Effective diffusivities in a two-layer, isopycnal, wind-driven basin model

Yue-Kin Tsang
Shafer Smith

Center for Atmosphere Ocean Science Courant Institute for Mathematical Sciences New York University

Question(s)

- To what degree can baroclinic eddy transport be described in terms of a local eddy closure?
- Is there a scale separation between eddy and mean?
- Is the small-scale, local eddy flux isotropic or anisotropic?

Extremely preliminary results on these questions....

Define eddy relative to low-pass mean, but approximate this via running average in time and space:

$$\bar{f}(x,y,t) = \frac{1}{\tau \ell^2} \int_{t-\tau/2}^{t+\tau/2} dt' \int_{x-\ell/2}^{x+\ell/2} dx' \int_{y-\ell/2}^{y+\ell/2} dy' f(x',y',t')$$

Large-scale equation

Assume advection of passive tracer in one isopycnal layer by quasioceanic velocity field:

$$c_t + \nabla \cdot (\mathbf{u}c) = \kappa \nabla^2 c + S$$

Apply our average:

$$\left| \bar{c}_t + \nabla \cdot (\mathbf{F} + \bar{\mathbf{u}}\bar{c}) = \kappa \nabla^2 \bar{c} + \bar{S} \right|$$

where

$$F = \overline{u'c'}$$

and primed quantities are deviations from the mean,

$$c' = c - \overline{c}$$
, $\mathbf{u}' = \mathbf{u} - \overline{\mathbf{u}}$, such that $\overline{c'} \simeq \overline{\mathbf{u}'} \simeq 0$.

A perfect numerical model would yield \bar{c} subsampled on discrete points separated by distances ℓ and times τ .

The effective diffusivity: A review

Assuming that the eddy flux is a linear function of the large-scale mean gradient, we write it as

$$\mathbf{F} = \overline{\mathbf{u}'c'} = -\mathbf{K}\nabla \overline{c}$$
, where $\mathbf{K} = \begin{pmatrix} K^{\mathsf{XX}} & K^{\mathsf{XY}} \\ K^{\mathsf{YX}} & K^{\mathsf{YY}} \end{pmatrix} = \mathbf{K}(\mathbf{x},t)$

Can decompose the effective diffusivity into symmetric and antisymmetric parts as $\mathbf{K} = \mathbf{K}^s + \mathbf{K}^a$, where

$$\mathbf{K}^{s} = \begin{pmatrix} K^{\mathsf{XX}} & \alpha \\ \alpha & K^{\mathsf{YY}} \end{pmatrix} - \kappa \mathbf{I} \quad \text{and} \quad \mathbf{K}^{a} = \begin{pmatrix} 0 & -\gamma \\ \gamma & 0 \end{pmatrix}$$

with $\alpha = (K^{xy} + K^{yx})/2$ and $\gamma = (K^{yx} - K^{xy})/2$. Eddy transport velocity is

$$\mathbf{u}^{\star} = \nabla \times (-\hat{z}\gamma) = \hat{z} \times \nabla \gamma$$

and so averaged flow is

$$\bar{c}_t + \nabla \cdot (\mathbf{u}^{\dagger} \bar{c}) = \nabla \cdot (\mathbf{K}^s \nabla \bar{c}) + \bar{S}$$

where

$$u^{\dagger} = u^{\star} + \bar{u}$$

Objectives

K is a property of the flow

- 1. Measure **K** directly in an high-resolution ocean model
- 2. Develop theory to predict \mathbf{K} from local ocean parameters

Measuring K

On cell: $\overline{\mathbf{u}'c'} = -\mathbf{K}\Gamma$ (where $\mathbf{K} \approx \text{constant on cell}$), or $\overline{u'c'} = \mathbf{K}^{\mathsf{XX}}\Gamma_x + \mathbf{K}^{\mathsf{XY}}\Gamma_y$ $\overline{v'c'} = \mathbf{K}^{\mathsf{YX}}\Gamma_x + \mathbf{K}^{\mathsf{YY}}\Gamma_y$

⇒ four unknowns and two equations.

Since K is property of flow, use two independent tracers a and b (forced by different large-scale gradients), with

$$\Gamma \approx \nabla \overline{a}, \quad \Lambda \approx \nabla \overline{b}$$

So that:

$$\overline{u'a'} = \mathbf{K}^{\times \times} \Gamma_x + \mathbf{K}^{\times y} \Gamma_y$$

$$\overline{v'a'} = \mathbf{K}^{y \times} \Gamma_x + \mathbf{K}^{y y} \Gamma_y$$

$$\overline{u'b'} = \mathbf{K}^{\times \times} \Lambda_x + \mathbf{K}^{\times y} \Lambda_y$$

$$\overline{v'b'} = \mathbf{K}^{y \times} \Lambda_x + \mathbf{K}^{y y} \Lambda_y$$

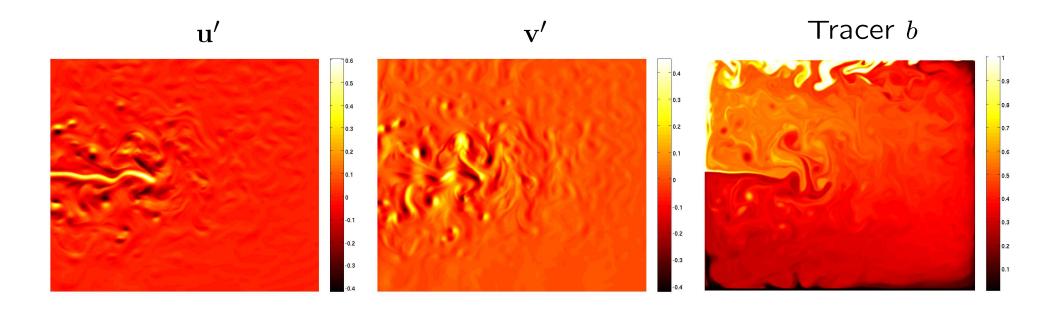
⇒ four unknowns and four equations.

Model/Simulation

Two-layer, adiabatic isopycnal PE model (HIM) in $22^{\circ} \times 20^{\circ}$ basin

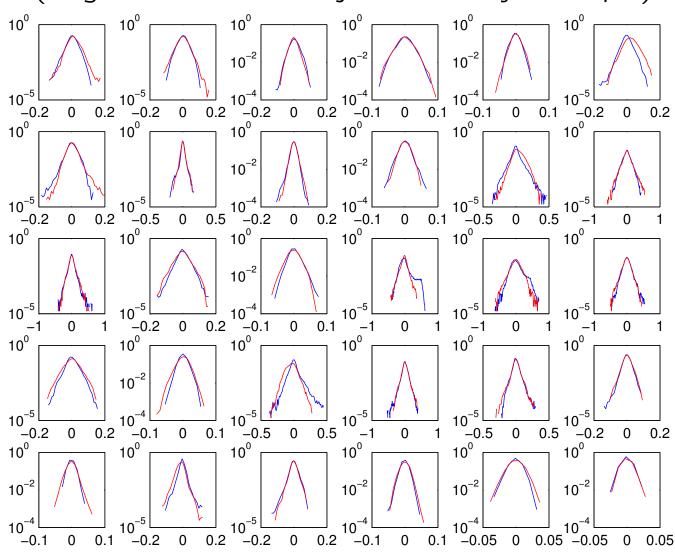
- Sinusoidal wind-forcing (double-gyre) and small linear bottom drag
- Biharmonic Smagorinsky viscosity plus low-level biharmonic constant background.
- 2 passive scalars in top layer, one forced with meridional gradient the other with zonal gradient (** need improved method for gradients)
- Current resolution: 1/20 degree, but will go higher.
- Running mean in space and time calculated using 100km \times 100km \times 10 day cells, and eddy fluxes of each tracer calculated on each cell (** need bigger cells in ℓ and t)

Snapshot of the flow



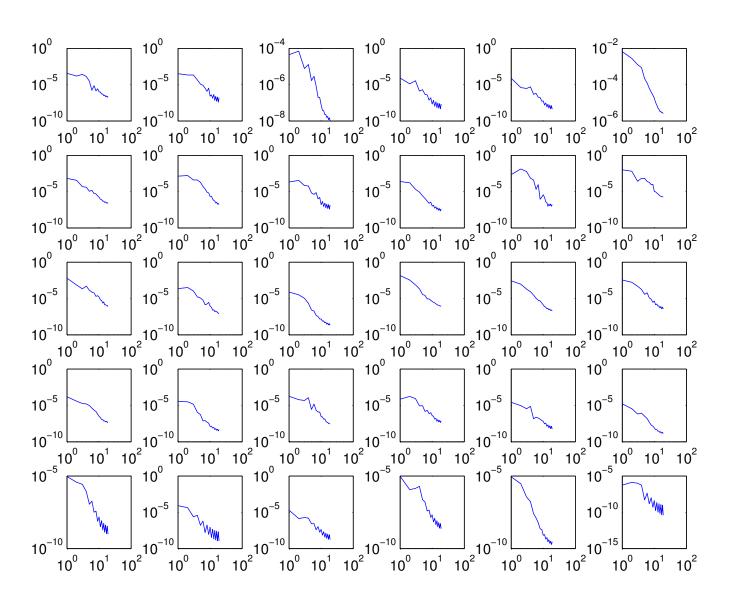
PDF of u' and v' in cells

(Regions far from the jet are nearly isotropic)



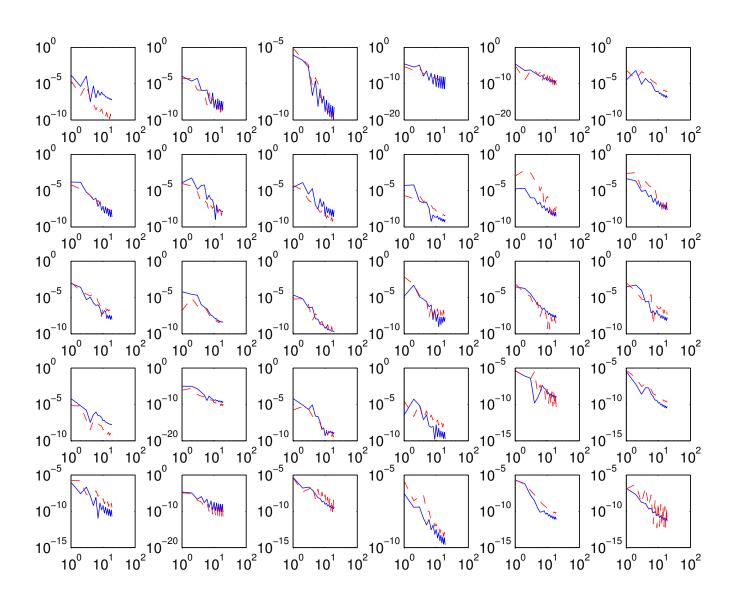
Energy spectrum in cells

(gives info about eddy energy and scale in each cell: mixing length and mixing velocity)



Zonal and meridional spectra in each cell

(second measure of anisotropy on each cell)



Predicting K: Small-scale 'cell' problem

Consider a region (cell) with linear dimension ℓ centered at \mathbf{x}_i and a period of time τ centered at t_i such that

1. ℓ is much smaller than the length scale over which $\nabla \bar{c}$ varies, i.e.

$$\ell \ll \frac{|\nabla \bar{c}|}{|\nabla^2 \bar{c}|} \bigg|_{\mathbf{X}_i}$$

2. τ is much smaller than the time scale over which \bar{c} varies

Then in such a cell we have

$$c(\mathbf{x},t) \approx \Gamma \cdot \mathbf{x} + c'(\mathbf{x},t), \quad \Gamma \approx \nabla \bar{c}$$
 (linear approximation)

and

$$\frac{\partial c'}{\partial t} + \nabla \cdot (\mathbf{u}c') = \kappa \nabla^2 c' - \mathbf{u} \cdot \mathbf{\Gamma} - \bar{c} \nabla \cdot \mathbf{u}$$

Use analytical solutions to simplified cell problem, based on general set of flow types from model, to predict \mathbf{K} ...

Plans

Increase horizontal resolution

• Change cell size

Calculate diffusivity and compare to local theories

• Develop suite of cell problem solutions to test

• Increase vertical resolution and diagnose eddy PV flux directly...