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Thermal convection

Free convection

imposed temperature gradient leads to density
difference in a fluid

hot fluid tends to rise, cold fluid tends to fall

flow is driven by buoyancy

Applications

kitchen:
boiling water in a kettle
air flow in an oven

atmosphere and ocean:
formation of cloud and thunderstorms
oceanic deep convection→moderate winter climate
in northern Europe

Earth’s interior: mantle convection



Rayleigh-Bénard convection

D = 20 cm 

cooling chamber 

heating plate 

H = 20cm ∆T 

Water g 
(ν, κ, α)

ν: viscosity

κ: thermal diffusivity

α: volume expansion coefficient

Fluid in a box heated from below and cooled from above

Rayleigh number

Ra =
αgH3

∆T

νκ

Prandtl number

Pr =
ν

κ

Aspect ratio

Γ =
D

H



Rayleigh-Bénard convection

Left: Ra = 6.8 × 108 , Pr = 596 (dipropylene glycol) , Γ = 1
X. D. Shang, X. L. Qiu, P. Tong, and K.-Q. Xia, Phys. Rev. Lett. 90, 074501 (2003)

Right: Ra = 2.6 × 109 , Pr = 5.4 (water) , Γ = 1
Y. B. Du and P. Tong, J. Fluid Mech. 407, 57 (2000)



Global and local properties

Large-scale (global) quantites, e.g. total heat transfer
across the system

Small-scale (local) quantities

structure of velocity and temperature fields

effects of thermal plums

Tool: structure functions, e.g.

S
(p)
u (r) = 〈 |u(~x + ~r ) − u(~x )|p 〉~x

S
(p)

T
(r) = 〈 |T(~x + ~r ) − T(~x )|p 〉~x

expect different behaviour in the bulk and near the
boundaries



Temperature structure functions

S
(p)

T
(r) = 〈 |T(~x +~r ) − T(~x )|p 〉~x

probing activities at scale r

larger p emphasizes more extreme events

motivations from Kolmogorov-type phenomenology

scaling behavior:

S
(p)

T
(r) ∼ r ζT

Given a time-series of measurement T(t) at a fixed location,
one can define a time domain structure function:

S
(p)

T
(τ) = 〈 |T(t + τ) − T(t)|p 〉t

Taylor’s frozen flow hypothesis ⇒ S
(p)

T
(τ) ∼ τ ζT



Cascade picture: passive scalar

2r
•−−−→
Π(2r)

r
•−−−→
Π(r)

r/2
•−−−→
Π( r

2)
− − −

r/2N

• 
ε

Energy and temperature variance transferred from large scales

to small scales, eventually being dissipated at the smallest scales

ε =mean energy dissipation rate

χ =mean thermal dissipation rate

no buoyancy, energy transfer rate Π is scale independent

Π = ε in the inertial range

relevant parameters are: ε, χ, r

Obukhov-Corrsin scaling:

S
(p)

T
(r) ∼ ε−p/6 χp/2 r p/3



Cascade picture: active scalar

2r
•−−−−−−→
Π(2r)↑
|

r
•−−−−−−→
Π(r)↑

|
αgurTr

r/2
•−−−−−→
Π( r

2)↑
|

− − −
r/2N

• 
ε

∂t~u + (~u · ∇)~u = −∇p + ν∇2~u + αgTẑ

∂tT + (~u · ∇)T = κ∇2T

buoyancy is important, Π(2r) is negligble at r

Π(r) = αgurTr in the inertial range

relevant parameters are: αg, χ, r

Bolgiano-Obukhov scaling:

S
(p)

T
(r) ∼ (αg)−p/5 χ2p/5 r p/5



Intermittency correction

ε and χ varies significantly in space

Refined similarity hypothesis: replace ε and χ by their

local average over a ball of radius r about ~x, B(~x, r)

εr(~x ) = 〈ε(~x ′)〉~x′∈B

χr(~x ) = 〈χ(~x ′)〉~x′∈B

The scaling predictions become

OC (passive) : S
(p)

T
(r) ∼ 〈ε

−p/6
r 〉~x 〈χ

p/2
r 〉~x r p/3

BO (active) : S
(p)

T
(r) ∼ (αg)−p/5 〈χ

2p/5
r 〉~x r p/5

〈ε
−p/6
r 〉~x and 〈χ

p/2
r 〉~x are r-dependent, hence modifying the

scaling exponents of S
(p)

T
(r)



Some previous experimental work

Early time-domain measurements

Wu et al.(PRL 1990) reported BO scaling at the convection cell center (using helium gas)

Niemela et al. (Nature 2000) found BO scaling at large τ and OC scaling at small τ (using

similar Ra, Pr and Γ = 0.5 as in Wu et al. 1990)

Skrbet et al. (PRE 2002) found no scaling range at all (using the same setup as Niemela et

al. 2000 but with Γ = 1)

Zhou & Xia et al. (PRL 2001) observed BO scaling at the cell center and an apparent OC

scaling in the mixing zone (using water)

Recent space-domain measurements

Sun et al. (PRL 2006) demonstrated that behaviour at the cell center does not obey BO

scaling and is closer to OC scaling

Kunnen et al. (PRE 2008) reported a possible BO scaling at larger scales

Difficulties in comparing experimental results to theory:

limited scaling range

validity of the frozen flow hypothesis

anisotropy and inhomogeneity, . . . . . .



Conditional structure functions

Recall in the space-domain, χr(~x ) = 〈χ(~x ′)〉~x ′∈B(~x,r)

OC (passive) : S
(p)

T
(r) ∼ 〈χ

p/2
r 〉~x r p/3

BO (active) : S
(p)

T
(r) ∼ 〈χ

2p/5
r 〉~x r p/5

In the time-domain, given the time-series T(t) and χ(t)

Define: χτ(t) = 〈χ(t′)〉t′∈B(t,τ)

OC (passive) : S
(p)

T
(τ) ∼ 〈χ

p/2
τ 〉t τ

p/3

BO (active) : S
(p)

T
(τ) ∼ 〈χ

2p/5
τ 〉t τ

p/5

Define the conditional structure functions:

Ŝ
(p)

T
(τ,X) = 〈 |T(t + τ) − T(t)|p

∣

∣

∣ χτ(t) = X 〉t

OC (passive) : Ŝ
(p)

T
(τ,X) ∼ X p/2 τ p/3

BO (active) : Ŝ
(p)

T
(τ,X) ∼ X 2p/5 τ p/5



Measuring local thermal dissipation rate

χτ(~x, t) =
1

τ

∫ t+τ

t

κ|∇Tf (~x, t
′)|2 dt′

where T f = temperature fluctuation

Home-made temperature gradient probe

four temperature sensors of diameter 0.11mm

separation between sensors = 0.25mm

temperature resolution ∼ 5mK

He & Tong, Phys. Rev. E 79, 026306 (2009)



Results: conditional structure functions

Ŝ
(p)

T
(τ,X) = 〈 |T(t + τ) − T(t)|p

∣

∣

∣ χτ(t) = X 〉t ∼ Xβ(p)

cell center bottom plate

(top to bottom: decreasing τ and increasing p)

We have found significant scaling ranges in both cases.

Ra = 8.3 × 109 , Pr = 5.5 , Γ = 1



Results: the scaling exponents

β(p)

Ŝ
(p)

T
(τ,X) = 〈 |T(t + τ) − T(t)|p

∣

∣

∣ χτ(t) = X 〉t ∼ Xβ(p)

cell center bottom plate

p=0.5 to 4 from bottom to top, τ0 is the data sampling interval

β(p) depends on τ

for each p, β(p) attains a maximum βmax(p)



Results: passive vs. active

βmax(p)

Experimental data: cell center (circles)

bottom plate (triangle)

Theory: p/2 passive OC scaling (solid)

2p/5 active BO scaling (dashed)



Summary

introduce the conditional structure functions

Ŝ
(p)

T
(τ,X) = 〈 |T(t + τ) − T(t)|p

∣

∣

∣ χτ(t) = X 〉t

χτ = local time-averaged thermal dissipation rate

investigate the scaling with X (rather than τ) and found
significant scaling ranges,

Ŝ
(p)

T
(τ,X) ∼ Xβ(p)

results using experimental data at Ra = 8.3 × 109 suggest
that temperature obeys the

the Obukhov-Corrsin scaling for a passive scalar at
the convection cell center

the Bolgiano-Obukhov scaling for an active scalar
near the bottom plate
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