

Fast Chemical Reactions in Chaotic Flows: Reaction Rate and Mixdown Time

Yue-Kin Tsang

Scripps Institution of Oceanography, University of California, San Diego

$$t_X \sim \frac{1}{\lambda} \ln \frac{\gamma \langle p \rangle_{t=\infty}}{\bar{h}} \quad (\sim 407)$$

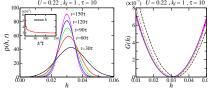
Relation to Decaying Passive Scalars

Consider the quantity:

 $\langle a(t)\rangle = \langle b(t)\rangle$ for all t

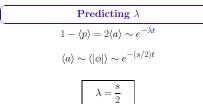
$$oldsymbol{u}(oldsymbol{x},t)$$

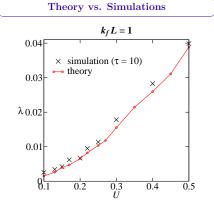
 $\langle a(t=0) \rangle = \langle b(t=0) \rangle = 0.5$

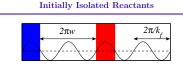

 $= \begin{cases} \sqrt{2} U \cos[k_f y + \theta_1(n)] \ \hat{i} \ , \qquad n\tau < t \leqslant (n + \frac{1}{2})\tau \\ \sqrt{2} U \cos[k_f x + \theta_2(n)] \ \hat{j} \ , \ (n + \frac{1}{2})\tau < t \leqslant (n + 1)\tau \end{cases}$ where θ_1 and θ_2 are random numbers. Domain size: $2\pi L \times 2\pi L$ Scale separation parameter $\sim k_f L$

- $\phi = a b$ $rac{\partial \phi}{\partial t} + \mathbf{u} \cdot
 abla \phi = \kappa
 abla^2 \phi$
- $\Rightarrow \phi \sim$ decaying passive scalar

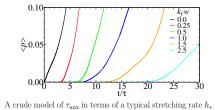
For infinitely fast reactions: the fields $a(\boldsymbol{x},t)$ and $b(\boldsymbol{x},t)$ never overlap


$$\therefore \quad |\phi| = |a - b| = a + b$$


$$\langle a \rangle = \langle b \rangle = \frac{\langle |\phi| \rangle}{2}$$


• Local stretching theory predicts

 $s = \min_{h} [h + G(h)]$



For $k_f L = 5$, using $\kappa_{\rm eff} = U^2 \tau/8$ with U = 0.25and $\tau = 10$, we get $\lambda_{theory} = 0.0031$. Numerical simulation gives $\lambda = 0.0033$.

- Broadcast spawning (Crimaldi, Cadwell and Weiss 2008)
- Parameterization in atmospheric chemical transport models (Thuburn and Tan 1997)

Reaction does not start until the separation $2\pi w$ is reduced to the diffusion length scale l_d by the action of the fluid. The time taken to do so is the **mixdown time**, τ_{mix} .

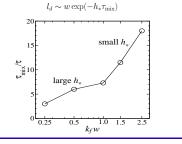


Table 1:

Fig. 1.—

Fig. 2.—

Fig. 3.—