

How deep is Jupiter's metallic hydrogen region? Yue-Kin Tsang and Chris Jones School of Mathematics, University of Leeds

A numerical model of Jupiter

- Anelastic rotating MHD spherical shell with radius ratio $r_{\rm in}/r_{\rm out} = 0.0963$ (small core, $r_{\rm out} \approx 0.96 r_J$)
- convection driven by secular cooling of the planet
- boundary conditions: no-slip at r_{in} and stress-free at $r_{\rm out}$, electrically insulating outside $r_{\rm in} < r < r_{\rm out}$
- dimensionless numbers: Ra, Pm, Ek, Pr
- Large *Pm* to produce strong field dynamo (Dormy 2016): Jupiter's field strongly influences its flow

 $Ra = 2 \times 10^7, Pm = 10, Ek = 1.5 \times 10^{-5}, Pr = 0.1$

• average current over a spherical surface of radius *r* $\mu_0 oldsymbol{j} =
abla imes oldsymbol{B}$

$$j_{\rm rms}^2(r,t) \equiv \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} |\boldsymbol{j}|^2 \sin\theta \mathrm{d}\theta \mathrm{d}\phi$$

• $j_{\rm rms}$ drops quickly but smoothly in transition region

• average magnetic energy over a spherical surface

$$E_B(r) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \frac{|\boldsymbol{B}|^2}{2\mu_0} \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

• write \boldsymbol{B} as sum of spherical harmonics modes (l, m)

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} F_l(r)$$

 $F_l(r) \sim$ magnetic energy in the *l*th mode

- near the surface $r \approx r_{out}$, $F_l(r)$ decays steeply with l
- in the interior (away from the core), $F_l(r)$ becomes shallow and maintains roughly the same shape
- indicates a qualitative change in the dynamics at

$$r_{\rm dyn} pprox 0.889 \, r_J$$

Downward continuation in a j = 0 region

- in an interior region $r_1 < r < r_{out}$ where j = 0, the spectrum for $r < r_{out}$ can be related to $F_l(r_{out})$ at the surface
- denote such "source-free" spectrum by $R_l(r)$:

$$R_l(r) = \left(\frac{r_{\text{out}}}{r}\right)^{2l+4} F_l(r_{\text{out}}) \qquad (\star)$$

• if $F_l(r) \approx R_l(r)$, it implies $j \approx 0$ at depth $r < r_{out}$

• the deviation of $R_l(r)$ from $F_l(r)$ estimated by

$$\Delta(\mathbf{r}) = \sqrt{\frac{\sum_{l} (\ln R_{l} - \ln F_{l})^{2}}{\sum_{l} (\ln F_{l})^{2}}} d$$

is a measure of the significance of j at r

• our numerical model has more small-scale forcing than Jupiter does

Characterisation using surface observation

• direct measurement of Jupiter's interior magnetic field is not possible, hence $F_l(r)$ is not available from observation

• can we estimate the depth of the metallic hydrogen region from *B* observed near the surface?

• white source hypothesis: at the depth where *j* becomes significant, R_l becomes independent of l

• a characteristic radius r_{flat} can be obtained from the spectrum $F_l(r_{out})$ at the surface by assuming $R_l(r)$ at $r = r_{\text{flat}}$ is independent of *l*, then by (*)

$$\ln F_l(r_{\text{out}}) = 2\ln\left(\frac{r_{\text{flat}}}{r_{\text{out}}}\right)l + \ln R_l(r_{\text{flat}}) + 4\ln\left(\frac{r}{r_{\text{out}}}\right)$$

is linear in l, a least-squares linear fit gives the slope of $\ln F_l(r_{out})$ from which we obtain

$$r_{\text{flat}} = 0.885 r_J$$

•we have also calculated $R_l(r_{\text{flat}})$ using (*) and verified that it is indeed flat

The latest data from the Juno mission produces a magnetic spectrum (Connerney et al. 2018) that is steeper than that from our numerical model.

This spectrum is consistent with having a white noise source at a depth of $r = 0.85 r_J$ as compared to our $r_{\text{flat}} = 0.885 r_{J}$.

The discrepancy between our numerical model and the Juno data suggests that

- theoretical calculation may have overestimated the conductivity in the Jupiter interior
- the metallic hydrogen layer, thus the transition region in the conductivity profile $\sigma(r)$, could be deeper than predicted