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Time variation of the geomagnetic field at different spatial scales
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Spectra: to study properties at different spatial scales

(1) Lowes spectrum (r > rcmp)
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(a = Earth’s radius)

(2) Secular variation spectrum (r > 7¢yp)
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Secular variation time-scale spectrum

R(l) ~ “amount” of B? in spatial scale

Ry (1) ~ “amount” of B2 in spatial scale [

sviys Rsv Zin:O (g?m + thm) cmb

® characteristic time scale of magnetic field structures with spatial scale characterised by [

® numerical simulations and some satellite data support the simple power-law: 7, (I) ~ =1
(but there are debates about this)

® theoretically, there is an argument based on the frozen-flux hypothesis that involves the
radial magnetic field and the horizontal derivative:

Br =—Vh- (uhBT)
Vh~Il+1)~1 and u,~U
Tow ~ By /B ~ 171



Scaling of 7, (l): observations and numerical models

Christensen and Tilgner (2004) Holme and Olsen (2006)
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and numerical dynamo models 0
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Scaling of 7, (l): observations and numerical models

Lesur et al. (2008)
6yr CHAMP + 5yr observatory data
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The scaling exponent ~

Too(l) ~ 177 (excluding [ = 1)
Questions:
1. 7y is defined using the Gauss coefficients obtained from B outside the outer core.
Do 7y, and the scaling law 7, ~ ="' describe the time variation of B inside the outer core?

[No. Inside the outer core, B is not potential. B, By and B¢ may all be important.

2. Does the frozen-flux argument explain the scaling v = 1 observed at the surface?

[No. Magnetic diffusion is important near the CMB.)

3. What are the mechanisms controlling the scaling 7o, ~ 777

[1t varies, depending on locations and the boundary conditions.]



Generalisation to inside the dynamo region (outer core)

Recall the definition of the Lowes spectrum R(l,r,t) for r = rcmp,
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For any r, expand in vector spherical harmonics,

B(T‘, 67 ¢7 t) = Z [‘ﬂ'm(n t)Ylm(ev ¢) + Slm,(rv t)‘i’lm(er ¢) +tim (7“, t)%m(ev ¢)]
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We define the magnetic energy spectrum F(I,r,t) for all r:

+ 18tm|? + [tim|?) (4 — 36m.0)
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Generalisation to inside the dynamo region (outer core)

l
S (Iguml? + [5tm]? + [tm]?) (4 = 30,m,0)

m=0
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F(l,rt) =

Similarly, define the time variation spectrum Fg(l,r,t):
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Then, the magnetic time-scale spectrum is defined as:

F(l,rt)
) = < Fyl,r 1) >t

Outside the dynamo region: F'= R, Fz = Ry , T = Ty



A numerical model of geodynamo

Boussinesq, compositional driven, rotating convection of a electrically conducting fluid:

Du Pm Pm RaPm? Pm
— 42—z = ——VII' A ap— B) x B + PmV?
Dt+ TR xu Ekv —|—< Br >0r+Ek(Vx ) x B+ PmV-u,

B

8—=Vx(uxB)+v23

ot

DC Pm_,

- - -1

Dt Prvc

V-u=0

V-B=0

Boundary conditions: no-slip for u, Neumann for C
Domain: a spherical shell 0.1912a < r < 0.5462a
Ra=27x10%, Ek=25x10"°,Pm=25,Pr=1



Magnetic time-scale spectrum 7(l,7) at different depth
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For the large-scale modes (small 1),

® at the surface: 7 ~ [7!

® in the interior: 7 ~ 795, the large-scale modes speeds up in the interior!



Change in the scaling of 7: where does it occur?
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® ~ for the large-scale modes increases sharply within a boundary layer under CMB

Focus on the large scales in following discussion . ..



Change in the scaling of 7: who causes it?
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Change in the scaling of 7: who causes it?
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Change in the scaling of 7: who causes it?

FB ~ le
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Transition in terms of poloidal and toroidal time scales

r=0.65282r, r=0.99901r,, r =0.99994r
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® interior: Bp, and Br,, are equally important, 7 ~ 7 ~ 705

~
por > T

Tor

#® no change in shape for 7,

Broy — 0 as 7 — Temb, SO Ty,

but the magnetic boundary condition requires
becomes irrelevant near the CMB

® AsT = remp o, ~ 1700 transitions to 7., ~ 17! and B~ Bpy = T~ T, ~ 1!

2ol

® contribution of BTor (Be and B¢) to B in the interior masked by the boundary conditions



What processes control the scaling of 7 in

the interior?

(a) r =0.57227cp

10°
10®
107
109
10°

10*

10°

10°

107
109
10°

10*

10°

(b) r =0.99987 11,

107
108
107
106
10°
107
108
107
106
10°

=10

10° 10t

1

0° 10! 10%
l

frozen-flux argument not applicable:

® By and B¢ contribute significantly to B
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B=Vx(uxB)+nV’B=C+H

Fy ~ Fc (magnetic diffusion negligible), Fg ~ Fo ~ 1 = 7~ 1793

® By and qu dominated by radial derivatives in the induction term C

T/Temb
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What processes control the scaling of 7 near the CMB?

(a) 7 =0.5722rqm (b) 7 =0.99987 1, 10 ©
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B=Vx(uxB)+nV’B=C+H
® Fp~l? = 7~ but...
® ForFy,Fo~Fg~1(C and H cancel to leading order)

® H is important = frozen-flux argument is not applicable in explaining 7 ~ [~! at the CMB



Summary

¥

N

scaling of 7(I,r) with [ observed outside the outer core is different from that in the interior

for the large scales:

7~ 17%% in the interior
T~ at the CMB

the transition occurs within a boundary layer under the CMB

time variation of By, in the interior is hidden from surface observation by the magnetic
boundary condition at the CMB

for the large scales, F5 is responsible for the transition (r = /F/Fy)
» in the interior, induction term C dominates, B ~ C and Fg~1

# at the CMB (no-slip), balance between the induction term and magnetic diffusion leads
to Fj ~ [, meaning frozen-flux argument not applicable



