

Effects of a guided-field on particle diffusion in magnetohydrodynamic turbulence

Yue-Kin Tsang

Centre for Astrophysical and Geophysical Fluid Dynamics Mathematics, University of Exeter

Particle transport in fluids

- Brownian motion observed under the microscope
- dispersion of pollutants in the atmosphere
- cosmic ray propagation through the interstellar medium

We consider passive tracer particles only —- the Lagrangian viewpoint provides an alternative view of the flow structure

Single-particle turbulent diffusion

mean squared displacement:

$$\langle |\Delta \vec{X}(t)|^2 \rangle$$
, $\Delta \vec{X}(t) = \vec{X}(t) - \vec{X}(0)$

• Taylor's formula (1920) for large *t*:

$$\vec{X}(t) = \vec{X}(0) + \int_0^t d\tau \, \vec{V}(\tau)$$
$$\langle |\Delta \vec{X}(t)|^2] \rangle = 2 t \int_0^\infty d\tau \, \langle \vec{V}(\tau) \cdot \vec{V}(0) \rangle = 2t D$$

assume system is statistically homogeneous and stationary and the integral exists

Lagrangian velocity correlation:

$$C_L(\tau) = \langle \vec{V}(\tau) \cdot \vec{V}(0) \rangle$$

diffusion coefficient:

$$\mathbf{D} = \int_0^\infty \mathrm{d}\tau \, \langle \vec{V}(\tau) \cdot \vec{V}(0) \rangle$$

Field-guided MHD turbulence + tracers

Electrically conducting fluid in a 3D periodic domain:

$$\begin{aligned} \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} &= -\frac{1}{\rho_0}\nabla p + (\nabla \times \vec{B}) \times \vec{B} + \nu \nabla^2 \vec{u} + \vec{f} \\ \frac{\partial \vec{B}}{\partial t} &= \nabla \times (\vec{u} \times \vec{B}) + \eta \nabla^2 \vec{B} \\ \nabla \cdot \vec{u} &= \nabla \cdot \vec{B} = 0 \end{aligned}$$

 \vec{f} : isotropic random forcing at the largest scales, Δt -correlated

Field-guided MHD turbulence:

$$\vec{B}(\vec{x},t) = B_0\hat{z} + \vec{b}(\vec{x},t)$$

Evolution of passive tracer particles:

$$\frac{\mathrm{d}\vec{X}(t)}{\mathrm{d}t} = \vec{V}(t) = \vec{u}(\vec{X}(t), t)$$

 $\vec{X}(0)$: uniformly distributed over the domain

Previous work: the 2D case

Turbulent transport (η_T) suppressed when $B_0 > B_0^* \sim Rm^{-1}$ ($Rm = UL/\eta$)

(Vainshtein & Rosner 1991, Cattaneo & Vainshtein 1991, Cattaneo 1994, Gruzinov & Diamond 1994, Kondić, Hughes & Tobias 2016)

ON THE EFFECTS OF A WEAK MAGNETIC FIELD ON TURBULENT TRANSPORT

FAUSTO CATTANEO

Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 Received 1993 August 19; accepted 1994 April 22

ABSTRACT

We discuss the effects of a weak large-scale magnetic field on turbulent transport. We show by means of a series of two-dimensional numerical experiments that turbulent diffusion can be effectively suppressed by a (large-scale) magnetic field whose energy is small compared to equipartition. The suppression mechanism is associated with a subtle modification of the Lagrangian energy spectrum, and it does not require any substantial reduction of the turbulent amplitude. We exploit the relation between diffusion and random walking to emphasize that the effect of a large-scale magnetic field is to induce a long-term memory in the field of turbulence. The implications for the general case of three-dimensional transport are briefly discussed.

Q : Does suppression of turbulent diffusion occur in 3D ?

Eulerian fields

$$u = \eta \sim 10^{-3}$$

$$Re = Rm \sim 10^{3}$$

$$256 \times 256 \times 256$$

Ratios of Eulerian r.m.s. velocities

A =forcing amplitude

Particle trajectories

• transport becomes anisotropic when $B_0 \neq 0$

Scaling of mean squared displacement

ballistic limit: $\sim t^2$ at small time

• diffusive scaling: $\sim t$ at large time, $\langle (\Delta x)^2 \rangle \sim 2D_x t$, etc

Lagrangian velocity correlation function

$$C_L(\tau) = \langle \vec{V}(\tau) \cdot \vec{V}(0) \rangle$$

- hydrodynamic: $\sim \exp(-\tau)$, short correlation time
- field-guided: oscillatory, long correlation time
- how things depend on the guided-field strength B_0 ?

Diffusivity at different (weak) $B_0 \lesssim U_{\rm rms}$

- If u_{0} diffusion is reduced by B_{0} , including the *z*-direction
- anisotropic suppression: $D_x, D_y \leq D_z$
- strong $U_{\rm rms}(\gtrsim B_0)$ reduces the anisotropy in *D*'s

Diffusivity at different B_0

At strong guided-field strength, $B_0 \gtrsim U_{\rm rms}$

- \square D_x , D_y are strong suppressed, anomalous behavior of D_z
- D_x/D_z , $D_y/D_z \ll 1$ for the values of $U_{\rm rms}$ studied

Anisotropic turbulent diffusion

Particle trajectories

 $B_0 = 0.2, U_{\rm rms} = 1.42$ $D_x/D_z = 0.95$

amp=3 , v=1.25e–03 , η =1.25e–03 , B0_z=0.2 , L_z=1 , nx=256 , ny=256 , nz=256

 $B_0 = 1.0, U_{\rm rms} = 0.29$ $D_x / D_z = 0.24$

amp=0.1 , v=1.25e-03 , η =1.25e-03 , B0₂=1 , L₂=1 , nx=256 , ny=256 , nz=256

Particle trajectories

 $B_0 = 0.2, \ U_{\rm rms} = 0.25$ $D_x / D_z = 0.34$

amp=0.1 , v=1.25e-03 , η =1.25e-03 , B0,=0.2 , L,=1 , nx=256 , ny=256 , nz=256

 $B_0 = 1.0, U_{\rm rms} = 1.39$ $D_x / D_z = 0.34$

amp=3 , v=1.25e–03 , η =1.25e–03 , B0_z=1 , L_z=1 , nx=256 , ny=256 , nz=256

х

У

х

У

Lagrangian velocity correlation

Velocity decorrelation time

Velocity decorrelation time

ongoing work: ensemble averaging to get better statistics

A tentative physical picture ...

- wave induces memory into the system wave time scale: $\tau_A \sim B_0^{-1}$
- background turbulence removes memory
 turbulent decorrelation time: $\tau_u \sim (U_{\rm rms})^{-1}$
- a competition between τ_A and τ_u
- anisotropic diffusion:
 - $B_0/U_{\rm rms}\gtrsim 1$
 - $\tau_A \lesssim \tau_u$

A tentative physical picture ...

Iroshnikov–Kraichnan picture of weak MHD turbulence

$$V_A \sim B_0$$

$$\tau_A \sim \frac{\ell}{V_A}$$

$$\frac{\Delta u}{\tau_A} \sim \frac{u^2}{\ell}$$

$$u \sim \sqrt{N}\Delta u$$

$$\Rightarrow \quad \tau_{cas} \sim N\tau_A \sim \frac{\ell B_0}{u^2}$$

Alfven wave speed

wave packet interaction time

distortion each interaction

distortion after N interactions

cascade time

Summary

- study single-particle diffusion in 3D MHD turbulence
- transport mostly shows diffusive scaling at large time
- anisotropic suppression of turbulent diffusion by a guided-field $(D_x, D_y \lesssim D_z)$
- competition between waves and background turbulence

