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Let’s start on Earth . . .
Structure of the Earth

CRUST
various types of rocks

MANTLE
magnesium-iron silicate

OUTER CORE
liquid iron + nickle

INNER CORE
solid iron + nickle

CMB

(not to scale)

core-mantle boundary (CMB): sharp boundary between the
non-conducting mantle and the conducting outer core

location of CMB rdyn: the depth at which dynamo action starts

seismic waves observation gives rdyn ≈ 3486 km

another way to estimate rdyn: magnetic power spectrum



Gauss coefficients glm and hlm

Outside the dynamo region, rdyn < r < a:

j = 0

∇× B = µ0 j = 0 =⇒ B = −∇Ψ

∇ · B = 0 =⇒ ∇2Ψ = 0

a = radius of Earth

Consider only internal sources,

Ψ(r, θ, φ) = a
∞∑

l=1

l∑
m=0

(a
r

)l+1
P̂lm(cos θ)(glm cos mφ+hlm sin mφ)

P̂lm : Schmidt’s semi-normalised associated Legendre polynomials

glm and hlm are determined from magnetic field measurements
on the surface (r ≈ a)

Earth interior

rdyn

a

j = 0

dynamo region



The Lowes spectrum

Average magnetic energy over a spherical surface of radius r

EB(r) =
1

2µ0

1
4π

∮
|B(r, θ, φ)|2 sin θ dθ dφ

Inside the source-free region rdyn < r < a,

2µ0EB(r) =
∞∑

l=1

(a
r

)2l+4
(l + 1)

l∑
m=0

(
g2

lm + h2
lm

)
Lowes spectrum (magnetic energy as a function of l):

Rl(r) =
(a

r

)2l+4
(l + 1)

l∑
m=0

(
g2

lm + h2
lm

)
=
(a

r

)2l+4
Rl(a) (downward continuation)



Estimate CMB using the Lowes spectrum

Rl(a)

Figure 3.4.6.1

1989. We have exponential behavior, completely different from the gravity spectrum’s, which is essentially a power law

(See Fig 7, Part I, though we plot a slightly different kind of spectrum, without the multiplying quadratic in l).

The natural interpretation of this result is that the two parts of the spectrum reflect different source regions – the long

wavelength fields with l ≤ 13 come almost entirely from the core, those with l > 13 from the crust. This idea is given

considerable support from the observation that the equation of the best straight line through the core spectrum is α(r1/a)2l

where r1 = 3, 407km, which is not very different from the core radius c = 3, 486 km, according to seismologists. Why

would one expect this equation for fields with their sources in the core? One argument runs as follows: consider the

spectrum on spheres of different radii r. If it is permissible to downward continue the field through mantle, treating the

mantle as a nonmagnetic insulator, then we find that

Rl(r) = (a/r)2l+4Rl(a). (89)

When we substitute r = c and plot the spectrum that would be observed at the surface of the core we obtain the spectrum

in Figure 3.4.6.2, which is almost flat. A flat spectrum is one in which there is equal energy at every scale, the sort of
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a = Earth’s radius

Rl(c) =
(a

c

)2l+4
Rl(a)

Figure 3.4.6.2

thing predicted in homogeneous turbulence. A plausible argument might be made that the fluid motions in the core cause

a distribution of magnetic energy evenly into the different scales. This seems to work, except for the dipole term, which

clearly is unusually large, and doubtless this fact reflects the dominance of the Earth’s rotation in the geodynamo.

The large-l spectrum makes no sense if the sources are the core; why should the energy apparently increase exponentially

with l? Rather we can show (Jackson, Geophys. J. Int. 103, pp 657-74, 1990) that randomly distributed sources of

magnetization in the crust would yield a mildly rising spectrum like the one seen in Figure 3.4.6.1. We suspect the core

contribution continues on its exponential decline, but is completely obscured by the crustal field at shorter wavelengths.

Finally, Constable and Parker (J. Geophys. Res. 93, pp 11569-81, 1988) suggested that the flatness of Rl(c) was most

unlikely to be an accident of the 20th century, but instead it may be a persistent feature of the geomagnetic field common to

the geodynamo throughout geologic history, with the possible exception of times near reversals. They also discovered that

the coefficients bml when normalized to the radius of the core resembled a set of numbers drawn from a zero mean, Gaussian

random process, a remarkable fact in itself. If this property holds for other geologic times, it becomes possible to predict

what constitutes "normal" statistical behavior of the ancient geomagnetic field. Subsequent work has shown that the true

field had some small but definite departures from the uniform Gaussian model, but it remains a useful approximation.
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c = 3486 km ≈ 0.55a
(Robert Parker, UCSD)

white noise source hypothesis: turbulence in the core leads to
even distribution of magnetic energy across different scales l

Rl(c) independent of l =⇒ c ≈ rdyn



Interior structure of Jupiter Interior structure of Jupiter
The Astrophysical Journal Supplement Series, 202:5 (11pp), 2012 September French et al.
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Figure 7. Dependence of the electrical (top) and the thermal (bottom) conduc-
tivity on the concentration of helium: Y1 ≈ 0.238 (dotted line), Y ≈ 0.275
(solid line), and Y2 ≈ 0.311 (dashed line). These calculations were performed
with the PBE functional.

concentration along the Jupiter adiabat. These quantities are
potentially not as insensitive to the stoichiometry as η, λi , or
diffusion coefficients and its influence needs some assessment.

Several calculations are performed for three different helium
concentrations using the PBE functional. The general trends
are displayed in Figure 7 and the correct absolute values
for the conductivities can be obtained by scaling with the
HSE:PBE ratios shown in Figure 5. In particular, we have chosen
216 hydrogen and 20 helium atoms to represent the mean helium
fraction (Y ≈ 0.275), 222 hydrogen and 17 helium atoms (Y1 ≈
0.238) for the outer layer, and 208 hydrogen and 24 helium
atoms (Y2 ≈ 0.311) for the inner layer, respectively. The
electrical and thermal conductivities of the H–He mixtures are
mainly determined by the hydrogen subsystem. They decrease
systematically with the helium concentration, similar to what
was found by Lorenzen et al. (2011).

For all considered concentrations, the dependence of σe and
λe on the helium abundance is relatively small. In a case where
the influence of the helium concentration on the conductivity has
to be accounted for, both this work and that of Lorenzen et al.
(2011) can be used to scale the conductivities in the vicinity
of the mean helium fraction. The discontinuity of the helium
concentration at the layer boundary is a characteristic attribute
of three-layer models by definition, however, it is relatively
small in our models: from Y1 = 0.238 in the outer envelope to
Y2 = 0.291 (J11-4a) or 0.311 (J11-8a) in the inner envelope.
Therefore, and also due to the high computational demands,
we restrict our following calculations with the HSE functional
solely to the mean helium fraction (Y ≈ 0.275).

The main results for the electrical conductivity σ = σe and
the magnetic diffusivity β = 1/μ0σ , where μ0 is the vacuum
permeability, were obtained with the HSE functional (Heyd
et al. 2003, 2006). They are displayed in Figure 8. The most
prominent feature is the transition from nonmetallic to metallic-
like conduction (σ � 2 × 104 S m−1; see Redmer & Holst
2010) at about 0.9 RJ , which corresponds to a pressure level of
0.5 Mbar. The transition is continuous because Jupiter’s adiabat
lies above the critical point of the first-order liquid–liquid phase
transition in hydrogen predicted by Morales et al. (2010) and
Lorenzen et al. (2010); see Figure 3.

Various interpolation formulae have been constructed for
the electrical conductivity based on limiting cases, e.g., the
Spitzer theory (Spitzer & Härm 1953) for fully ionized classical
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Figure 8. Upper panel: electrical conductivity along Jupiter’s adiabat calculated
with the HSE functional assuming a constant mean He fraction of Y ≈ 0.275.
Comparison with different models and estimations is made (Stevenson &
Salpeter 1977; Lee & More 1984; Röpke & Redmer 1989; Liu et al. 2008;
Gómez-Pérez et al. 2010); see the text for further details. Lower panel:
magnetic diffusivity β = 1/μ0σ along Jupiter’s adiabat calculated with the
HSE functional.

plasmas, and the Ziman theory (Ziman 1961) for degenerate
plasmas; see Röpke (1988) and Röpke & Redmer (1989).
We compare our ab initio results with such transport theories
developed for strongly coupled plasmas (Röpke & Redmer
1989; Lee & More 1984) assuming a fully ionized hydrogen
plasma with a density that is equal to its partial density in our
H–He mixture. We also compare our results with the model
of Stevenson & Salpeter (1977) which takes into account the
influence of helium. The formula of Stevenson & Salpeter
(1977) is derived from the Ziman theory by employing hard
sphere static structure factors. The model of Lee & More
(1984) is based on the relaxation-time approximation for the
Boltzmann equation which is solved for arbitrary degeneracy.
Desjarlais (2001) generalized this approach to partial ionization
later. Partial ionization is relevant for the metal-to-nonmetal
transition region in Jupiter and by far most challenging for
transport theory since the chemical composition (ionization
degree) and the effective interactions between the various
species (i.e., electrons, ions, atoms, molecules, molecular ions,
etc.) have to be determined within an appropriate theoretical
treatment. Advanced chemical models have been developed for
this purpose; see Redmer (1997). These rely on assumptions for
the discrimination between free and bound electrons as well as
on effective pair potentials, which becomes questionable in the
warm dense matter regime along Jupiter’s adiabat.

We avoid such difficulties by applying a strictly physical
picture of electrons and nuclei. Hence, we are able to give
accurate predictions for the electrical conductivity over a range
of 14 orders of magnitude, from metallic-like conduction in the
deep interior to nonmetallic values in the outer envelope.

8

0 0.5RJ RJ
(NASA JPL) (French et al. 2012)

low temperature and pressure near surface⇒ gaseous molecular H/He

extremely high temperature and pressure inside⇒ liquid metallic H

core?

conductivity σ(r) varies smoothly with radius r



Lowes spectrum for Jupiter: observations

Journal of Geophysical Research: Planets 10.1002/2015JE004951

Table 5. Implied Dipole Properties at the Start and End of Data Collection for the 𝜆 = 2 × 10−1JSV Solution, With and
Without the 𝜓 = −3.8∘ Implementeda

Start Start End End Change (year−1) Change (year−1)

𝜓 = 0.0∘ 𝜓 = −3.8∘ 𝜓 = 0.0∘ 𝜓 = −3.8∘ 𝜓 = 0.0∘ 𝜓 = −3.8∘

g0
1 (nT) 408987.22 408939.78 410253.52 410233.95 0.011% 0.011%

g1
1(nT) −66783.92 −66765.03 −69730.22 −68082.17 0.149% 0.068%

h1
1 (nT) 25698.55 25682.01 21993.29 26503.68 −0.537% 0.109%|M| (nT) 415200.02 415149.23 416718.09 416688.76 0.013% 0.013%

𝜃M (∘) 9.924 9.922 10.105 10.098 0.006 0.006

𝜙M (∘) 158.953 158.960 162.494 158.730 0.122 −0.008
aThe last column, “Change” denotes the SV as a % yr−1 of the field attribute at time zero (∼1988.38) or a ∘ yr−1 of 𝜃M

or 𝜙M at time zero.

by the end of Galileo. This translates to a ∼3.5∘ westward change over the period of investigation. If the two
earliest Pioneer solutions are discounted, along with the P11 + Amalthea solution of Randall [1998], there is
good agreement of a linear displacement in 𝜙M with time both among prior models and compared with our
solution; this is further bolstered by the fact that VIP4 is weighted more heavily toward the satellite data of
the early era than VIT4 [Connerney et al., 1998].

Comparison of our solution with models for the geomagnetic field is difficult. Considering the 2010 Definitive
Geomagnetic Reference Field (DGRF), the lowes power spectrum of the geomagnetic field flattens at the
core-mantle boundary with a low quadrupole component and higher octopole, with intermediate power at
l = 4. This is the same general configuration as that seen for our preferred model plotted at a dynamo source
depth of 0.85 RJ (Figure 11) (better than 0.8 or 0.9); however, if the spectra are scaled to unit dipole power, as
in Figure 11, it becomes clear that the Jovian dipole is a more dominant component of the total field than that
of the Earth.

The dipole moment rate of change of 0.013% yr−1 seen for our preferred model is roughly one quarter of the
average rate of decrease of the geomagnetic |M| between 2005 and 2010 of 0.056% yr−1; in the past 110 years
of DGRF models, ranges between 0.020% yr−1 and 0.065% yr−1. The 0.006∘ yr−1 change in 𝜃M for Jupiter is
also much smaller than that seen at Earth in recent years (∼0.053∘ yr−1 between 2005 and 2010) and the
mean change between DGRF solutions since 1900 of ∼0.015∘ yr−1. In contrast, the modeled change in dipole
longitude 𝜙M of ∼0.122∘ yr−1 is 3 times greater for Jupiter than Earth, which has an average rate of change
since 1900 of 0.041∘ yr−1.

Figure 11. Magnetic field spectra for Earth (IGRF2010), plotted at core-mantle boundary (CMB), and for Jupiter
(JSV model), plotted at depths of 0.8,0.85, and 0.9 RJ . All spectra normalized to unit power for the dipole (l = 1) term.
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Figure 7. Dependence of the electrical (top) and the thermal (bottom) conduc-
tivity on the concentration of helium: Y1 ≈ 0.238 (dotted line), Y ≈ 0.275
(solid line), and Y2 ≈ 0.311 (dashed line). These calculations were performed
with the PBE functional.

concentration along the Jupiter adiabat. These quantities are
potentially not as insensitive to the stoichiometry as η, λi , or
diffusion coefficients and its influence needs some assessment.

Several calculations are performed for three different helium
concentrations using the PBE functional. The general trends
are displayed in Figure 7 and the correct absolute values
for the conductivities can be obtained by scaling with the
HSE:PBE ratios shown in Figure 5. In particular, we have chosen
216 hydrogen and 20 helium atoms to represent the mean helium
fraction (Y ≈ 0.275), 222 hydrogen and 17 helium atoms (Y1 ≈
0.238) for the outer layer, and 208 hydrogen and 24 helium
atoms (Y2 ≈ 0.311) for the inner layer, respectively. The
electrical and thermal conductivities of the H–He mixtures are
mainly determined by the hydrogen subsystem. They decrease
systematically with the helium concentration, similar to what
was found by Lorenzen et al. (2011).

For all considered concentrations, the dependence of σe and
λe on the helium abundance is relatively small. In a case where
the influence of the helium concentration on the conductivity has
to be accounted for, both this work and that of Lorenzen et al.
(2011) can be used to scale the conductivities in the vicinity
of the mean helium fraction. The discontinuity of the helium
concentration at the layer boundary is a characteristic attribute
of three-layer models by definition, however, it is relatively
small in our models: from Y1 = 0.238 in the outer envelope to
Y2 = 0.291 (J11-4a) or 0.311 (J11-8a) in the inner envelope.
Therefore, and also due to the high computational demands,
we restrict our following calculations with the HSE functional
solely to the mean helium fraction (Y ≈ 0.275).

The main results for the electrical conductivity σ = σe and
the magnetic diffusivity β = 1/μ0σ , where μ0 is the vacuum
permeability, were obtained with the HSE functional (Heyd
et al. 2003, 2006). They are displayed in Figure 8. The most
prominent feature is the transition from nonmetallic to metallic-
like conduction (σ � 2 × 104 S m−1; see Redmer & Holst
2010) at about 0.9 RJ , which corresponds to a pressure level of
0.5 Mbar. The transition is continuous because Jupiter’s adiabat
lies above the critical point of the first-order liquid–liquid phase
transition in hydrogen predicted by Morales et al. (2010) and
Lorenzen et al. (2010); see Figure 3.

Various interpolation formulae have been constructed for
the electrical conductivity based on limiting cases, e.g., the
Spitzer theory (Spitzer & Härm 1953) for fully ionized classical
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Figure 8. Upper panel: electrical conductivity along Jupiter’s adiabat calculated
with the HSE functional assuming a constant mean He fraction of Y ≈ 0.275.
Comparison with different models and estimations is made (Stevenson &
Salpeter 1977; Lee & More 1984; Röpke & Redmer 1989; Liu et al. 2008;
Gómez-Pérez et al. 2010); see the text for further details. Lower panel:
magnetic diffusivity β = 1/μ0σ along Jupiter’s adiabat calculated with the
HSE functional.

plasmas, and the Ziman theory (Ziman 1961) for degenerate
plasmas; see Röpke (1988) and Röpke & Redmer (1989).
We compare our ab initio results with such transport theories
developed for strongly coupled plasmas (Röpke & Redmer
1989; Lee & More 1984) assuming a fully ionized hydrogen
plasma with a density that is equal to its partial density in our
H–He mixture. We also compare our results with the model
of Stevenson & Salpeter (1977) which takes into account the
influence of helium. The formula of Stevenson & Salpeter
(1977) is derived from the Ziman theory by employing hard
sphere static structure factors. The model of Lee & More
(1984) is based on the relaxation-time approximation for the
Boltzmann equation which is solved for arbitrary degeneracy.
Desjarlais (2001) generalized this approach to partial ionization
later. Partial ionization is relevant for the metal-to-nonmetal
transition region in Jupiter and by far most challenging for
transport theory since the chemical composition (ionization
degree) and the effective interactions between the various
species (i.e., electrons, ions, atoms, molecules, molecular ions,
etc.) have to be determined within an appropriate theoretical
treatment. Advanced chemical models have been developed for
this purpose; see Redmer (1997). These rely on assumptions for
the discrimination between free and bound electrons as well as
on effective pair potentials, which becomes questionable in the
warm dense matter regime along Jupiter’s adiabat.

We avoid such difficulties by applying a strictly physical
picture of electrons and nuclei. Hence, we are able to give
accurate predictions for the electrical conductivity over a range
of 14 orders of magnitude, from metallic-like conduction in the
deep interior to nonmetallic values in the outer envelope.
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0 0.5RJ RJ
(Ridley & Holme 2016) (French et al. 2012)

glm and hlm for lmax ∼ 4− 7 computed from magnetic measurements of
various missions (e.g. Pioneer 10 & 11, Voyager 1 & 2, JUNO: lmax = 12)

downward continuation to a flat Lowes spectrum⇒ 0.73RJ . rdyn . 0.90RJ

For a continuous conductivity profile σ(r):

dynamo action in transition region?
dynamo radius rdyn well-defined?
estimation of rdyn from Lowes spectrum reliable?



A numerical model of Jupiter
spherical shell of radius ratio rin/rout = 0.0963 (small core)

anelastic: linearise about a hydrostatic adiabatic basic state (ρ̄, T̄, p̄, . . . )

rotating fluid with electrical conductivity σ(r) forced by buoyancy

convection driven by secular cooling of the planet

dimensionless numbers: Ra,Pm,Ek,Pr

∇ · (ρ̄u) = 0

Ek
Pm

[
∂u
∂t

+ (u · ∇)u
]

+ 2ẑ× u = −∇Π′ +
1
ρ̄

(∇× B)× B−
(

EkRaPm
Pr

)
S

dT̄
dr

r̂ + Ek
Fν

ρ̄

∂B
∂t

= ∇× (u× B)−∇× (η∇× B)

ρ̄T̄
(
∂S
∂t

+ u · ∇S
)

+
Pm
Pr
∇ ·FQ =

Pr
RaPm

(
Qν +

1
Ek

QJ

)
+

Pm
Pr

HS

Boundary conditions: no-slip at rin and stress-free at rout, S(rin) = 1 and S(rout) = 0, electrically
insulating outside rin < r < rout

(Jones 2014)



A numerical model of Jupiter
spherical shell of radius ratio rin/rout = 0.0963 (small core)

anelastic: linearise about a hydrostatic adiabatic basic state (ρ̄, T̄, p̄, . . . )

rotating fluid with electrical conductivity σ(r) forced by buoyancy

convection driven by secular cooling of the planet

dimensionless numbers: Ra,Pm,Ek,Pr

a Jupiter basic state:

is Nphi/3-1 because of de-aliasing. The h and / resolutions shown
in Table 1 are defined as

hres ¼
1

Nm

Xl¼L

l¼L�4

Xminðl;MÞ

m¼0

Elm

Etot
; /res ¼

1
5ðL�MÞ þ 15

Xm¼M

m¼M�4

Xl¼L

l¼m

Elm

Etot
;

L ¼ 2Nth=3� 1; M ¼ Nphi=3� 1;

Nm ¼
5ðM þ 1Þ if M 6 L� 5
5
2 ðLþMÞ � 1

2 ðL�M � 2Þ2 � 3 if L� 4 6 M 6 L

(
ð4:1Þ

where Elm is the energy in the spherical harmonic of degree l and
order m and Etot is the energy summed over all harmonics. hres is
the energy in the last 5 spherical harmonics, i.e. those of degree
L� 4 6 l 6 L, divided by the product of the total energy and the
number of modes that contribute to the last 5 harmonics. The
/-resolution is defined similarly but using the order of the spherical
harmonics rather than the degree. Note that because m cannot
exceed l, a much larger number of harmonics can contribute to
the last five l harmonics than to the last five m harmonics. To com-
pensate for this, in (4.1) we divide by the number of modes contrib-
uting as well as the total energy. This gives a convenient measure of
how fast the higher harmonics are dropping off in the energy
spectrum. Table 1 shows the results using the kinetic energy spec-
trum. In this region of the parameter space, the convergence of the
magnetic energy spectrum and the entropy spectrum are similar in
magnitude. Run C had the lowest resolution, and was run for over 2
diffusion times. The behaviour is very similar to that of run A. Run D

has the highest resolution in h and was run for about 0.5 magnetic
diffusion times. Note that the extra harmonics introduced in runs D
and G by increasing Nth have dramatically improved the h-conver-
gence, as we would expect, but have not reduced the /-convergence
as much. The cumulative average of the dipole at t ¼ 1:2 was 0.40
for Run A and 0.41 for run D. This indicates satisfactory convergence
in the spherical harmonic expansions. The differences between the
Nr = 128 and Nr = 160 runs were minor. Checks were also made on
the timestep controller, to ensure the timestep was small enough to
make no major differences to long term averages. The timestep was
normally around 10�7 or slightly less in the presented runs.

4.2. Time-dependence of the solutions

Fig. 2 shows results for the case Pr ¼ 0:1; Pm ¼ 3;
E ¼ 2:5� 10�5; Ra ¼ 1:1� 107, details of the runs being given in
Table 1. The magnetic energy, kinetic energy, and dimensionless
heat flux, are defined as in Section 4 of Jones et al. (2011). To show
how key quantities are converging to a steady mean, cumulative
averages are shown starting at t ¼ 0:2 magnetic diffusion times,
to remove the effect of initial transients. It was noted in Jones
et al. (2011) that very long runs are needed to obtain very accurate
values of the average energies, and the high resolution require-
ment and short timestep makes this impractical, but the cumula-
tive average gives an idea of how the energies and dipole
moment are approaching statistically steady values. The cumula-
tive average over all available data for each run is given in Table 1,
with a brief comment on the nature of each dynamo. Starting with
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Fig. 1. (a) Density as a function of radius for the reference state. The smooth curve is the interpolation formula used in the model, crosses are data points from model J11-8a
(French et al., 2012). (b) Diffusivity as a function of radius. (c) Temperature as a function of radius.
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ρ̄(r) η(r) =
1

µ0σ(r)



Ra = 2× 107, Ek = 1.5× 10−5, Pm = 3, Pr = 0.1
radial magnetic field
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Dynamo radius from Lowes spectrum
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rdyn = 0.87rJ , how reliable is this estimate?



Magnetic power spectrum, Fl(r)
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|B(r, θ, φ)|2 sin θ dθ dφ
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j = 0 exactly =⇒ Rl(r) = Fl(r)



Rl(r) versus Fl(r)
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j 6= 0 (Rl deviates from Fl) starting at about 0.9rJ

Lowes spectrum Rl prediction deeper than actual rdyn

numerical model produces rdyn consistently with observations

transition layer (moderate σ) not contributes to dynamo action

Fl(r) ∼ flat in a large range 0.5rJ < r < 0.9rJ: white-noise source


