

Stochastic modelling and parametrization of atmospheric moisture transport

Yue-Kin Tsang

Centre for Geophysical and Astrophysical Fluid Dynamics Mathematics, University of Exeter

> Jacques Vanneste (University of Edinburgh) Geoff Vallis (University of Exeter)

Condensation of water vapour

specific humidity of an air parcel:

$$q = \frac{\text{mass of water vapor}}{\text{total air mass}}$$

- saturation specific humidity, $q_s(T)$
 - when $q > q_s$, condensation occurs
 - excessive moisture precipitates out, $q \rightarrow q_s$
 - $q_s(T)$ decreases with temperature T
- probability distribution of water vapor in the atmosphere?

Advection–condensation paradigm

Large-scale advection + condensation

 \rightarrow reproduce (leading-order) observed humidity distribution

Observation

Simulation

- velocity and q_s field from observation
- trace parcel trajectories backward to the lower boundary layer (source)
- track condensation along the way

ignore: cloud-scale microphysics, molecular diffusion,...

(Pierrehumbert & Roca, GRL, 1998)

Advection–condensation model

Particle formulation:

$$\mathrm{d}\vec{X}(t) = \vec{u}\,\mathrm{d}t\,,\quad\mathrm{d}Q(t) = (S-C)\mathrm{d}t$$

air parcel at location $\vec{X}(t)$ carrying specific humidity Q(t)

- \checkmark *S* = moisture source (evaporation)
- C = condensation sink, in the rapid condensation limit $C: Q \mapsto \min [Q, q_s(\vec{X})]$
- saturation profile: $q_s(y) = q_0 \exp(-\alpha y)$
- y = latitude (advection on a midlatitude isentropic surface) or altitude (vertical convection in troposphere)
- Mean-field formualtion:

$$\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = S - C$$

 $q(\vec{x}, t)$ is treated as a passive scalar field advected by \vec{u}

Particle models: previous analytical results

1D stochastic models: $u \sim$ spatially uncorrelated random process

- Pierrehumbert, Brogniez & Roca 2007: white noise, S = 0
- **O'Gorman & Schneider 2006**: Ornstein–Uhlenbeck process, S = 0

FIGURE 6.8. Decay of ensemble mean specific humidity at y = 0.5 for the bounded random walk with a barrier at y = 0. The thin

FIG. 2. Mean specific humidity vs meridional distance for initial value problem. Moisture distributions are shown after the evolution times T at which $L(T) = 4L_s$ in each case. Solid lines are

Sukhatme & Young 2011: white noise with a boundary source

Coherent circulation in the atmosphere

- moist, warm air rises near the equator
- poleward transport in the upper troposphere
- subsidence in the subtropics ($\sim 30^{\circ}$ N and 30° S)
- transport towards the equator in the lower troposphere

Q: response of rainfall patterns to changes in the Hadley cells?

Steady-state problem

bounded domain: [0, π] × [0, π], reflective B.C.
q_s(y) = q_{max} exp(-αy): q_s(0) = q_{max} and q_s(π) = q_{min}
resetting source: Q = q_{max} if particle hits y = 0

Stochastic system with source

$$dX(t) = u(X, Y) dt + \sqrt{2\kappa} dW_1(t)$$

$$dY(t) = v(X, Y) dt + \sqrt{2\kappa} dW_2(t)$$

$$dQ(t) = [S(Y) - C(Q, Y)] dt$$

$$\psi = -U\sin x \sin y$$
$$u = -\psi_y$$
$$v = \psi_x$$

Source boundary layer

Bimodal distribution: layer consists mainly of either:

- $Q \approx q_{\text{max}}$ from the resetting source

▶ particles with $Q \approx q_{\text{max}}$ spreading into the domain as x increases

Condensation boundary layer

- moist particles move up into region of low $q_s(y)$
- at some fixed height y_1 : mainly consists of $Q = q_{\min}$ (diffuse in from the interior) and $Q = q_s(y_1)$ **Bimodal distribution**
- condensation \Rightarrow localized rainfall over a narrow $O(\epsilon^{1/2})$ region

Interior region

- a homogeneous region of very dry air $Q \approx q_{\min}$ is created in the domain interior
- the vortex "shields" the source from the interior
- interior effectively undergoing stochastic drying

Steady-state problem

Steady-state Fokker-Planck equation for P(x, y, q):

$$\epsilon^{-1}\vec{u}\cdot\nabla P + \partial_q[(S-C)P] = \nabla^2 P, \quad \epsilon = \kappa/(UL) \ll 1$$

Rapid condensation limit:

$$P(x, y, q) \neq 0 \\ C = 0$$
 for $x, y \in [0, \pi]$ and $q \in [q_{\min}, q_s(y)]$

Resetting source at bottom boundary:

$$P(x, y = 0, q) = \pi^{-1}\delta(q - q_{\max})$$

At the top boundary: $P(x, y = \pi, q) = \pi^{-1} \delta(q - q_{\min})$

Hence,

$$\epsilon^{-1}\vec{u}\cdot\nabla P = \nabla^2 P$$

which predicts a boundary layer of thickness $O(\epsilon^{1/2})$

Solution and diagnostics

- solve P(x, y, q) by matched asymptotics as $\epsilon \to 0$
- dry peak: $P(x, y, q) = \delta(q q_{\min})\beta(x, y)/\pi^2 + F(x, y, q)$
- mean moisture input rate:

Other diagnostics: horizontal rainfall profile, vertical moisture flux, ... etc

- Weather/climate models represent atmospheric moisture as a coarse-grained field $\bar{q}(\vec{x},t)$ governed by deterministic PDE
- Advection-condensation-diffusion:

$$\frac{\partial \bar{q}}{\partial t} + \vec{u} \cdot \nabla \bar{q} = \kappa_q \nabla^2 \bar{q} - C + S$$

• κ_q : eddy diffusivity representing un-resolved processes

- Weather/climate models represent atmospheric moisture as a coarse-grained field $\bar{q}(\vec{x},t)$ governed by deterministic PDE
- Advection-condensation-diffusion:

$$\frac{\partial \bar{q}}{\partial t} + \vec{u} \cdot \nabla \bar{q} = \kappa_q \nabla^2 \bar{q} - C + S$$

- κ_q : eddy diffusivity representing un-resolved processes
- boundary source: $\bar{q}(x, y = 0, t) = q_{\max}$

- Weather/climate models represent atmospheric moisture as a coarse-grained field $\bar{q}(\vec{x},t)$ governed by deterministic PDE
- Advection-condensation-diffusion:

$$\frac{\partial \bar{q}}{\partial t} + \vec{u} \cdot \nabla \bar{q} = \kappa_q \nabla^2 \bar{q} - C + S$$

- κ_q : eddy diffusivity representing un-resolved processes
- boundary source: $\bar{q}(x, y = 0, t) = q_{\max}$
- rapid condensation $C : \bar{q}(\vec{x}, t) \to \min[\bar{q}(\vec{x}, t), q_s(y)]$

- Weather/climate models represent atmospheric moisture as a coarse-grained field $\bar{q}(\vec{x},t)$ governed by deterministic PDE
- Advection-condensation-diffusion:

$$\frac{\partial \bar{q}}{\partial t} + \vec{u} \cdot \nabla \bar{q} = \kappa_q \nabla^2 \bar{q} - C + S$$

- κ_q : eddy diffusivity representing un-resolved processes
- boundary source: $\bar{q}(x, y = 0, t) = q_{\max}$
- **s** rapid condensation $C : \bar{q}(\vec{x}, t) \to \min[\bar{q}(\vec{x}, t), q_s(y)]$

- Weather/climate models represent atmospheric moisture as a coarse-grained field $\bar{q}(\vec{x},t)$ governed by deterministic PDE
- Advection-condensation-diffusion:

$$\frac{\partial \bar{q}}{\partial t} + \vec{u} \cdot \nabla \bar{q} = \kappa_q \nabla^2 \bar{q} - C + S$$

- κ_q : eddy diffusivity representing un-resolved processes
- boundary source: $\bar{q}(x, y = 0, t) = q_{\max}$
- **s** rapid condensation $C : \bar{q}(\vec{x}, t) \to \min[\bar{q}(\vec{x}, t), q_s(y)]$

Why PDE models saturate the domain?

- $C_{\text{PDE}}(\bar{q}) = \tau_c^{-1}(\bar{q} q_s)H(\bar{q} q_s), \quad H$: Heaviside step function
- Fokker-Planck: $\partial_t P + \vec{u} \cdot \nabla P + \partial_q [(S C)P] = \kappa_b \nabla^2 P$

$$\bar{q}(x,y,t) = \pi^2 \int_{q_{\min}}^{q_{\max}} q' P(x,y,q',t) dq'$$
$$\bar{C} = \pi^2 \int_{q_s(y)}^{q_{\max}} (q'-q_s) P(x,y,q',t) dq$$

condensation and averaging do not commute

Parametrization of condensation

$$\frac{\partial \bar{q}}{\partial t} + \vec{u} \cdot \nabla \bar{q} = \kappa_q \nabla^2 \bar{q}, \quad \bar{q} \to C(\bar{q}, q_s)$$

at a grid point (x, y) and time t, after advection and diffusion steps

let's say
$$\bar{q}(x, y, t) = q_*$$

Imagine there is a distribution $P_0(q|x, y)$ such that

$$q_* = \int q' P_0(q'|x, y) \, \mathrm{d}q'$$

then, $\bar{q}(x, y, t + \Delta t) = \int q' P_1(q'|x, y) \, \mathrm{d}q'$

Test results

- $P_0(q|x, y)$: a top hat distribution of width 2σ
- \checkmark as a test, prescribe a constant σ
- for $\bar{q} \sigma < q_s < \bar{q} + \sigma$, condensation occurs as:

$$\bar{q} \to \bar{q} - \frac{[\bar{q} + \sigma - q_s]^2}{4\sigma}$$

$$\kappa_q = 0.01$$

Parametrization with dry peak

- subsidence of dry air parcels is important
- include a dry peak of amplitude β in $P_0(q|x, y)$

Amplitude of dry peak

$$\beta(x,y) = \pi^2 \rho(x,y), \quad P(q_{\min}, x, y, t) = \delta(q - q_{\min})\rho(x,y)$$
$$\frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho = \kappa_q \nabla^2 \rho$$
$$\rho(x,0,t) = 0, \quad \rho(x,\pi,t) = \pi^{-2}$$

Results with dry peak

