational savings without compromising the results. Most 
runs were done with a resolution of 160 radial nodes, and spherical 
harmonics up to degree l = Nl and order m = Nm both with Nl = Nm =

128. The radial resolution was checked and looked satisfactory in all 
cases, but to check the spherical harmonic truncation, some runs were 
performed up to degree and order 192. The degree cut-off Nl is the most 
critical, as the rate of convergence of the order m is generally faster than 
that of the degree. Unfortunately, it is increasing the cut-off of the de-

gree which is most burdensome computationally, even though the 
speed-up techniques developed by Schaeffer (2013) were used.

In Fig. 9, the case J8 was run up to time t = 3.1461 with resolution 
Nr = 160, Nl = 128 and Nm = 128. At time t = 3.1461 the run was 
continued with resolution Nr = 160, Nl = 192 and Nm = 192. In Fig. 9a 
we show the magnetic and kinetic energy and CMB dipole g10, marking 
the transition time by a vertical dashed line. There is no noticeable 
change in the behaviour of any of these quantities after the transition 
time indicating that the original resolution was adequate for this case. In 
Fig. 9b we see that similarly there is no noticeable change in the 
behaviour of the ratio AD/NAD with increased resolution.

In Fig. 9c the magnetic and velocity spectra are shown for J8, run at 
different numerical resolutions. The spectra were time averaged over a 
time sufficient that modes with degree l > 20 settled down, very long 
times being needed for low degree modes to converge. In addition to the 
volume and time averaged spectra 〈FB〉S ,t(l) and 〈Fu〉S ,t(l) we also show 
the time averaged spectra at the CMB, 〈FB〉t(l, ro). We see that the Nl ×
Nm = 128 × 128 resolution spectra lie very close to the 256 × 256 
spectra up to about l = 90 and then break away. Similarly, the 192 ×

192 resolution spectra follow the 256 × 256 resolution case up to about 
l = 150. The magnetic spectra are less steep at large l than the velocity 
spectra, which is a consequence of the large Pm used. This is discussed 
further in section 5 below. Also notable is that the surface magnetic 
spectra are even shallower than the volume averaged magnetic spectra. 
However, in Fig. 9d and e we show snapshots of the surface field Br with 
resolution 192 × 192 and 256× 256, which can be compared with 
Fig. 8d at 128× 128. Because trajectories diverge rapidly, these surface 
field plots show different states and so are not directly comparable, but it 
is clear that the general picture is very similar in all cases, so significant 
differences due to the differing resolution are not apparent. A feature of 
all these plots is the presence of some small scale high intensity Br of 
both signs. The main effect of omitting high degree l components of the 
spectra is to broaden out these tiny features and weaken their intensity. 
Since these are only sparse surface features, it seems unlikely that they 
affect the dipole reversal process, so that the 128 × 128 resolution is 
probably adequate for identifying reversal behaviour, but further testing 
would be desirable.

Despite the fact that our system is deterministic, with no random 
forcing in the equations, trajectories which are initially close together 
rapidly diverge, so the chaotic nature of the system means that there is 

Fig. 8. Snapshots of Br at the CMB at selected times for run J8, Ra = 2.5× 108, Pr = 60, Pm = 40, E = 10− 4. (a) Run J8 at time t = 2.1922, truncated at l = 13. (b) 
Run J8 at time t = 4.1364 also truncated at l = 13. (c) Same as (a) but with full resolution (no truncation). (d) Same as (b) but with full resolution.
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Fig. 9. (a) Magnetic energy, kinetic energy and dipole g10 at the CMB, and (b) the relative axial dipole power AD/NAD, both for the J8 case parameters. Up until 
t = 3.1461 the resolution was Nr = 160, Nl = 128 and Nm = 128. After t = 3.1461, the run was restarted at a higher resolution with Nl = 192 and Nm = 192. 
Despite the change in resolution, the behaviour of the system is not significantly different after t = 3.1461. (c) Magnetic and kinetic energy spectra at different 
resolutions: 160 × 128 × 128 (green), 160 × 192 × 192 (blue) and 160 × 256 × 256 (red). The solid lines are volume and time averaged magnetic energy spectra 
defined by Eq. (32), the dashed lines are volume and time averaged kinetic energy spectra and the dot-dashed lines are time averaged magnetic energy spectra Eq.
(31) computed at the CMB. (d) a snapshot from a 160 × 192 × 192 run, (e) a snapshot from a 160 × 256 × 256 run. Both are taken from run J8 at times when g10 is 
negative, and they can be compared with Fig. 8(d) which is from a 160 × 128 × 128 run. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 10. (a) The axial dipole g10 at the CMB for the J8 case parameters. At t = 5.1121 the run was interrupted and restarted, giving a very small perturbation to the 
system. After this time, the red curve follows the interrupted system with the perturbation, the blue curve follows the uninterrupted system. (b) is the same, but 
magnifies the timescale to see the transition region. Note that after the restart, the two runs initially follow very similar trajectories, as the perturbation is very small, 
but they quickly diverge because the small perturbation grows exponentially corresponding to a positive Liapunov exponent. The tiny perturbation has led to a full 
reversal (red curve case) whereas the unperturbed blue curve case does not reverse then. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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considerable randomness in practice. To illustrate this behaviour, we 
performed a run with the case J8 parameters up to time t = 5.1121. We 
then restarted the run twice at t = 5.1121. On the first rerun, we used 
exactly the same starting solution as we ended up with from the run 
which finished at t = 5.1121 and the blue curves in Figs. 10a,b follow 
these trajectories. For the second restarted run, a small perturbation of 
order 10− 6 was added to the magnetic field variables. The red curves 
show the dipole g10 for this second restarted run. In Fig. 10b we see the 
two different runs track each other initially after t = 5.1121, as expected 
because the perturbation is so small. However, the two curves soon start 
to diverge, and they are noticeably different after t = 5.12. This is 
perhaps less surprising when we note that the convective turn-over time, 
1/Rm, is only t ≈ 0.002 in these units, so divergence has become 
noticeable after 4 eddy turn-over times. However, the two trajectories 
continue to diverge, so looking at Fig. 10a we see that after the 
perturbation the red curve has reversed the sign of g10 while the original 
blue curve did not. So this tiny perturbation has led to a full reversal, 
whereas the unperturbed solution did not reverse. Since all computers 
have tiny rounding errors due to the finite number of digits stored, this 
means that small perturbations are unavoidable and randomness is built 
in, even though our system is in theory completely deterministic.

We also solved our equations using the MAGIC package (https://gith 
ub.com/magic-sph/magic) to check that the reversal behaviour was 
similar to that obtained by the Leeds code. We looked at the case D2 in 
Table 1, which has Earth-like reversals. The definition of the Rayleigh 
number has a factor (ro − ri)/ro different from eq. (11), so we kept E =

2× 10− 4, Pr = Pm = 40 but changed the MAGIC input Rayleigh number 
to 5 × 107 to compensate for this factor. The behaviour obtained from 
this MAGIC run had similar values of magnetic and kinetic energy and 
magnetic Reynolds number to those of the Leeds code runs. In Fig. 11 we 
show the dipole tilt angle for a run of 20 magnetic diffusion times, a 
similar length to run D2. It is clear that the MAGIC run gives reversals 
very similar to those found in the g10 plot in Fig. 4b.

4. Results from the dynamos driven by compositional 
convection

Figs. 12a and b show the time-series of kinetic and magnetic energy 
and the dipole strength g10 of the two simulations CCB3 and CCB1 (see 
Table 3) using the CCB boundary conditions (15). Earth-like reversals 
were harder to find with the CCB boundary conditions than with the 
fixed flux FFFF boundaries. These two runs had a smaller E, only 7×

10− 5, than the FFFF runs. Even with a larger Rm = 545 and Pe = 1090, 
run CCB3 did not have any Earth-like reversals. In Fig. 12c the dipole tilt 
for CCB3 is shown. Although there are several excursions (where the 
field nearly reverses but does not quite manage it) there are no true 
Earth-like reversals in the series. However, when Ra and hence Rm is 
increased so that Rm = 766 and Pe = 1532, run CCB1, Earth-like re-
versals do occur, see Fig. 12d. Both these runs have a significantly larger 
magnetic energy than kinetic energy, so that the effects of inertia are 

relatively weak. Unfortunately the larger Rm and smaller E mean that a 
higher truncation is necessary, mostly 160 × 192 × 192, though as the 
Nm truncation is not quite so critical as the Nl truncation, run CCB4 used 
160 × 192 × 128, thus allowing a longer run than would otherwise be 
possible.

We see two reversals in Run CCB1. The first one near the beginning at 
t ≈ 0.8 may or may not be a transient effect. Somewhere between t = 2 
and t = 2.5, the dynamo starts transitioning from a positive dipolar state 
to a multipolar state, and then at around t = 3, it reverses into a negative 
dipolar state. The length of the transition period is in general fairly short 
at about 0.2 while the dipolar and the multipolar states are sustained for 
an interval of about 0.5 or longer. If the reversal at t = 0.8 is indeed a 
transient effect, then it is not clear whether the dynamo can reverse its 
polarity without first going through a multipolar state. In addition to the 
reversals at t = 0.8 and t = 3, the dynamo also undergoes an excursion 
at about t = 4. During this excursion, the negative dipolar state collapses 
into a multipolar state at t = 3.8 before re-emerging at t = 4.3.

Run CCB2 is not shown, because it was multipolar all the time. With 
these boundary conditions, we explored the parameter space between 
E = 10− 4 and 2 × 10− 4 but found no convincing Earth-like reversing 
dynamos, different from the FFFF case where several were found. It 
seems that lower E and higher Rm is needed for Earth-like reversals with 
compositional convection boundary conditions. It is possible, but very 
hard to test, that Earth-like reversing dynamos are just as plentiful with 
CCB conditions, but they exist in a more challenging region of the 
parameter space.

Run CCB1 did exhibit Earth-like reversals, but its AD/NAD ratio 
rarely got above 1, so that although it reverses in a satisfactory manner, 
the field in the dipole state is only very rarely Earth-like. From our 
experience with the FFFF cases, run CCB4 with a small reduction in Pr 
from 40 to 35 was tried, slightly increasing q and decreasing Pe. This did 
indeed increase the AD/NAD ratio a little, and the results are displayed 
in Fig. 13. As can be seen from Fig. 13d this dynamo did reverse 
reasonably cleanly around t ≈ 3.7 and again at t ≈ 6.

These compositional convection dynamos are similar to the FFFF 
dynamos, in that the magnetic energy is consistently larger than the 
kinetic energy (see Fig. 13d) and the fluctuations in the magnetic energy 
are much larger than the fluctuations in the kinetic energy. In Fig. 13f 
the AD/NAD ratio of run CCB4 is shown. There are now significant in-
tervals when AD/NAD exceeds unity. Snapshots taken in these intervals 
are shown in Figs. 13a,b showing that the magnetic field has indeed 
reversed, and the states achieved in these intervals show reasonably 
Earth-like fields. For comparison, we looked at a case with conventional 
Earth-like field parameters, run CCB0 with Pr = 1 and Pm = 2.5 as 
chosen in Christensen et al. (2010). The results of this simulation are 
shown in Fig. 13c. It is significantly more dipolar than the fields shown 
in Fig. 13a,b. Although Rm is only a little smaller, Pe is much smaller. 
Run CCB0 showed no sign of reversing. Increasing q and therefore 
reducing Pe seems to have the effect of increasing the AD/NAD ratio, but 
it also decreases the fluctuation levels and hence makes the dynamo 
reverse less often. Reversals are rare in the current state of the geo-
dynamo, so it is possible more realistic behaviour could be achieved by 
tweaking the parameters, but unfortunately longer intervals between 
reversals greatly adds to the computational expense.

5. Comparison of high Pr and low Pr dynamos

Dynamos at Pr = 1 have been extensively studied, but higher Pr 
models are relatively unexplored, so here we make a comparison be-
tween models with similar magnetic Reynolds number but different Pr. 
For our Pr = 1 example, we focus on the run CCB0 (see Table 3) which 
has parameters close to those of Fig. 2b of Christensen et al. (2010) and 
which was rated as excellent on the ‘Earthlike’ properties listed in that 
paper, but this dynamo does not reverse.

We return to the kinetic and magnetic energy spectra in Fig. 14 (see 
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Fig. 11. The axial dipole tilt angle from the MAGIC run. The MAGIC input 
parameters were Ra = 5× 107, Pr = Pm = 40, E = 2× 10− 4. This is close to 
the case D2 values for the input parameters defined here. Note that there are 
reversals in this MAGIC run, which satisfy our criteria for an Earth-like reversal.
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also Fig. 9c) comparing the spectra for different runs. Fig. 14a and b plot, 
respectively, the volume and time averaged kinetic and magnetic energy 
spectra defined in section 2.8. Generally, runs with higher Pe have 
shallower spectra. Run J8, L2 and CCB4 all have Pe ≈ 1000, particularly 
for CCB4 with Pe = 1195, and we had to increase Nl and Nm to get a 
reasonable energy drop in the magnetic energy spectrum. We also see 
that the very shallow surface magnetic energy spectrum 〈FB〉t(l, ro) noted 
in Fig. 9c is a feature of all the high Pr runs. CCB4 has a steeper 〈FB〉t(l, ro)

than that of J8 and L2, which may be because the FFFF cases are driven 
more strongly near the CMB, whereas the CCB cases are driven more 
strongly near the ICB. The exponential decay of both the kinetic and 
magnetic energy spectra at large l is due to diffusion, so it is not sur-
prising that the kinetic energy spectrum decays faster than the magnetic 
energy spectrum, since in our models ν > η because Pm is large. In the 
Earth’s core, Pm is small so the kinetic energy spectrum in the viscous 
range will be shallower than the magnetic energy spectrum. However, 
the viscous range occurs at such small length scales that they can hardly 
affect the magnetic field, and they are unlikely to affect the dipole 
reversal properties.

In Fig. 14a, runs G1 and D2 have lower Rm ≈ 300 while the others 
have Rm ≈ 500 or larger. So we compare CCB0 with J8, L2 and CCB4 
and it is clear that the kinetic energy spectrum 〈Fu〉S ,t(l) at Pr = 1 is 
different from that at large Pr. 〈Fu〉S ,t(l) of CCB0 has a narrower peak at 
small l but a fat tail at large l. In contrast, 〈Fu〉S ,t(l) for the other runs is 
comparatively broader at the large scales but decays faster at the small 
scales. The lower Péclet number of CCB0 compared with the other runs 
is the likely cause of the difference in the spectra. The upshot is that with 
large Pr, the velocity field has limited small scales and a somewhat wider 
range of large to medium scales. More quantitatively, we find that for 
CCB0, roughly 50% of KE is contained in modes with l ≤ 12 whereas for 
CCB4, the same proportion of KE resides in modes with l ≤ 17.

In Fig. 15 we explore a possible reason why some of our high Pr and 
Pm models reverse, when the CCB0 model at Pr = 1 does not, despite the 
Rm being similar. In Figs. 15a (CCB0) and 15b (CCB4) we show the full 
resolution radial magnetic field Br at the surface. The CCB4 field is not 

quite so dipole dominated, and has more smaller scale field, consistent 
with its different surface spectrum, but the plots are not greatly 
different. Inside the tangent cylinder, in both the northern and southern 
hemispheres, there is a considerable amount of reversed field generated, 
which leads to fluctuations of the dipole field, but this happens in both 
CCB4 and CCB0 so this does not explain why CCB4 reverses and CCB0 
does not.

A meridional section of the axisymmetric component of Bϕ is shown 
in Figs. 15c (CCB0) and 15d (CCB4), and a meridional section of the 
axisymmetric component of uϕ is shown in Figs. 15e (CCB0) and 15f 
(CCB4). These are very different for the two models. If we look first at uϕ, 
in the CCB0 case there is a strong westward zonal flow near the equator 
outside the tangent cylinder, whereas there are only tiny zonal flows 
there in the CCB4 case. The westward flow patch near the equator 
outside the tangent cylinder was found by Aubert (2005) in his Pr = 1 
simulation D, see his Fig. 1c. It was attributed to a thermal wind driven 
by a codensity patch located close to the zonal flow patch. In our models, 
movies of run CCB0 show a similar codensity structure to Aubert’s case 
D, but in run CCB4 the interior temperature structure is much more 
homogeneous, so the codensity patches and hence the zonal flow 
patches are much weaker. The more homogeneous interior temperature 
structure in run CCB4 is likely due to its high Péclet number. We note 
that case S2 of Schaeffer et al. (2017) also had a high Pe even though 
their Pr = 1 because Pm = 0.1 was small, and their codensity fields were 
also rather homogeneous outside the tangent cylinder (see their Fig. 3). 
The equatorial patches of codensity and westward zonal flow are just 
visible in their Fig. 3 plots, but they are much weaker than those in run 
CCB0. Further investigation is needed as the dynamics are governed by a 
complex interplay of the various forces at work.

In Fig. 15c we see that there are patches of Bϕ of opposite sign near 
the equator, negative in the northern hemisphere and positive in the 
southern hemisphere. This seems to be a robust feature of run CCB0, and 
the equatorial Bϕ is associated with the zonal flow. Note that when the 
magnetic field has Br negative in the northern hemisphere and positive 
in the southern hemisphere as in Fig. 15a, Bθ will be positive near the 
equator, so the westward flow close to the equator will stretch out 

Fig. 12. Compositional convection runs. (a) Magnetic energy, kinetic energy and dipole coefficient g10 at the CMB for run CCB3 with Pr = 40, Pm = 20, E = 7×

10− 5, Rm = 545. (c) Dipole axis angle for the same run. This run has excursions, but no full reversals. (b) Magnetic energy, kinetic energy and dipole coefficient g10 

for run CCB1 with Pr = 40, Pm = 20, E = 7× 10− 5, Rm = 766. (d) Dipole axis angle for the same run. This run, at higher Ra and Rm, has full reversals.
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negative Bϕ north of the equator and positive Bϕ south of the equator just 
as seen in Fig. 15c. Once the sign of these flux patches is determined by 
the initial conditions, they stay the same throughout the run. Run CCB4 
has similar patches but they are much weaker, and their sign changes as 
the field reverses. Inside the tangent cylinder, in both hemispheres, Bϕ 

(and its axisymmetric component) fluctuates considerably in both CCB0 
and CCB4, as does Br. Sometimes, these fluctuations lead to the average 
field in the polar regions having the opposite sign from that of its recent 
history. This reversed field can spread into the regions outside the 
tangent cylinder by turbulent diffusion. In the CCB4 case this process 
can lead to a reversal of the whole field, but in the CCB0 case, this 
reversed field comes up against the strong equatorial flux patches. The 
helicity of the flow (negative in the northern hemisphere and positive in 
the southern hemisphere, see e.g. Sreenivasan and Jones (2011)) can 
generate a poloidal B from these flux patches which can reinforce the 

original field, see e.g. Schrinner et al. (2007), and the reversed field 
fluctuations are unable to overcome this, so a reversal is avoided. This 
picture of how reversals might occur, and how they might be avoided, 
clearly needs to be tested further in future work. Some of our high Pr 
dynamos did not reverse. Possibly thermal winds can set up some zonal 
flows even in high Pe cases which may in some circumstances be strong 
enough to produce a consistent axisymmetric Bϕ to oppose the fluctua-
tions trying to reverse the field. We note that much of the analysis of 
convection driven dynamos is based on globally averaged quantities to 
elucidate force balances. However, the behaviour inside and outside the 
tangent cylinder can be very different in these dynamos, so averaging 
over the whole core may miss important features.

Fig. 13. Compositional convection runs. (a,b) Snapshots of Br at the CMB at selected times for run CCB4, Ra = 2× 109, Pr = 35, Pm = 20, E = 7× 10− 5. (a) t =

2.1340, (b) t = 4.6311 after the reversal. (c) Snapshot of Br at the CMB for run CBB0, Ra = 6.75× 108, E = 2.5× 10− 5, Pr = 1, Pm = 2.5 at time t = 2.1531. All the 
fields in figures (a-c) have been truncated at l = 13. (d) Magnetic and kinetic energies for run CCB4 together with the axial dipole component g10 at the CMB. (e) 
Dipole tilt angle for run CCB4. (f) Axial dipole to non-axial field ratio, AD/NAD for run CCB4.
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6. Discussion and conclusions

To be consistent with the paleomagnetic data, and hence considered 
Earth-like, the dynamo should not only reverse polarity, i.e. the sign of 
the axial dipole g10 must change, there should also be long periods when 
the dynamo is dipole dominated, defined here as an AD/NAD ratio 
greater than unity. In view of the existence of hyper-active periods of 
magnetic activity (Gallet et al., 2019), windows of multipolar behaviour 
might be considered acceptable, but not dynamos which reverse all the 
time. By looking at models where the fluid Prandtl number as well as the 
magnetic Prandtl number is relatively large, we have found 12 new 
reversing dynamos which satisfy these criteria and also have the feature 
that the magnetic energy is much larger than the kinetic energy and the 
Rossby number is small. The dynamos were found in the range of 7 ×

10− 5 ≤ E ≤ 2 × 10− 4 for both types of boundary conditions considered, 
and with Roberts number 0.5 ≤ q ≤ 1.143. It is therefore possible to 
have dynamos where the reversal mechanism is not greatly influenced 
by inertia, supporting the ideas of Sreenivasan et al. (2014). This gives 
further support to the idea that the Earth has a convection driven dy-
namo. One of the objections to this hypothesis, that dynamo models only 
reverse at moderate Rossby number whereas the real Earth has very low 
Rossby number and yet reverses, has been overcome.

Our new reversing dynamos all have a much larger Ekman number 
than the Earth’s core, from computational necessity, but the balance of 
the non-viscous terms in these simulations does reflect what is believed 
to be the correct balance in the core. It is therefore possible that despite 
the small scale modes being overdamped by excess diffusion, the modes 
driving the dynamo that we retain in our simulations may reflect what is 
driving the Earth’s magnetic field. This may be why it is possible to find 
models that satisfy both the Christensen et al. (2010) criteria for an 
Earth-like magnetic field and produce Earth-like reversal behaviour.

Our models fall into three groups, the fixed flux models at E = 2×

10− 4, the fixed flux models at E = 10− 4 and the compositional con-
vection models. The E = 2 × 10− 4 Earth-like reversing models have the 
advantage that they are less computationally costly, so they can be run 
for many diffusion times and their properties explored more fully. They 
do have the disadvantage that they are only found in a limited region of 
parameter space. If q is too large, the dynamos do not reverse, if q is too 
small the dynamos are multipolar. The E = 10− 4 Earth-like FFFF 
dynamos are more expensive to run, but they have the advantage that 
they exist in a wider range of parameter space, so models which fit the 
past behaviour of the geomagnetic data can be selected. Like the E = 2 ×

10− 4 dynamos there is a cut-off at larger q beyond which the dynamos do 
not reverse (at least until large Ra and Rm are reached). At the lower 
boundary of q for the E = 10− 4 Earth-like reversing models, the 
dynamos stopped reversing, unlike the E = 2 × 10− 4 models which 

became multipolar. It is not yet clear how this difference arises. It is 
likely that compositional convection provides the main driving for the 
geodynamo at present, but unfortunately the Earth-like reversal regime 
was only found at E = 7 × 10− 5 in the CCB models. This made it difficult 
to explore the CCB case in detail.

The traditional criterion for the existence of Earth-like reversing 
dynamos, that the local Rossby number Rol ≈ 0.1, appears to play no 
role in determining whether our q ∼ O(1) dynamos are Earth-like or not. 
It seems that this local Rossby number criterion is specific to the choice 
of Prandtl number Pr = 1.

Since our models are chaotic, with trajectories that are very sensitive 
to initial conditions, it is natural to compare them with models which 
include explicit stochastic terms. The reversal behaviour in our models is 
dependent on the level of fluctuations, those with bigger fluctuations 
being more likely to reverse, so in this respect our models resemble that 
of Schmitt et al. (2001) and its successors. However, stochastic models 
usually have a simple imposed random forcing. In our model the fluc-
tuations have a spectrum in time and space, and it may be the fluctuation 
level at particular wavelengths in space and time that leads to reversals, 
so that models with the largest overall fluctuations are not necessarily 
those which reverse most often.

Another feature of the stochastic models is that they assume that the 
potential that controls the ‘particle’ has a quartic form with symmetric 
minima (see e.g. Fig. 2 of Schmitt et al. (2001)). While it is true that our 
models that have a low fluctuation level sit in an approximately dipolar 
state which can be of either sign, there is evidence that other types of 
attractor may exist. In some models, the trajectories spend time in small 
amplitude fluctuations about the g10 = 0 state, multipolar behaviour, e. 
g. run E4 between t = 7 and t = 9, run CCB1 between t = 2.3 and t =

2.7. This could be modelled in the stochastic framework by having a 
potential with a local minimum at g10 = 0 rather than the local 
maximum of Schmitt et al. (2001). However, this does raise the question 
of how the potential in a stochastic model is to be chosen when the 
paleomagnetic record lacks comprehensive coverage.

The way in which our low inertia reversing dynamos behave bears 
strong similarities to the behaviour at Pr = 1, in that in order to provoke 
a reversal Rm has to be increased so that the fluctuations in the field are 
large enough to overcome the barrier which keeps the field dipole 
dominated. However, in these new models it appears that it is not just 
the magnetic Reynolds number that plays a role, but the Péclet number 
also has an influence. When the nonlinear term in the codensity equation 
becomes large, the convection becomes more chaotic, thus enhancing 
the fluctuations. The codensity in the interior becomes more homoge-
neous, reducing the axisymmetric zonal flows driven by thermal winds, 
which affects the dynamo generation process. This could be why our 
models reverse more readily than Pr = 1 dynamo models. It is still the 

Fig. 14. Kinetic and magnetic energy spectra from runs listed in Tables 1, 2 and 3. (a) Volume and time averaged kinetic energy spectrum discussed in section 2.8. 
(b) Volume and time averaged magnetic energy spectrum defined in Eq. (32). (c) Time averaged magnetic energy spectrum at the CMB, using Eq. (31) with r = ro. 
The spectra are shifted in the plots such that 〈Fu〉S ,t(1) = 1 in (a), 〈FB〉S ,t(2) = 1 in (b) and 〈Fu〉t(2, ro) = 1 in (c).
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case that the fluctuations in the magnetic field are larger than the 
fluctuations in the convection, because rising and falling plumes stretch 
out loops of magnetic field giving local large bursts of magnetic energy. 
The compositionally driven models of Schaeffer et al. (2017) showed 
particularly strong fluctuating activity inside the tangent cylinder. We 
believe that this is the case for our Earth-like reversing dynamos too, but 
more work is needed to establish this conclusively. The FFFF dynamos, 
where reversals occurred at lower Rm and Pe, are more strongly driven 
near the CMB whereas the CCB models are driven mainly near the ICB, 
which might explain why the CCB models had more excursions than 
reversals compared to the FFFF models. This could be consistent with 
meridional circulation advecting field across the equator more easily in 
the FFFF case, following the ideas of Wicht and Olson (2004) who 
emphasised the importance of meridional circulation in promoting 
reversals.

We have not yet analysed the force balances in our simulations, but 

doing so would be of interest. As noted by Schwaiger et al. (2021) and 
Teed and Dormy (2023), the force balance depends on the length-scale 
under consideration. On the length-scale of the core, a few thousand km, 
inertia is small compared to the Coriolis force, but at the Rhines length- 
scale, a few km, they are comparable, and at even smaller scales the fluid 
hardly feels the effect of rotation. At these length scales there is likely to 
be a turbulent cascade down to the Kolmogorov scale at which the 
viscous dissipation occurs. It is possible that in this range there is an 
effective eddy diffusion, much larger than the molecular diffusion, and 
comparable to the magnetic diffusion. On this picture, the effective 
value of q could be of order unity rather than the very small values 
indicated by the molecular diffusion coefficients. In this situation, one 
might envisage a family of solutions, starting with the moderate E, high 
Pr and Pm solutions discussed here, in which E, Pm and Pr gradually 
reduce, keeping q ∼ O(1), producing a larger and larger range of length- 
scales in the flow, until eventually the smallest resolved length-scales 

Fig. 15. (a) Snapshot of the full resolution Br at the CMB from run CCB0, a run with Pr = 1 at time t = 2.1531. Compare with Fig.13(c) for the plot truncated at 
l = 13. (b) Snapshot of the full resolution Br at the CMB from run CCB4, a run with Pr = 35 at time t = 2.1340. Compare with Fig.13(a) for the plot truncated at 
l = 13. (c) Snapshot of the axisymmetric component of Bϕ in the r − θ plane from run CCB0 at t = 2.1531. (d) Snapshot of the axisymmetric component of Bϕ in the 
r − θ plane from run CCB4 at time t = 2.1340. (e) Snapshot of the axisymmetric component of uϕ in the r − θ plane from run CCB0 at time t = 2.1531. (f) Snapshot of 
the axisymmetric component of uϕ in the r − θ plane from run CCB4 at time t = 2.1340.
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would be at the Rhines scale, beyond which magnetic diffusion acts so 
fast that even smaller length scales would be irrelevant to the dynamo. 
The Rayleigh number in this family would be chosen so that the mag-
netic Reynolds number remained fairly constant, perhaps increasing 
weakly to the most plausible Earth-like value of O(1000). There is no 
possibility of establishing this with the numerical models used here, but 
it may be possible to develop reduced asymptotic models which speed 
up the computational process to allow some progress to be made to-
wards smaller E solutions.
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