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Kolmogorov Flow

ζt + uζx + vζy + βψx = −µζ + cos x + ν∇2ζ

velocity: (u, v) = (−ψy, ψx) (2-D periodic domain)

vorticity: ζ(x, y) = vx − uy = ∇
2ψ

Kolmogorov flow: sinusoidal forcing (single scale)
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or surrounding air
geophysical flows: Ekman friction
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velocity: (u, v) = (−ψy, ψx) (2-D periodic domain)

vorticity: ζ(x, y) = vx − uy = ∇
2ψ

Kolmogorov flow: sinusoidal forcing (single scale)

µ = bottom drag

quasi-2D experiments: friction from the container walls
or surrounding air
geophysical flows: Ekman friction

β = gradient of Coriolis parameter along y

important in differentially rotating systems



Stability of the Laminar Solution

ζL(x) = a cos(x − xβ)

a =
1

√

β2 + µ2
, xβ = tan−1
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Goal: Neutral Curve

∇2ψt + uζx + vζy + βψx = −µ∇
2ψ + cos x
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Types of Stability Analysis

ψ(x, y, t) = ψL(x) + ϕ(x, y, t)

Linear Instability

assume infinitesimal disturbance ϕ ∼ e−iωt

ℑ{ω} > 0 ⇒ ψL is linearly unstable
gives sufficient condition for instability

Global Stability (Asymptotic Stability)

ϕ is not assumed to be small
disturbance energy

Eϕ(t) =
1

2

〈

|∇ϕ|2
〉

→ 0 as t→∞

gives sufficient condition for stability



Energy Method

Φ

ϕ(t)

dEϕ

dt
= 2

(

aR[ϕ] − µ
)

Eϕ

where R[ϕ] ≡

〈

ϕx ϕy cos x
〉

〈

|∇ϕ|2
〉

Now define R∗ ≡ max
ϕ∈Φ

R[ϕ]

Φ : set of all functions satisfying periodic boundary conditions

Then, Eϕ(t) < Eϕ(0) e2(aR∗−µ)t → 0 if aR∗ − µ < 0

Neutral condition

a =
1

R∗
µ ⇒ β =

√

R2
∗

µ2
− µ2



An Optimization Problem

xy

Maximize: R[ϕ] ≡

〈

ϕxϕy cos x
〉

〈

|∇ϕ|2
〉 over the set Φ.

Optimal solution

R∗ = R[ϕ∗] =
1

2

ϕ∗(x, y) ≈ lim
l→∞

cos
[

l(y + sin x)
]

exp

(

l

2
cos 2x

)



Energy Stability Curve

β =

√

1

4µ2
− µ2 (a = 2µ)

0.0 0.2 0.4 0.6 0.80

1

2

3
Energy stability

B

STABLE

C

D

?

β

µ

(a > 2µ)

(a < 2µ)



Energy Stability and Linear Stability Curve
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Limitations of the Energy Method

requires Eϕ(t) to decrease monotonically to zero for
all ϕ, thus excludes transient growth of Eϕ(t)

t0

Eϕ

the most efficient energy-releasing disturbance
ϕ∗(x, y) is unphysical: l→∞

a gap between the energy stability curve and the
neutral curve from linear stability analysis



Energy-Enstrophy Balance
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ΦEZ : Eϕ=Zϕ

Disturbance enstrophy: Zϕ =
1
2

〈

(∇2ϕ)2
〉

d

dt
(Eϕ−Zϕ) = −2µ(Eϕ−Zϕ) (∵ ∇2ψL = ψL)

Eϕ = Zϕ as t→∞



Optimization with Constraints

Maximize: R[ϕ] ≡

〈

ϕx ϕy cos x
〉

〈

|∇ϕ|2
〉

with constraint
〈

|∇ϕ|2
〉

=
〈

(∇2ϕ)2
〉

(⇒ ϕ is slow-varying)



Optimization with Constraints

xy

Maximize: R[ϕ] ≡

〈

ϕx ϕy cos x
〉

〈

|∇ϕ|2
〉

with constraint
〈

|∇ϕ|2
〉

=
〈

(∇2ϕ)2
〉

(⇒ ϕ is slow-varying)

Optimal solution
R∗ = R[ϕ∗] = 0.3571

ϕ∗(x, y) =ℜ
{

e i l y ϕ̃(x)
}

with l ≈ 0.4166



Energy-Enstrophy (EZ) Stability
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Energy-Enstrophy (EZ) Stability
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Summary
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Based on the observation: Eϕ(t) = Zϕ(t) as t→∞ ,
we develop the Energy-Enstrophy (EZ) stability method which

allows transient growth in Eϕ(t) ( ϕ(t=0) < ΦEZ )

identifies a physically realistic most-unstable disturbance

lies closer to the linear stability neutral curve

accepted by Phys. Fluids, preprint: http://www-pord.ucsd.edu/∼yktsang/paper/ezstab.pdf
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