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Pure thermal convection
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Consider a Boussinesq fluid in a rotating spherical shell of inner radius ri and outer radius ro

thermal diffusivity: κT

density: ρ(T ) = ρm[1− αT (T − Tm)] , Fbuoy = ρg/ρm

buoyancy frequency: N2 = − g
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Oscillatory double-diffusive convection (ODDC)
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Consider a Boussinesq fluid in a rotating spherical shell of inner radius ri and outer radius ro

composition diffusivity: κC ≪ κT

density: ρ(T ,C) = ρm[1− αT (T − Tm) + αC(C − Cm)] , Fbuoy = ρg/ρm

buoyancy frequency: N2 = − g
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Governing equations of ODDC

Perturbations temperature and perturbation composition:

T (x, t) = Ts(r) + Θ(x, t), C(x, t) = Cs(r) + ξ(x, t)

Non-dimensional equations:
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Dimensionless numbers:
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ODDC at low Rayleigh numbers
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N2 < 0: top-heavy , N2 > 0: bottom-heavy

Ra0: critical Rayleigh number for pure thermal convection

pure thermal convection: unstable when N2 < 0 and RaT > Ra0



Phase diagram: Ek = 10−5
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Expected features:

at small |RaC |, similar to pure thermal convection

at large |RaC |, compositional effects stabilise the system

Counter-intuitive features (intermediate |RaC |):
the system can become unstable even when N2 > 0 (bottom-heavy)

sustained motion is possible at some RaT < Ra0



RaT = 8× 105 (< Ra0) , RaC = 1.8× 106

large-scale structures

retrograde

only exists at small Ek
(rapid rotation)



RaT = 3× 106 > Ra0

∗ RaC = 5× 105

prograde

∗ RaC = 8× 106◦
prograde/retrograde

◦ RaC = 2× 107

retrograde



RaT = 3× 106 > Ra0

pure thermal convection
prograde

∗ RaC = 8× 106◦
prograde/retrograde

◦ RaC = 2× 107

retrograde



Thin cylindrical annulus model (Busse, 1986)
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FIGURE 1. Geometrical configuration of the rotating cylindrical annulus. 

zonal flow or a vacillating time dependence which appears to give rise to a chaotic 
time dependence at higher Rayleigh numbers. These phenomena have been found in 
the numerical analysis of the nonlinear problem by Or & Busse (1986, hereinafter 
referred to as OB). In the present paper an asymptotic theory capable of describing 
these features is outlined. 

2. Mathematical formulation of the problem 
We consider a fluid-filled cylindrical annulus rotating about its axis of symmetry 

with angular velocity D as shown in figure 1. The inner and outer cylindrical walls 
are kept at the constant temperatures To &+AT respectively, such that a density 
gradient opposite to the direction of the centrifugal force is established as the basic 
state of the system. In application to planetary problems, the analogous buoyancy 
effect would be provided by the opposite density gradient since the component of 
gravity perpendicular to the axis of rotation is in the opposite direction to the 
centrifugal force. For our laboratory application, the gravity force acting parallel 
to the vertical axis of rotation could be taken into account (Busse 1970), but it has 
little effect as long as the centrifugal force is of the s%me order as or larger than 
gravity. 

Using the gap width D of the annulus as the lengthscale, D2/v  as the timescale, 
where v is the kinematic viscosity, and PAT as the temperature scale, where P is 
the Prandtl number, the Navier-Stokes equations of motion and the heat equation 
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cylinder annulus with top and bottom tilted at a constant angle χ

captures two physics of the spherical shell

1. rotation

2. curvature of the spherical geometry
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FIGURE 1. Geometrical configuration of the rotating cylindrical annulus. 
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gradient opposite to the direction of the centrifugal force is established as the basic 
state of the system. In application to planetary problems, the analogous buoyancy 
effect would be provided by the opposite density gradient since the component of 
gravity perpendicular to the axis of rotation is in the opposite direction to the 
centrifugal force. For our laboratory application, the gravity force acting parallel 
to the vertical axis of rotation could be taken into account (Busse 1970), but it has 
little effect as long as the centrifugal force is of the s%me order as or larger than 
gravity. 

Using the gap width D of the annulus as the lengthscale, D2/v  as the timescale, 
where v is the kinematic viscosity, and PAT as the temperature scale, where P is 
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rapid rotation: geostrophic balance at leading order (columnar structures)

integration (average) over height ⇒ two-dimensional system

thin annulus ⇒ Cartesian coordinate (x, y)



ODDC on a two-dimensional β-plane
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Linear stability analysis

Linearised equations:
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Eigenmodes: ψ(x, y, t) = ψ̂ sin(kx)eilyeλt

Θ(x, y, t) = Θ̂ cos(kx)eilyeλt

ξ(x, y, t) = ξ̂ cos(kx)eilyeλt

Complex growth rate:

λ = σ + iω (σ, ω ∈ R)
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Maximum growth rate

Solvability condition:

λ3 +

(
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λ
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2 + iβk2hl
]
= 0.

k = mπ, k2h ≡ k2 + l2, m, n ∈ Z ; τ = Pr/Sc = 0.1, β = 1.78× 105

three roots: λq = σq + iωq, q = 1, 2, 3

for each (k, l), RaT , RaC : calculate λq(k, l;RaT , RaC), q = 1, 2, 3

σmax
q (RaC , RaT ) = max

k,l

{
σq(k, l ;RaC , RaT )

}
σmax(RaC , RaT ) = maxq

{
σmax
q

}
There is always a decaying solution: σ2 < 0



Results: σmax
1 and σmax
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Understanding the nonlinear spherical results using σmax
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λ1 = σ1 + iω1: short-wavelength, prograde mode

unstable when RaT > Ra0
∼ pure thermal convection (modified by compositional effects)

λ3 = σ3 + iω3: long-wavelength, retrograde mode

can exists at some RaT < Ra0 (strong rotation needed)

a “genuine” double-diffusive effect

there is a range of |RaC | in which the two modes can coexists with minimal interaction


