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�Fast Second Order Chemical Reactions

We consider infinitely fast bimolecular reactions in

fluid flows:

A + B → 2P

e.g. NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(ℓ)

Advection-Diffusion-Reaction Equations

∂a

∂t
+ u · ∇a = κ∇2a− γab

∂b

∂t
+ u · ∇b = κ∇2b− γab

∂p

∂t
+ u · ∇p = κ∇2a + 2γab

• Fast reactions:

reaction time ≪ advection time ≪ diffusion time

•Goal: time dependence of product concentration

〈p〉 = 1− 2〈a〉

〈a(t = 0)〉 = 〈b(t = 0)〉 = 0.5 〈a(t)〉 = 〈b(t)〉 for all t
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�A Model of Chaotic Flow

u(x, t)

=

{√
2U cos[kfy + θ1(n)] î , nτ < t 6 (n+1

2)τ√
2U cos[kfx + θ2(n)] ĵ , (n+

1
2)τ < t 6 (n+1)τ

where θ1 and θ2 are random numbers.

Domain size: 2πL× 2πL

Scale separation parameter ∼ kfL
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�Progress of Reaction

1. initial slow phase (t < 10τ ): very little fine struc-

ture in the concentration fields a and b

2. exponential phase (10τ < t < 40τ ): filamentary

structure developed, 〈p〉 reaches 90% of its ulti-

mate value

3. classical chemical kinetics (t > 60τ ): system is

fairly homogeneous, advection and diffusion be-

come unimportant

• transition from phase 2 to phase 3 occurs at the

crossover time

tX ∼ 1

λ
ln
γ〈p〉t=∞

h̄
(∼ 40τ )
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�Relation to Decaying Passive Scalars

Consider the quantity:

φ = a− b

∂φ

∂t
+ u · ∇φ = κ∇2φ

⇒ φ ∼ decaying passive scalar

For infinitely fast reactions: the fields a(x, t) and

b(x, t) never overlap

∴ |φ| = |a− b| = a + b

〈a〉 = 〈b〉 = 〈|φ|〉
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�Theory of Decaying Passive Scalar

Strange Eigenmodes

φ(x, t) = φ̂(x, t) e−(s/2)t

where φ̂(x, t) is statistically stationary, hence

〈|φ|n〉 ∼ e−n(s/2)t

Decay of Scalar Variance

〈φ2〉 ∼ e−st as κ → 0

A. With Scale Separation, kfL ≫ 1

Eddy diffusion of the large-scale φL dominates,

∂φL
∂t

= κeff∇2φL

〈φ2〉 ∼ e−st ∼ exp(− 2
κeff
L2

t)

B. Without Scale Separation, kfL ≈ 1

• Finite-time Lyapunov Exponent, h

h(x, t) =
1

t
log

|δx(t)|
|δx(0)|

h̄ = lim
t→∞

h(x, t)

• Probability density function of h, ρ(h, t) with

large time asymptotic form:

ρ(h, t) ∼ exp[−tG(h)]
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• Local stretching theory predicts

s = min
h

[h +G(h)]
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�Predicting λ

1− 〈p〉 = 2〈a〉 ∼ e−λt

〈a〉 ∼ 〈|φ|〉 ∼ e−(s/2)t

λ =
s
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�Theory vs. Simulations
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For kfL = 5, using κeff = U2τ/8 with U = 0.25

and τ = 10, we get λtheory = 0.0031. Numerical

simulation gives λ = 0.0033.
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�Initially Isolated Reactants

2πw 2π/k
f

• Broadcast spawning (Crimaldi, Cadwell and Weiss 2008)

• Parameterization in atmospheric chemical transport models

(Thuburn and Tan 1997)

Reaction does not start until the separation 2πw is reduced to

the diffusion length scale ld by the action of the fluid. The time

taken to do so is the mixdown time, τmix .
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A crude model of τmix in terms of a typical stretching rate h∗ :

ld ∼ w exp(−h∗τmix)
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