

Revealing small-scale structures in turbulent Rayleigh-Bénard convection

Yue-Kin Tsang

School of Mathematics and Statistics University of St Andrews

Emily S. C. Ching , Adam T. N. Fok Department of Physics, The Chinese University of Hong Kong

XiaoZhou He, Penger Tong

Department of Physics, Hong Kong University of Science and Technology

Thermal convection

- Free convection
 - imposed temperature gradient leads to density difference in a fluid
 - hot fluid tends to rise, cold fluid tends to fall
 - flow is driven by buoyancy
- Applications
 - sitchen:
 - boiling water in a kettle
 - air flow in an oven
 - atmosphere and ocean:
 - formation of cloud and thunderstorms
 - oceanic *deep convection* → moderate winter climate in northern Europe
 - Earth's interior: mantle convection

Rayleigh-Bénard convection

Fluid in a box heated from below and cooled from above

Rayleigh number
Ra =
$$\frac{\alpha g H^3 \Delta T}{\nu \kappa}$$
Prandtl number
Pr = $\frac{\nu}{\kappa}$
Aspect ratio

$$\Gamma = \frac{D}{H}$$

ν: viscosity*κ*: thermal diffusivity*α*: volume expansion coefficient

Rayleigh-Bénard convection

Left: Ra = 6.8×10^8 , Pr = 596 (dipropylene glycol), Γ = 1 X. D. Shang, X. L. Qiu, P. Tong, and K.-Q. Xia, Phys. Rev. Lett. 90, 074501 (2003)

<u>Right</u>: Ra = 2.6×10^9 , Pr = 5.4 (water), Γ = 1 Y. B. Du and P. Tong, J. Fluid Mech. 407, 57 (2000)

Global and local properties

- Large-scale (global) quantites, e.g. total heat transfer across the system
- Small-scale (local) quantities
 - structure of velocity and temperature fields
 - effects of thermal plums
 - **•** Tool: structure functions, e.g.

$$S_u^{(p)}(r) = \langle |u(\vec{x} + \vec{r}) - u(\vec{x})|^p \rangle_{\vec{x}}$$

$$S_T^{(p)}(r) = \langle |T(\vec{x} + \vec{r}) - T(\vec{x})|^p \rangle_{\vec{x}}$$

expect different behaviour in the bulk and near the boundaries

Temperature structure functions

$$S_T^{(p)}(r) = \langle |T(\vec{x} + \vec{r}) - T(\vec{x})|^p \rangle_{\vec{x}}$$

- probing activities at scale r
- larger *p* emphasizes more extreme events
- motivations from Kolmogorov-type phenomenology
- scaling behavior:

$$S_T^{(p)}(r) \sim r^{\zeta_T}$$

Given a time-series of measurement T(t) at a fixed location, one can define a time domain structure function:

$$S_T^{(p)}(\tau) = \langle |T(t+\tau) - T(t)|^p \rangle_t$$

• Taylor's frozen flow hypothesis $\Rightarrow S_T^{(p)}(\tau) \sim \tau^{\zeta_T}$

Cascade picture: passive scalar

Energy and temperature variance transferred from large scales to small scales, eventually being dissipated at the smallest scales ε = mean energy dissipation rate χ = mean thermal dissipation rate

- no buoyancy, energy transfer rate Π is scale independent $\Pi = \varepsilon$ in the inertial range
- **•** relevant parameters are: ε , χ , r
- Obukhov-Corrsin scaling:

$$S_T^{(p)}(r) \sim \varepsilon^{-p/6} \chi^{p/2} r^{p/3}$$

Cascade picture: active scalar

$$\partial_t \vec{u} + (\vec{u} \cdot \nabla)\vec{u} = -\nabla p + \nu \nabla^2 \vec{u} + \alpha g T \hat{z}$$
$$\partial_t T + (\vec{u} \cdot \nabla)T = \kappa \nabla^2 T$$

- **buoyancy is important**, $\Pi(2r)$ is negligible at r $\Pi(r) = \alpha g u_r T_r$ in the inertial range
- relevant parameters are: αg , χ , r
- Bolgiano-Obukhov scaling:

$$S_T^{(p)}(r) \sim (\alpha g)^{-p/5} \chi^{2p/5} r^{p/5}$$

Intermittency correction

- ε and χ varies significantly in space
- **Refined similarity hypothesis:** replace ε and χ by their local average over a ball of radius *r* about \vec{x} , $\mathcal{B}(\vec{x}, r)$

$$\varepsilon_r(\vec{x}) = \langle \varepsilon(\vec{x}') \rangle_{\vec{x}' \in \mathcal{B}}$$

$$\chi_r(\vec{x}\,) = \langle \chi(\vec{x}\,') \rangle_{\vec{x}' \in \mathcal{B}}$$

The scaling predictions become

OC (passive):
$$S_T^{(p)}(r) \sim \langle \varepsilon_r^{-p/6} \rangle_{\vec{x}} \langle \chi_r^{p/2} \rangle_{\vec{x}} r^{p/3}$$

BO (active): $S_T^{(p)}(r) \sim (\alpha g)^{-p/5} \langle \chi_r^{2p/5} \rangle_{\vec{x}} r^{p/5}$

• $\langle \varepsilon_r^{-p/6} \rangle_{\vec{x}}$ and $\langle \chi_r^{p/2} \rangle_{\vec{x}}$ are *r*-dependent, hence modifying the scaling exponents of $S_T^{(p)}(r)$

Some previous experimental work

Early time-domain measurements

- Wu et al.(PRL 1990) reported BO scaling at the convection cell center (using helium gas)
- Niemela et al. (Nature 2000) found BO scaling at large τ and OC scaling at small τ (using similar Ra, Pr and $\Gamma = 0.5$ as in Wu et al. 1990)
- Skrbet et al. (PRE 2002) found no scaling range at all (using the same setup as Niemela et al. 2000 but with $\Gamma = 1$)
- Zhou & Xia et al. (PRL 2001) observed BO scaling at the cell center and an apparent OC scaling in the mixing zone (using water)

Recent space-domain measurements

- Sun et al. (PRL 2006) demonstrated that behaviour at the cell center does not obey BO scaling and is closer to OC scaling
- Kunnen et al. (PRE 2008) reported a possible BO scaling at larger scales
- Difficulties in comparing experimental results to theory:
 - limited scaling range
 - validity of the frozen flow hypothesis
 - anisotropy and inhomogeneity,

Conditional structure functions

Recall in the space-domain,
$$\chi_r(\vec{x}) = \langle \chi(\vec{x}') \rangle_{\vec{x}' \in \mathcal{B}(\vec{x},r)}$$

OC (passive) : $S_T^{(p)}(r) \sim \langle \chi_r^{p/2} \rangle_{\vec{x}} r^{p/3}$
BO (active) : $S_T^{(p)}(r) \sim \langle \chi_r^{2p/5} \rangle_{\vec{x}} r^{p/5}$

In the *time-domain*, given the time-series T(t) and $\chi(t)$ Define: $\chi_{\tau}(t) = \langle \chi(t') \rangle_{t' \in \mathcal{B}(t,\tau)}$

OC (passive):
$$S_T^{(p)}(\tau) \sim \langle \chi_{\tau}^{p/2} \rangle_t \tau^{p/3}$$

BO (active): $S_T^{(p)}(\tau) \sim \langle \chi_{\tau}^{2p/5} \rangle_t \tau^{p/5}$

Define the conditional structure functions:

$$\hat{S}_{T}^{(p)}(\tau, X) = \langle |T(t + \tau) - T(t)|^{p} | \chi_{\tau}(t) = X \rangle_{t}$$

OC (passive) : $\hat{S}_{T}^{(p)}(\tau, X) \sim X^{p/2} \tau^{p/3}$
BO (active) : $\hat{S}_{T}^{(p)}(\tau, X) \sim X^{2p/5} \tau^{p/5}$

Measuring local thermal dissipation rate

$$\chi_{\tau}(\vec{x},t) = \frac{1}{\tau} \int_{t}^{t+\tau} \kappa |\nabla T_{f}(\vec{x},t')|^{2} dt'$$

where T_f = temperature fluctuation

Home-made temperature gradient probe

- four temperature sensors of diameter 0.11mm
- separation between sensors = 0.25mm
- temperature resolution ~ 5mK

He & Tong, Phys. Rev. E **79**, 026306 (2009)

Results: conditional structure functions

$$\hat{S}_T^{(p)}(\tau, X) = \langle |T(t+\tau) - T(t)|^p \mid \chi_\tau(t) = X \rangle_t \sim X^{\beta(p)}$$

Results: the scaling exponents

$$\hat{S}_T^{(p)}(\tau, X) = \langle |T(t+\tau) - T(t)|^p \left| \chi_\tau(t) = X \rangle_t \sim X^{\beta(p)} \right|$$

p=0.5 to 4 from bottom to top, τ_0 is the data sampling interval

- $\beta(p)$ depends on τ
- for each p, $\beta(p)$ attains a maximum $\beta_{max}(p)$

Results: passive vs. active

Experimental data: cell center (circles) bottom plate (triangle)

Theory: p/2 passive OC scaling (solid) 2p/5 active BO scaling (dashed)

Summary

introduce the conditional structure functions

$$\hat{S}_T^{(p)}(\tau, X) = \langle |T(t+\tau) - T(t)|^p \mid \chi_\tau(t) = X \rangle_t$$

 χ_{τ} = local time-averaged thermal dissipation rate

• investigate the scaling with X (rather than τ) and found significant scaling ranges,

$$\hat{S}_T^{(p)}(\tau, X) \sim X^{\beta(p)}$$

- results using experimental data at $Ra = 8.3 \times 10^9$ suggest that temperature obeys the
 - the Obukhov-Corrsin scaling for a passive scalar at the convection cell center
 - the Bolgiano-Obukhov scaling for an active scalar near the bottom plate