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Condensation of water vapour

specific humidity of an air parcel:

q =
mass of water vapor

total air mass

saturation specific humidity, qs(T )

when q > qs, condensation occurs

excessive moisture precipitates out, q → qs

qs(T ) decreases with temperature T

probability distribution of water vapor in the atmosphere?

qs(T1)

qs(T2)

T2 < T1



Advection–condensation paradigm

Large-scale advection + condensation

→ reproduce (leading-order) observed humidity distribution

Observation

Simulation
– velocity and qs field from observation
– trace parcel trajectories backward

to the lower boundary layer (source)
– track condensation along the way

ignore: cloud-scale microphysics,
molecular diffusion, . . .

(Pierrehumbert & Roca, GRL, 1998)



Advection–condensation model
Particle formulation:

d ~X(t) = ~u dt , dQ(t) = (S − C)dt

air parcel at location ~X(t) carrying specific humidity Q(t)

S = moisture source (evaporation)

C = condensation sink, in the rapid condensation limit

C : Q 7→ min [Q , qs( ~X) ]

saturation profile: qs(y) = q0 exp(−αy)
y = latitude (advection on a midlatitude isentropic

surface) or altitude (vertical convection in troposphere)

Mean-field formualtion:
∂q

∂t
+ ~u · ∇q = S − C

q(~x, t) is treated as a passive scalar field advected by ~u



Particle models: previous analytical results
1D stochastic models: u ∼ spatially uncorrelated random process

Pierrehumbert, Brogniez & Roca 2007 : white noise, S = 0

O’Gorman & Schneider 2006 : Ornstein–Uhlenbeck process, S = 0
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FIGURE 6.8. Decay of ensemble mean specific humidity at y = 0.5

for the bounded random walk with a barrier at y = 0. The thin

FIG. 2. Mean specific humidity vs meridional distance for initial

value problem. Moisture distributions are shown after the evolu-

tion times T at which L(T ) 5 4Ls in each case. Solid lines are

shown in order of decreasing magnitude: saturation specific hu-

Sukhatme & Young 2011 : white noise with a boundary source
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Coherent circulation in the atmosphere

moist, warm air rises near the equator

poleward transport in the upper troposphere

subsidence in the subtropics (∼ 30◦N and 30◦S)

transport towards the equator in the lower troposphere

Q: response of rainfall patterns to changes in the Hadley cells?



Steady-state problem

bounded domain: [0, π]× [0, π], reflective B.C.

qs(y) = qmax exp(−αy): qs(0) = qmax and qs(π) = qmin

resetting source: Q = qmax if particle hits y = 0

0 π
0

π

x

y

cellular flow: ψ = −U sin(x) sin(y); (u, v) = (−ψy, ψx)



Stochastic system with source

dX(t) = u(X,Y ) dt+
√
2κ dW1(t)

dY (t) = v(X,Y ) dt+
√
2κ dW2(t)

dQ(t) = [S(Y )− C(Q, Y )]dt

ψ = −U sin x sin y
u = −ψy

v = ψx

U = 1

κ = 10−2
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Source boundary layer
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Bimodal distribution : layer consists mainly of either:

Q = qmin from upstream of the flow and diffuse in from the

domain interior

Q ≈ qmax from the resetting source

particles with Q ≈ qmax spreading into the domain as x increases



Condensation boundary layer
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at some fixed height y1: mainly consists of Q = qmin (diffuse in

from the interior) and Q = qs(y1) — Bimodal distribution

condensation ⇒ localized rainfall over a narrow O(ǫ1/2) region



Interior region
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a homogeneous region of very dry air Q ≈ qmin is created in the

domain interior

the vortex "shields" the source from the interior

interior effectively undergoing stochastic drying



Steady-state problem

Steady-state Fokker-Planck equation for P (x, y, q):

ǫ−1~u · ∇P + ∂q[(S − C)P ] = ∇2P , ǫ = κ/(UL) ≪ 1

Rapid condensation limit :

P (x, y, q) 6= 0

C = 0

}

for x, y ∈ [0, π] and q ∈ [qmin, qs(y)]

Resetting source at bottom boundary :

P (x, y = 0, q) = π−1δ(q − qmax)

At the top boundary : P (x, y = π, q) = π−1δ(q − qmin)

Hence,

ǫ−1~u · ∇P = ∇2P

which predicts a boundary layer of thickness O(ǫ1/2)



Solution and diagnostics

solve P (x, y, q) by matched asymptotics as ǫ→ 0

dry peak: P (x, y, q) = δ(q − qmin)β(x, y)/π
2 + F (x, y, q)

mean moisture input rate:

Φ = ǫ−1/2
√

8κ/π(qmax − qmin) , ǫ = κ/(UL)
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Other diagnostics: horizontal rainfall profile, vertical moisture flux, . . . etc



Mean-field PDE model
Weather/climate models represent atmospheric moisture as a

coarse-grained field q̄(~x, t) governed by deterministic PDE

Advection–condensation–diffusion:

∂q̄

∂t
+ ~u · ∇q̄ = κq∇2q̄ − C + S

κq : eddy diffusivity representing un-resolved processes
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Why PDE models saturate the domain?

CPDE(q̄) = τ−1

c (q̄ − qs)H(q̄ − qs), H : Heaviside step function

Fokker-Planck: ∂tP + ~u · ∇P + ∂q[(S − C)P ] = κb∇2P

q̄(x, y, t) = π2

∫

qmax

qmin

q′P (x, y, q′, t)dq′

C̄ = π2

∫

qmax

qs(y)

(q′ − qs)P (x, y, q′, t)dq

condensation and averaging do not commute
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Parametrization of condensation
∂q̄

∂t
+ ~u · ∇q̄ = κq∇2q̄, q̄ → C(q̄, qs)

at a grid point (x, y) and time t, after advection and diffusion steps

let’s say q̄(x, y, t) = q∗

imagine there is a distribution P0(q|x, y) such that

q∗ =

∫

q′P0(q
′|x, y) dq′

then, q̄(x, y, t+∆t) =

∫

q′P1(q
′|x, y) dq′

P 0
 (q

 | 
x,

y)

before condensation

P 1
 (q

 | 
x,

y)

after condensation

qs(y)

q*qmin qmax

qs(y)

qmaxqmin q*

2σ



Test results

P0(q|x, y): a top hat distribution of width 2σ

as a test, prescribe a constant σ

for q̄ − σ < qs < q̄ + σ, condensation occurs as:

q̄ → q̄ − [q̄ + σ − qs]
2

4σ

κq = 0.01



Parametrization with dry peak

subsidence of dry air parcels is important

include a dry peak of amplitude β in P0(q|x, y)
P 0

 (q
 | 

x,
y)

before condensation

P 1
 (q

 | 
x,

y)

after condensation

qs(y)

q*qmin qmax

qs(y)

qmaxqmin q*

β β



Amplitude of dry peak

β(x, y) = π2ρ(x, y) , P (qmin, x, y, t) = δ(q − qmin)ρ(x, y)

∂ρ

∂t
+ ~u · ∇ρ = κq∇2ρ

ρ(x, 0, t) = 0 , ρ(x, π, t) = π−2



Results with dry peak
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