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Rayleigh–Bénard convection

Density: ρ(T ) = ρm
[
1− αT (T − Tm)

]
, αT > 0
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at equilibrium (u = 0): top-heavy

T has a destabilising effect

thermal Rayleigh number RaT is positive

RaT > Ra0 =⇒ convection
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at equilibrium, system is bottom-heavy

T has a stabilising effect

thermal Rayleigh number RaT is negative

system is stable



Double-diffusive convection
low temperature

high temperature

g

density variation comes from two different components of the fluid

consider a heavy element in the fluid, e.g. salt in seawater, He in H–He mixture

let C be the concentration of the heavy element (composition):

ρ(T,C) = ρm
[
1− αT (T − Tm) + αC(C − Cm)

]
, αT , αC > 0

what distinguishes T and C is their diffusivities: κT ≫ κC

composition Rayleigh number: RaC > 0 =⇒ destabilising, RaC < 0 =⇒ stabilising



Different regimes of double-diffusive convection
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Possible scenarios of ODDC in planetary and stellar interiors
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 layered structure + compact core (left),  
inhomogeneous structure + fuzzy core (right) 
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Fig. 4.4.— Sketches of Saturn’s possible internal
structure. Left: traditional layered structure. Right:
Deep interiors with fuzzy core and composition gradi-
ents. In this case Saturn’s deep interior is expected to
be non-adiabatic (adapted from Helled et al. (2020)).

Fig. 4.5.— Phase diagram for a H-He mixture of
a proto-solar composition as predicted by numeri-
cal calculations together with representative P-T pro-
files of Jupiter and Saturn. Green: Calculations from
PBE with non-ideal entropy of mixing (Morales et al.
2009). Orange: demixing region using the vdW-DF
and non-ideal entropy of mixing (Schöttler and Red-
mer 2018). The red line corresponding to the metal-
lization of H as predicted by Mazzola et al. (2018).
Jupiter and Saturn isentropes are labeled. The figure is
modified from Helled et al. (2020).

Fig. 4.6.— Thin-cord model for Saturn’s high-order
gravity harmonics. The red pluses are Jn calculated
for a uniform rotating planet, the grey open circles are
the Jn from thin cord, while orange squares are the
combined gravity signal. The grey filled circles are
the Cassini measurements (plotted up to J10) all larger
than the (vertical) error bars, for clarity.
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Composition gradient may form inside Saturn
in two different ways:

At some specific temperature and pressure,
H and He become immiscible, heavier He
forms droplets which fall towards the
planetary interior—helium rain

Latest observations suggest Saturn may
have a dilute/fuzzy core

Composition gradient, and thus ODDC, may
also exist in:

Jupiter

core-convective main sequence stars

Fortney et al. in “Saturn: The Grand Finale”, K. H. Baines et al., eds., Cambridge University Press



Mathematical model: ODDC in a rotating spherical shell
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Boundary condition

fixed T gradient:

∂T

∂r

∣∣∣∣
ri

,
∂T

∂r

∣∣∣∣
ro

< 0

fixed C gradient:

∂C

∂r

∣∣∣∣
ri

,
∂C

∂r
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ro

< 0

Equilibrium profiles (at u = 0)
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Ts(r)

Cs(r) dTs

dr
< 0 destabilising

dCs

dr
< 0 stabilising

Consider a Boussinesq fluid in a rotating spherical shell of inner radius ri and outer radius ro

composition diffusivity: κC ≪ κT

density: ρ(T ,C) = ρm[1− αT (T − Tm) + αC(C − Cm)]

buoyancy frequency: N2 = − g

ρm

d

dr

[
ρ(Ts, Cs)

]
=⇒ N2 = gαT

dTs
dr

− gαC

dCs

dr



Governing equations

Non-dimensional equations:

∂u

∂t
+ (u · ∇)u+

2

Ek
ẑ × u = −∇Π+ (Θ− ξ)r r̂ +∇2u,

∇ · u = 0,

∂Θ

∂t
+ u · ∇Θ =

RaT

Pr

(
Γ

1− Γ

)2
ur
r2

+
1

Pr
∇2Θ, Θ(x, t) = T (x, t)− Ts(r)

∂ξ

∂t
+ u · ∇ξ = |RaC |

Sc

(
Γ

1− Γ

)2
ur
r2

+
1

Sc
∇2ξ, ξ(x, t) = C(x, t)− Cs(r)

Dimensionless numbers:

Γ =
ri
ro

= 0.6, Ek =
ν

ΩD2
= 10−5, (small) Pr =

ν

κT

= 0.3, Sc =
ν

κC

= 3
(
τ =

κC

κT

= 0.1
)

RaT =
goαTD

5

roνκT

∣∣T ′
s(ri)

∣∣ and RaC = −goαCD
5

roνκC

∣∣C ′
s(ri)

∣∣
Numerical simulations using XSHELLS by Nathanaël Schaeffer (Université Grenoble Alpes, CNRS)



ODDC at low Rayleigh numbers

106 107

|RaC|

106106
R
a
T

Ra0

N
2 =

0

top-heavy bottom-heavy

(non-dimensional) N2 = −RaT

Pr

r2i
r

+
|RaC |
Sc

r2i
r

N2 < 0: unstable stratification , N2 > 0: stably stratified

Ra0 = critical Rayleigh number for pure thermal convection

pure thermal convection: unstable when N2 < 0 and RaT > Ra0



Phase diagram: stability
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black crosses (×) =⇒ stable coloured symbols (∗,+, ⋄, ◦) =⇒ unstable

Despite the equilibrium composition gradient dCs/dr is stabilising:

convection occurs for some RaT < Ra0 (= critical Rayleigh number for thermal convection)

system can become unstable even when N2 > 0

This counter-intuitive phenomenon only happens for an intermediate range of |RaC |



Flow patterns: RaT > Ra0 and intermediate |RaC|
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◦ RaT = 3.0× 106

|RaC| = 1.0× 107

fast small-scale thermal-Rossby-like
spirals coexist with slow large-scale
structures

the two components drift in
opposite direction

modulated spiral columns in
localised spots

∗



Thin cylindrical annulus model (Busse 1986)

Trim the spherical shell into a cylindrical annulus . . .
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g
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si
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g

Ω

top and bottom of the cylindrical annulus tilted at a constant angle χ

temperature and composition gradients decrease with radius

captures two pieces of physics of the spherical shell:

1. rapid rotation

2. curvature of the spherical geometry



Thin cylindrical annulus model (Busse 1986)

Flatten the cylindrical annulus into a plane . . .

x
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Ω

x

y (periodic)

g = −g0x̂

Ω ẑ

rapid rotation ⇒ geostrophic balance at leading order (columnar structures)

integration over height + tilted boundaries ⇒ two-dimensional system with β-effect

thin annulus ⇒ Cartesian coordinate: radial → x , azimuthal → y (periodic)



ODDC on a two-dimensional β-plane

2D-velocity (u, v) in terms of a streamfunction ψ:

(u, v) =
(
− ∂yψ, ∂xψ

)
Define the Jacobian:

J(A,B) = ∂xA∂yB − ∂yA∂xB

Governing equations for (ψ,Θ, ξ):

∂

∂t
∇2ψ + J(ψ,∇2ψ)− β

∂ψ

∂y
= − ∂

∂y
(Θ− ξ) +∇4ψ

∂Θ

∂t
+ J(ψ,Θ) = −RaT

Pr

∂ψ

∂y
+

1

Pr
∇2Θ

∂ξ

∂t
+ J(ψ, ξ) = −|RaC |

Sc

∂ψ

∂y
+

1

Sc
∇2ξ

β =
4Γ tanχ

Ek

x

y (periodic)

g = −g0x̂

Ω ẑ

Busse, Geophysical Research Letters 29, 1105 (2002)

Simitev, Physics of the Earth and Planetary Interiors 186, 183 (2011)



Linear stability analysis

Linearised equations (+ boundary conditions):

∂

∂t
∇2ψ − β

∂ψ

∂y
= −∂Θ

∂y
+
∂ξ

∂y
+∇4ψ

∂Θ

∂t
= −RaT

Pr

∂ψ

∂y
+

1

Pr
∇2Θ

∂ξ

∂t
= −|RaC |

Sc

∂ψ

∂y
+

1

Sc
∇2ξ

Eigenfunctions: modes with wavenumber (k, l),

ψ(x, y, t) = ψ̂ sin(kx) eily eλt

Θ(x, y, t) = Θ̂ cos(kx) eily eλt

ξ(x, y, t) = ξ̂ cos(kx) eily eλt

Eignevalues: complex growth rate,

λ = σ + iω (σ, ω ∈ R)

x

y (periodic)

g = −g0x̂

Ω ẑ



Maximum growth rate and neutral curve

Solvability condition gives the equation for the eigenvalue λ = σ + iω :

λ3 +

(
1 + Pr + τ

Pr
k2h + i

βl

k2h

)
λ2 +

[
Pr + τ(1 + Pr)

Pr2
k4h +

τ |RaC | −RaT

Pr

l2

k2h
+ i

β(1 + τ)

Pr
l

]
λ

+
τ

Pr2
[
k6h + (|RaC | −RaT )l

2 + iβk2hl
]
= 0

(k, l) = (mπ, n
si
), m, n ∈ Z, k2h ≡ k2 + l2, P r = 0.3, τ = Pr/Sc = 0.1, β = 1.78× 105

A cubic equation =⇒ three roots: λq = σq + iωq, q = 1, 2, 3

1. For each (RaT , RaC), maximum growth rate σmax(RaC , RaT ):

σmax
q (RaC , RaT ) = max

k,l

{
σq(k, l ;RaC , RaT )

}
, q = 1, 2, 3

σmax(RaC , RaT ) = max
q

{
σmax
q

}
2. Setting σ = 0, we can trace the stability boundary (neutral curve) on the RaT–RaC phase

plane



Maximum growth rate and neutral curve
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Similar qualitative features as in the stability diagram for the spherical shell

We can learn more by taking a step back and investigating each σmax
q individually

σmax(RaC , RaT ) = maxq
{
σmax
q

}
, q = 1, 2, 3

There is always a decaying solution: σmax
2 < 0



Composition modified thermal-Rossby mode: σmax
1
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Ra0,2d = critical Ra of pure thermal convection on a β-plane

unstable only when RaT > Ra0,2d

optimal frequency ω∗
1 < 0 =⇒ prograde

high optimal wavenumber: l∗1 ≳ 30 =⇒ small-scale

∼ thermal-Rossby waves in pure thermal convection (slightly modified by the stabilising
effects of the compositional)



Double-diffusive mode: σmax
3
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Ra0,2d = critical Ra of pure thermal convection on a β-plane

instability region extends below Ra0,2d

optimal frequency ω∗
3 > 0 =⇒ retrograde

low optimal wavenumber: l∗3 ∼ 1 within the ‘tongue’ =⇒ large-scale

a genuine double-diffusive mode



Superposition of different modes

104 105 106 107 108 109 1010

|RaC|
104

105

106

107

108

109

1010

R
a
T

σmax

−105

−104

−103

−102

−101

−100
0
100

101

102

103

104

105

104 105 106 107 108 109 1010

|RaC|
104

105

106

107

108

109

1010

R
a
T

ω∗

−104

−103

−102

−101

−100
0
100

101

102

103

104

104 105 106 107 108 109 1010

|RaC|
104

105

106

107

108

109

1010

R
a
T

l∗

0

20

40

60

2D linear stability analysis: there is a region where both the thermal-Rossby-like mode and the
double-diffusive mode can grow

Nonlinear simulation: the two modes coexist with minimal interaction (low RaT , weakly nonlinear)
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