Energy-enstrophy stability of β -plane Kolmogorov flow with drag

Yue-Kin Tsang

Scripps Institution of Oceanography University of California, San Diego

William R. Young

Kolmogorov Flow

$$\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + \nu\nabla^2\zeta$$

velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-*D* periodic domain) vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2 \psi$

Solution Kolmogorov flow: sinusoidal forcing (single scale)

Kolmogorov Flow

$$\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + \nu\nabla^2\zeta$$

velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-*D* periodic domain) vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2 \psi$

- Solution Kolmogorov flow: sinusoidal forcing (single scale)
- μ = bottom drag
 - quasi-2D experiments: friction from the container walls or surrounding air
 - geophysical flows: Ekman friction

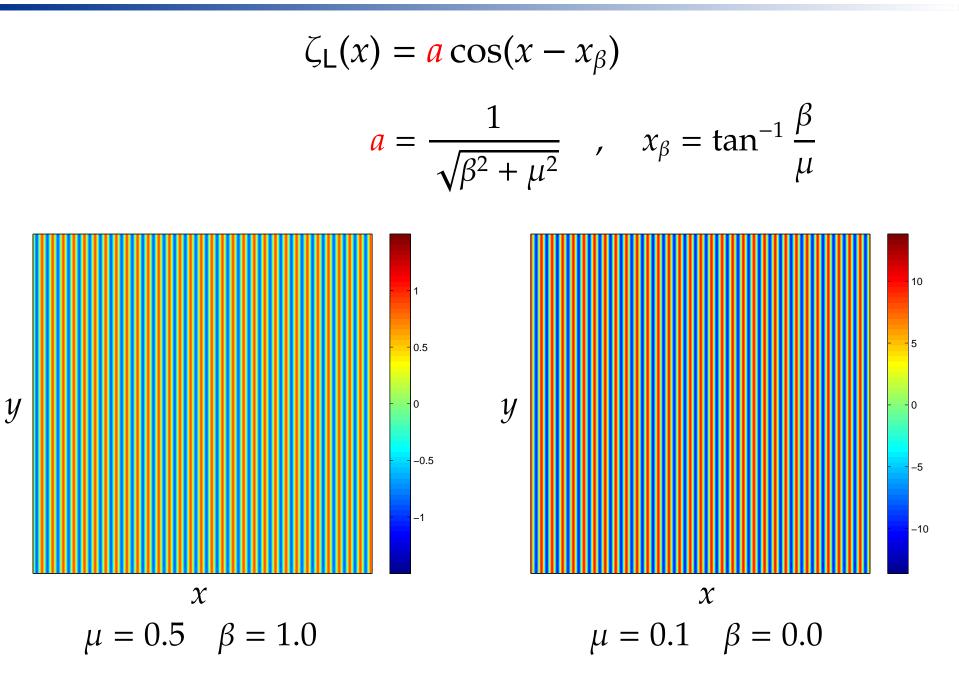
Kolmogorov Flow

$$\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + v\nabla^2\zeta$$

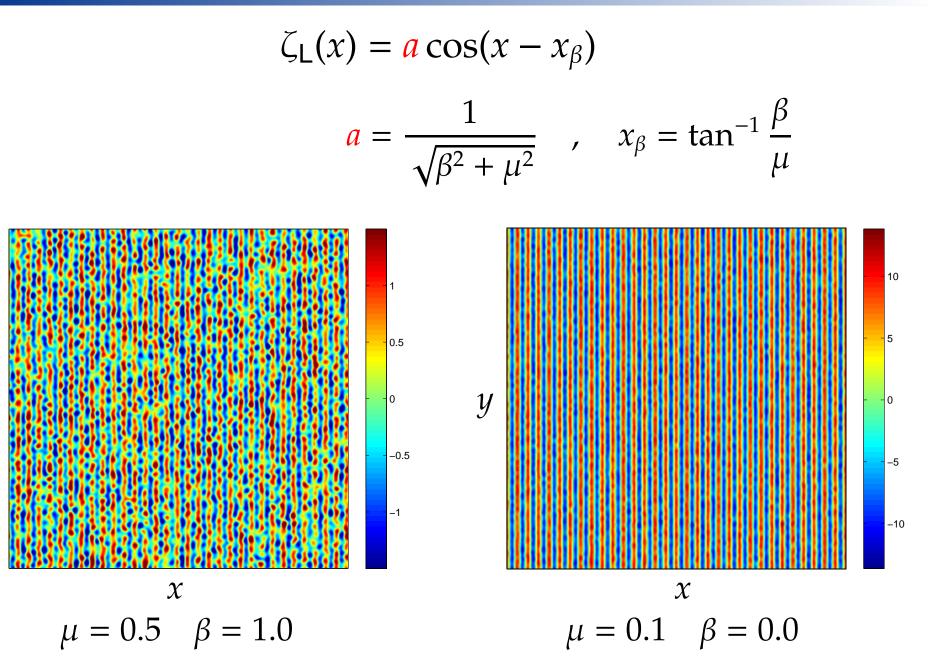
velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-*D* periodic domain) vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2 \psi$

- Solution Kolmogorov flow: sinusoidal forcing (single scale)
- μ = bottom drag
 - quasi-2D experiments: friction from the container walls or surrounding air
 - geophysical flows: Ekman friction
- **9** β = gradient of Coriolis parameter along *y*
 - important in differentially rotating systems

Stability of the Laminar Solution

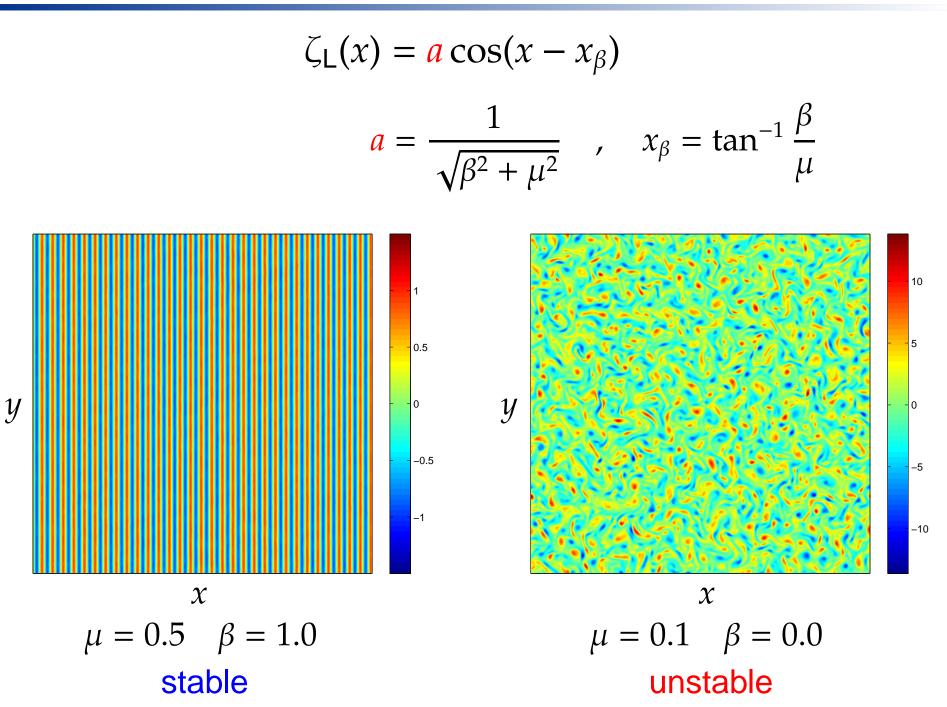


Stability of the Laminar Solution



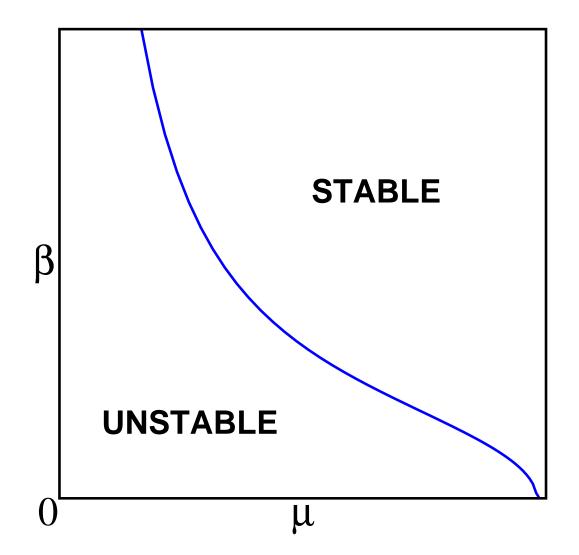
Y

Stability of the Laminar Solution



Goal: Neutral Curve

$$\nabla^2 \psi_t + u\zeta_x + v\zeta_y + \beta \psi_x = -\mu \nabla^2 \psi + \cos x$$



Types of Stability Analysis

$$\psi(x, y, t) = \psi_{\mathsf{L}}(x) + \varphi(x, y, t)$$

Linear Instability

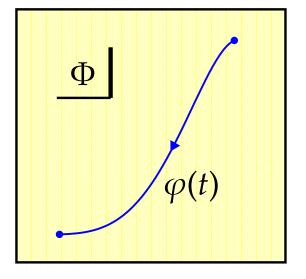
- s assume infinitesimal disturbance $\varphi \sim e^{-i\omega t}$
- $\Im\{\omega\} > 0 \implies \psi_{\mathsf{L}}$ is linearly unstable
- gives sufficient condition for instability
- **Global Stability** (*Asymptotic Stability*)
 - $\mathbf{P} \ \varphi \ \text{is not} \ \text{assumed to be small}$
 - disturbance energy

$$E_{\varphi}(t) = \frac{1}{2} \left\langle |\nabla \varphi|^2 \right\rangle \to 0 \quad as \quad t \to \infty$$

gives sufficient condition for stability

Energy Method

$$\frac{dE_{\varphi}}{dt} = 2\left(a\Re[\varphi] - \mu\right)E_{\varphi}$$
$$\Re[\varphi] \equiv \frac{\left\langle\varphi_x \,\varphi_y \,\cos x\right\rangle}{\left\langle|\nabla\varphi|^2\right\rangle}$$



where

Now define $\Re_* \equiv \max_{\varphi \in \Phi} \Re[\varphi]$

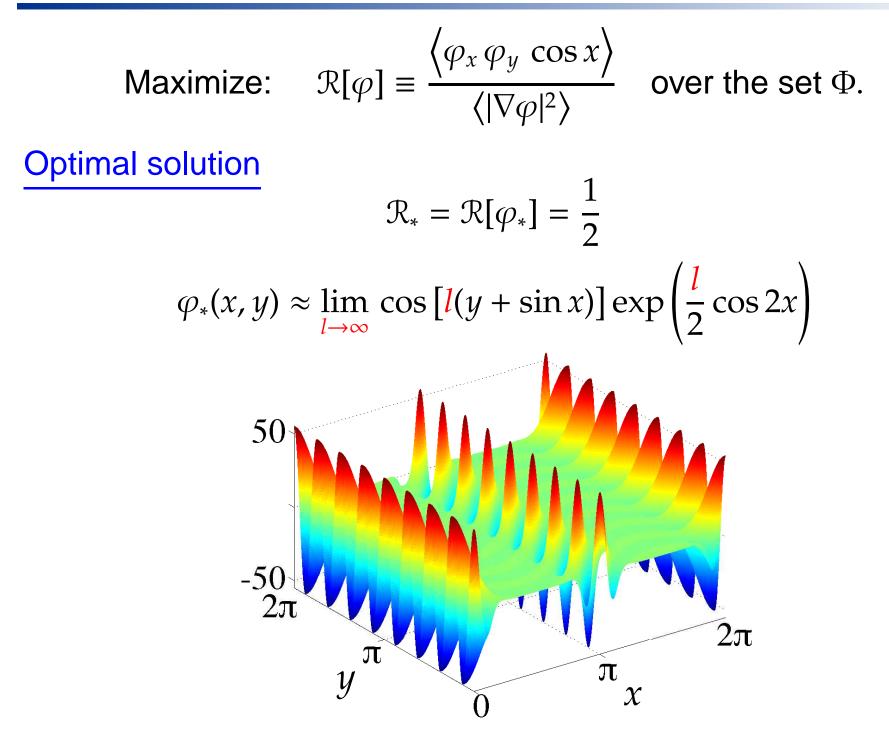
 Φ : set of all functions satisfying periodic boundary conditions

Then, $E_{\varphi}(t) < E_{\varphi}(0) e^{2(a\mathcal{R}_* - \mu)t} \rightarrow 0$ if $a\mathcal{R}_* - \mu < 0$

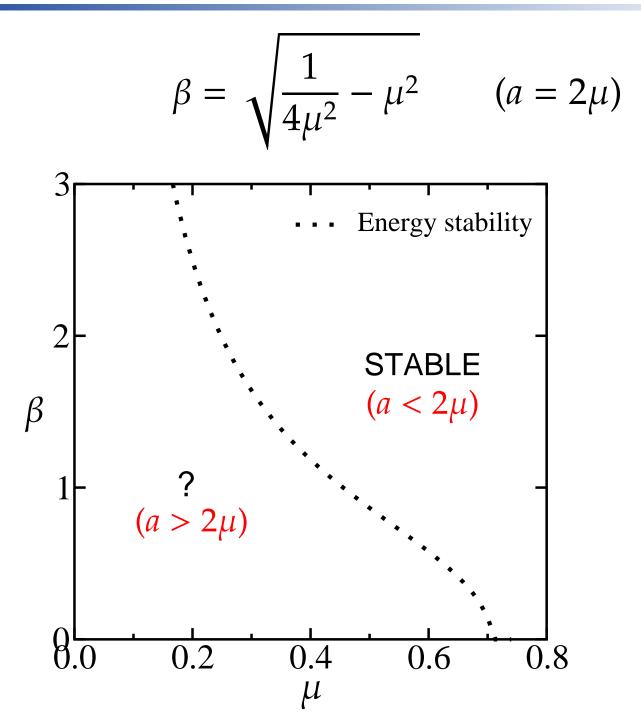
Neutral condition

$$a = \frac{1}{\mathcal{R}_*}\mu \quad \Rightarrow \quad \beta = \sqrt{\frac{\mathcal{R}_*^2}{\mu^2} - \mu^2}$$

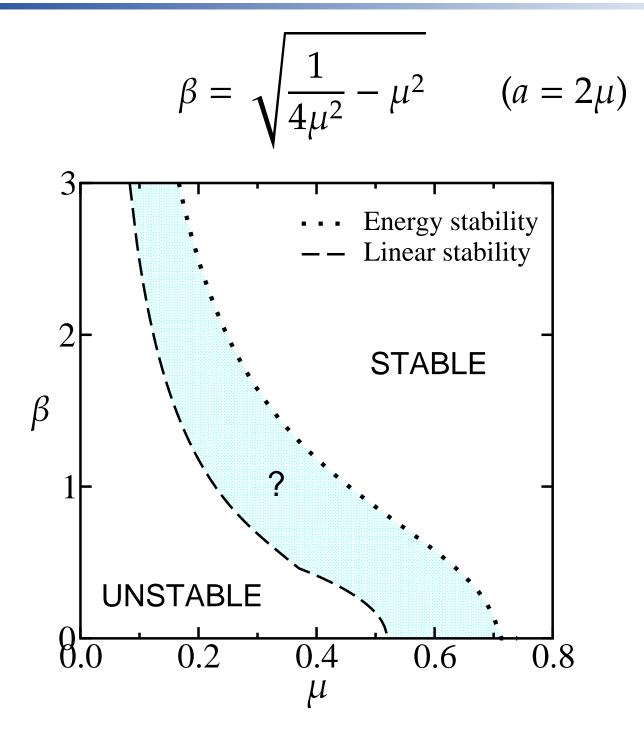
An Optimization Problem



Energy Stability Curve

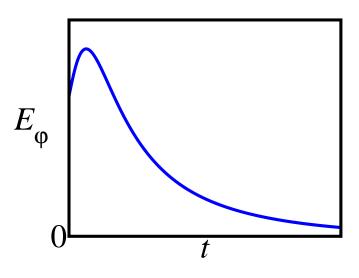


Energy Stability and Linear Stability Curve



Limitations of the Energy Method

• requires $E_{\varphi}(t)$ to decrease monotonically to zero for all φ , thus excludes transient growth of $E_{\varphi}(t)$



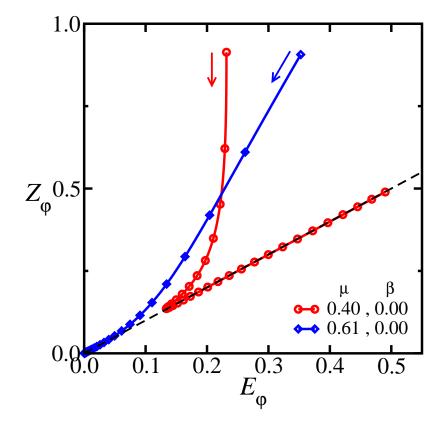
- a gap between the energy stability curve and the neutral curve from linear stability analysis

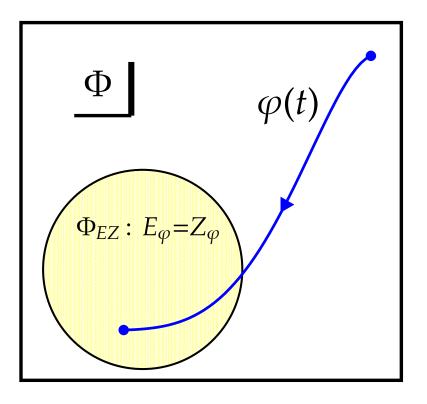
Energy-Enstrophy Balance

Disturbance enstrophy: $Z_{\varphi} = \frac{1}{2} \left\langle (\nabla^2 \varphi)^2 \right\rangle$

$$\frac{d}{dt}(E_{\varphi}-Z_{\varphi}) = -2\mu(E_{\varphi}-Z_{\varphi}) \quad (\because \nabla^{2}\psi_{\mathsf{L}} = \psi_{\mathsf{L}})$$

$$E_{\varphi} = Z_{\varphi} \quad as \quad t \to \infty$$





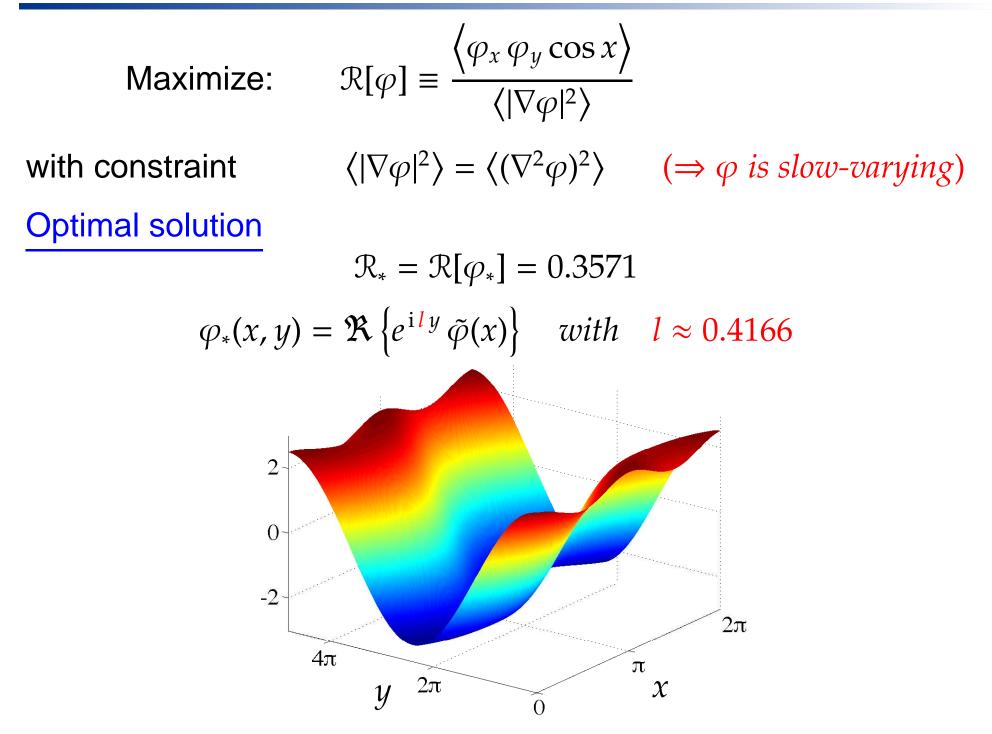
Optimization with Constraints

Maximize:
$$\Re[\varphi] \equiv \frac{\langle \varphi_x \varphi_y \cos x \rangle}{\langle |\nabla \varphi|^2 \rangle}$$

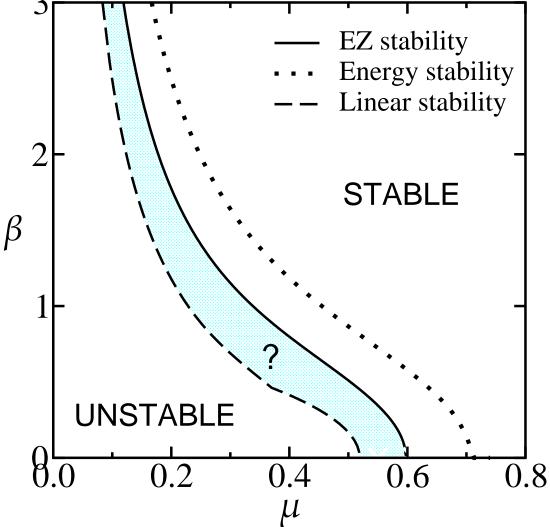
with constraint $\langle |\nabla \varphi|^2 \rangle = \langle (\nabla^2 \varphi)^2 \rangle$

$$(\Rightarrow \varphi \text{ is slow-varying})$$

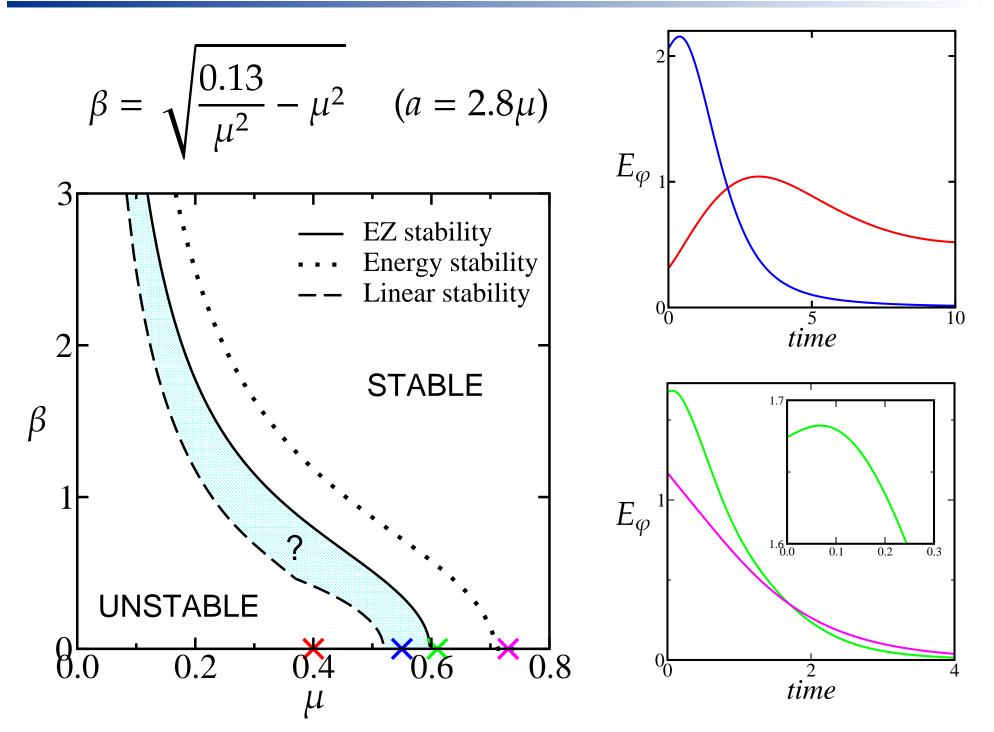
Optimization with Constraints



Energy-Enstrophy (EZ) Stability



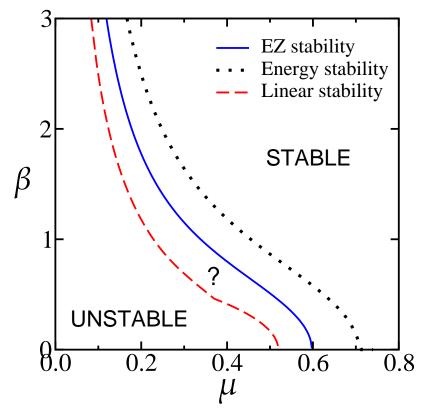
Energy-Enstrophy (EZ) Stability



Summary

Based on the observation: $E_{\varphi}(t) = Z_{\varphi}(t)$ as $t \to \infty$, we develop the Energy-Enstrophy (EZ) stability method which

- allows transient growth in $E_{\varphi}(t)$ ($\varphi(t=0) \notin \Phi_{EZ}$)
- identifies a physically <u>realistic</u> most-unstable disturbance
- lies <u>closer</u> to the linear stability neutral curve



accepted by Phys. Fluids, preprint: http://www-pord.ucsd.edu/~yktsang/paper/ezstab.pdf