

Characterizing Jupiter's dynamo radius using its magnetic energy spectrum

Yue-Kin Tsang

School of Mathematics, University of Leeds

Chris Jones (Leeds)

Let's start on Earth...

- core-mantle boundary (CMB): sharp boundary between the non-conducting mantle and the conducting outer core
 ⇒ fluid flow and dynamo action confined in the same region
- **9** dynamo radius $r_{\rm dyn}$: top of the dynamo region $\approx r_{\rm cmb}$
- one way to deduce $r_{\rm cmb}$ from observation at the surface: magnetic energy spectrum

Gauss coefficients g_{lm} and h_{lm}

• Outside the dynamo region, $r > r_{dyn}$:

$$\boldsymbol{j}=\boldsymbol{0}$$

$$abla imes \mathbf{B} = \mu_0 \, \mathbf{j} = \mathbf{0} \implies \mathbf{B} = -\nabla \Psi$$

 $abla \cdot \mathbf{B} = 0 \implies \nabla^2 \Psi = 0$

 $a = radius \ of \ Earth$

Consider only internal sources,

$$\Psi(r,\theta,\phi) = a \sum_{l=1}^{\infty} \sum_{m=0}^{l} \left(\frac{a}{r}\right)^{l+1} \hat{P}_{lm}(\cos\theta) \left(\frac{g_{lm}}{\cos m\phi} + \frac{h_{lm}}{\sin m\phi}\right)$$

 \hat{P}_{lm} : Schmidt's semi-normalised associated Legendre polynomials

• g_{lm} and h_{lm} can be determined from magnetic field measured at the planetary surface $(r \approx a)$

The Lowes spectrum

 \blacksquare Average magnetic energy over a spherical surface of radius r

$$E_B(r) = \frac{1}{2\mu_0} \frac{1}{4\pi} \oint |\boldsymbol{B}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

• Inside the current-free region $r_{\rm dyn} < r < a$,

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} \left[\left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(g_{lm}^2 + h_{lm}^2\right) \right]$$

J Lowes spectrum (magnetic energy as a function of l):

$$R_{l}(r) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(g_{lm}^{2} + h_{lm}^{2}\right)$$
$$= \left(\frac{a}{r}\right)^{2l+4} R_{l}(a) \qquad (\text{downward continuation})$$

Estimate location of CMB using the Lowes spectrum

• downward continuation from a to $r_{\rm cmb}$ through the mantle (j = 0):

$$\ln R_l(a) = 2\ln\left(\frac{r_{\rm cmb}}{a}\right)l + 4\ln\left(\frac{r_{\rm cmb}}{a}\right) + \ln R_l(r_{\rm cmb})$$

 white source hypothesis: turbulence in the core leads to an even distribution of magnetic energy across different scales l,

 $R_l(r_{\rm cmb})$ is independent of l

• $r_{\rm cmb} \approx 0.55a \approx 3486 \, {\rm km}$ agrees well with results from seismic waves observations

Interior structure of Jupiter

- gaseous molecular H/He \rightarrow liquid metallic H \rightarrow core?
- transition from molecular to metallic hydrogen is continuous
- conductivity $\sigma(r)$ varies smoothly with radius r
- dynamo region \neq region of fluid flow

At what depth does dynamo action start?

Lowes spectrum from the Juno mission

- Juno's spacecraft reached Jupiter on 4th July, 2016
- currently in a 53-day orbit, until (at least) July 2021
- $R_l(r_J)$ up to l = 10 from recent measurement (8 flybys)
 - Lowes' radius: $r_{\text{lowes}} \approx 0.85 r_{\text{J}}$ $(r_{\text{J}} = 6.9894 \times 10^7 \text{m})$

Lowes spectrum from the Juno mission

- Juno's spacecraft reached Jupiter on 4th July, 2016
- currently in a 53-day orbit, until (at least) July 2021
- $R_l(r_J)$ up to l = 10 from recent measurement (8 flybys)
- Lowes' radius: $r_{\text{lowes}} \approx 0.85 r_{\text{J}}$ $(r_{\text{J}} = 6.9894 \times 10^7 \text{m})$

Questions: with the conductivity profile $\sigma(r)$ varying smoothly,

- meaning of r_{lowes} ? $r_{\text{lowes}} = r_{\text{dyn}}$?
- white source hypothesis valid?
 - concept of "dynamo radius" r_{dyn} well-defined?

A numerical model of Jupiter

- spherical shell of radius ratio $r_{\rm in}/r_{\rm out} = 0.0963$ (small core)
- anelastic: linearise about a hydrostatic adiabatic basic state ($\bar{\rho}, \bar{T}, \bar{p}, \dots$)
- **9** rotating fluid with electrical conductivity $\sigma(r)$ driven by buoyancy
- convection driven by secular cooling of the planet
- \blacksquare dimensionless numbers: Ra, Pm, Ek, Pr

 $\nabla \cdot (\bar{\rho} \boldsymbol{u}) = 0$

$$\begin{split} \frac{Ek}{Pm} \bigg[\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \bigg] + 2\hat{\boldsymbol{z}} \times \boldsymbol{u} &= -\nabla \Pi' + \frac{1}{\bar{\rho}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} - \left(\frac{EkRaPm}{Pr}\right) S \frac{\mathrm{d}\bar{T}}{\mathrm{d}r} \hat{\boldsymbol{r}} + Ek \frac{\boldsymbol{F}_{\nu}}{\bar{\rho}} \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) - \nabla \times (\eta \nabla \times \boldsymbol{B}) \\ \bar{\rho} \bar{T} \left(\frac{\partial S}{\partial t} + \boldsymbol{u} \cdot \nabla S \right) + \frac{Pm}{Pr} \nabla \cdot \boldsymbol{\mathcal{F}}_{Q} &= \frac{Pr}{RaPm} \bigg(Q_{\nu} + \frac{1}{Ek} Q_{J} \bigg) + \frac{Pm}{Pr} H_{S} \end{split}$$

Boundary conditions: no-slip at $r_{\rm in}$ and stress-free at $r_{\rm out}$, $S(r_{\rm in}) = 1$ and $S(r_{\rm out}) = 0$, electrically insulating outside $r_{\rm in} < r < r_{\rm out}$. (Jones 2014)

A numerical model of Jupiter

- spherical shell of radius ratio $r_{\rm in}/r_{\rm out} = 0.0963$ (small core)
- anelastic: linearise about a hydrostatic adiabatic basic state ($\bar{\rho}, \bar{T}, \bar{p}, \dots$)
- **9** rotating fluid with electrical conductivity $\sigma(r)$ driven by buoyancy
- convection driven by secular cooling of the planet
- \checkmark dimensionless numbers: Ra, Pm, Ek, Pr
- a Jupiter basic state:

C.A. Jones/Icarus 241 (2014) 148-159

$Ra=2 imes 10^7,\ Ek=1.5 imes 10^{-5},\ Pm=10,\ Pr=0.1$

radial magnetic field, $B_r(r, \theta, \phi)$

Where does the current start flowing?

• average current over a spherical surface of radius r

$$\mu_0 \boldsymbol{j} = \nabla \times \boldsymbol{B}$$
$$\boldsymbol{j}_{\rm rms}^2(r,t) \equiv \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} |\boldsymbol{j}|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

• $j_{\rm rms}$ drops quickly but smoothly in the transition region, no clear indication of a characteristic "dynamo radius"

Magnetic energy spectrum, $F_l(r)$

average magnetic energy over a spherical surface:

$$E_B(r) = \frac{1}{2\mu_0} \frac{1}{4\pi} \oint |\boldsymbol{B}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

• Lowes spectrum: recall that if $\boldsymbol{j} = \boldsymbol{0}$, we solve $\nabla^2 \Psi = 0$, then

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} \left[\left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(g_{lm}^2 + h_{lm}^2\right) \right] = \sum_{l=1}^{\infty} R_l(r)$$

● generally, for the numerical model, $\mathbf{B} \sim \sum_{lm} b_{lm}(r) Y_{lm}(\theta, \phi)$,

$$2\mu_0 E_B(r) = \frac{1}{4\pi} \oint |\boldsymbol{B}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi = \sum_{l=1}^{\infty} \boldsymbol{F}_l(r)$$

 $\boldsymbol{j}(r,\theta,\phi) = \boldsymbol{0} \text{ exactly} \implies R_l(r) = F_l(r)$

Magnetic energy spectrum at different depth r

 $\frac{\text{log-linear plot}}{F_l(r): \text{ solid lines}}$

 $R_l(r)$: circles

• $r > 0.9r_{\rm J}$: slope of $F_l(r)$ decreases rapidly with $r r < 0.9r_{\rm J}$: $F_l(r)$ maintains the same shape and slope \Rightarrow a shift in the dynamics of the system at $0.9r_{\rm J}$

●
$$r > 0.9r_{\rm J} : F_l(r) \approx R_l(r)$$

 $r < 0.9r_{\rm J} : F_l(r)$ deviates from $R_l(r)$
 \Rightarrow electric current becomes important below 0.9r

• suggests a dynamo radius $r_{\rm dyn} \approx 0.9 r_{\rm J}$

Spectral slope of $F_l(r)$ and $R_l(r)$

■ sharp transition in $\alpha(r)$ indicates $r_{\rm dyn} = 0.907 r_{\rm J}$

• $F_l(r)$ inside dynamo region is not exactly flat ($\alpha_{dyn} = 0.024$): white source assumption is only approximate

• r_{lowes} provides a lower bound to r_{dyn} : $\beta = 0$ at $r_{\text{lowes}} = 0.883$ General picture: $\alpha(r_{\text{out}})$ and α_{dyn} control r_{dyn} and r_{lowes}

Comparison with Juno data: a conundrum

uncertainties in Juno data ⇒ slope depends on fitting range (r_{lowes} ~ 0.8 - 0.85 r_J)
spectrum of Pm=10 simulation (r_{lowes} ~ 0.883 r_J) shallower than Juno observation
reducing Pm leads to steeper spectrum (r_{lowes} ~ 0.865 at Pm=3)

 \blacksquare increasing Pm supposedly moves towards Jupiter condition !? Possible answers:

- the actual electrical conductivity inside Jupiter is smaller than predicted by theoretical calculation?
- our numerical model has more small-scale forcing than Jupiter does
- the existence of a stably stratified layer below the molecular layer

Effects of a stable layer: a schematic

Imagine there is a stable layer between $r_0 = 0.89r_J$ and $r_s = 0.91r_J$

- $F_l(r_0)$ from Pm = 10 simulation
- filtering: $\mathbf{B}(r_0, \theta, \phi) * H_{\text{low}} \to F_l^*(r_0); \quad \tilde{H}_{\text{low}} \sim \exp(-\gamma \sqrt{m})$

•
$$F_l(r_s) \equiv F_l^*(r_0); \quad F_l^*(r_J) = \left(\frac{r_s}{r_J}\right)^{2l+4} F_l(r_s) \Rightarrow r_{\text{lowes}} = 0.85 r_J$$

Tsang & Jones, Earth Planet. Sci. Lett. (2019). doi.org/10.1016/j.epsl.2019.115879