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Spectra: to study properties at different spatial scales

(1) Lowes spectrum (r ⩾ rcmb)
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(a = Earth’s radius)

(2) Secular variation spectrum (r ⩾ rcmb)

Rsv(l, r, t) =
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Gillet, Lesur and Olsen (2010)

Holme, Olsen and Bairstow (2011)

Figure 2. Spectra of the CHAOS-4 SV at the CMB, r = c. Green line gives
theoretical model, dashed lines approximate 1σ error bounds.



Secular variation time-scale spectrum

R(l) ∼ “amount” of B2 in spatial scale l

Rsv(l) ∼ “amount” of Ḃ2 in spatial scale l

τsv(l, t) =

√
R

Rsv
=

√√√√∑l
m=0

(
g2lm + h2

lm

)∑l
m=0

(
ġ2lm + ḣ2
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) (r ⩾ rcmb)

characteristic time scale of magnetic field structures with spatial scale characterised by l

numerical simulations and some satellite data support the simple power-law: τsv(l) ∼ l−1

(there are still some debates about this)

theoretically, a common argument based on the frozen-flux hypothesis:

Ḃr = −∇h · (uhBr)

∇h ∼
√
l(l + 1) ∼ l and uh ∼ U

τsv ∼ Br/Ḃr ∼ l−1



Questions

1. τsv is defined using the Gauss coefficients obtained from B outside the outer core.

Do τsv and the scaling law τsv ∼ l−1 describe the time variation of B inside the outer core?

[No. Inside the outer core, B is not potential. Ḃr Ḃθ and Ḃϕ may all be important.]

2. Does the frozen-flux argument explain the scaling τsv ∼ l−1 observed at the surface?

[No. Magnetic diffusion is important near the CMB.]

3. What mechanisms lead to the observed scaling τsv ∼ l−1?

[Briefly, balance between ∇× (u×B) and ∇2B at the CMB.

Details depend on the boundary conditions.]



Scaling of τsv(l): observations and numerical models

Christensen and Tilgner (2004)
observation data 1840 – 1990
and numerical dynamo models

τsv ∼ l−1

Holme and Olsen (2006)
satellite data 1999 – 2003
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Scaling of τsv(l): observations and numerical models

Lesur et al. (2008)
6yr CHAMP + 5yr observatory data

Rsv

R
∼ l2.75

=⇒ τsv ∼ l−1.38

Lhuillier et al. (2011)
‘historical data’ 1840 – 1990, satellite data
(2005) and numerical dynamo models

τsv ∼ l−1



The scaling exponent γ

τsv(l) ∼ l−γ
(excluding l = 1)

numerical models: γ = 1

observations: mixed results, 1.32 < γ < 1.45 and γ = 1

time average vs. snapshot

why study τsv : infer properties of the magnetohydrodynamics inside the outer
core from observations at the surface

We should first ask :

Is τsv relevant to the time scale of Ḃ inside the outer core?



Generalisation to inside the dynamo region (outer core)

Recall the definition of the Lowes spectrum R(l, r, t) for r ⩾ rcmb,

B = −∇Ψ , Ψ(r, θ, ϕ, t) = a
∞∑
l=1

l∑
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For any r, expand in vector spherical harmonics,

B(r, θ, ϕ, t) =
∑
lm

[
qlm(r, t)Ŷ lm(θ, ϕ) + slm(r, t)Ψ̂lm(θ, ϕ) + tlm(r, t)Φ̂lm(θ, ϕ)

]
We define the magnetic energy spectrum F (l, r, t) for all r:
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Generalisation to inside the dynamo region (outer core)

F (l, r, t) =
1

(2l + 1)

l∑
m=0

(
|qlm|2 + |slm|2 + |tlm|2

)
(4− 3δm,0)

Similarly, define the time variation spectrum FḂ(l, r, t):

Ḃ(r, θ, ϕ, t) =
∑
lm

[
q̇lm(r, t)Ŷ lm(θ, ϕ) + ṡlm(r, t)Ψ̂lm(θ, ϕ) + ṫlm(r, t)Φ̂lm(θ, ϕ)

]
∞∑
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∞∑
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]
Then, the magnetic time-scale spectrum is defined as:

τ(l, r) =

〈√
F (l, r, t)

FḂ(l, r, t)

〉
t

Outside the dynamo region: F = R , FḂ = Rsv , τ = τsv



A numerical model of geodynamo

Boussinesq, compositional driven, rotating convection of a electrically conducting fluid:

Du

Dt
+ 2

Pm

Ek
ẑ × u = −Pm

Ek
∇Π′ +

(
RaPm2

Pr

)
C ′r +

Pm

Ek
(∇×B)×B + Pm∇2u,

∂B

∂t
= ∇× (u×B) +∇2B

DC

Dt
=

Pm

Pr
∇2C − 1

∇ · u = 0

∇ ·B = 0

Boundary conditions: no-slip for u, Neumann for C

Domain: a spherical shell 0.1912 a ⩽ r ⩽ 0.5462 a

Ra = 2.7× 108 , Ek = 2.5× 10−5 , Pm = 2.5 , P r = 1



Magnetic time-scale spectrum τ (l, r) at different depth

For the large-scale modes (small l),

at the surface: τ ∼ l−1

in the interior: τ ∼ l−0.5, the large-scale modes speeds up in the interior !



Change in the scaling of τ : where does it occur?

γ for the large-scale modes increases sharply within a boundary layer under CMB

Focus on the large scales in following discussion . . .



Poloidal and toroidal time scales

B = BPol +BTor , τPol =

√
spectrum of BPol

spectrum of ḂPol

, τTor =

√
spectrum of BTor

spectrum of ḂTor

interior: BPol and BTor are equally important, τ = τ
Pol

= τTor all have the same shape

CMB: BTor → 0 due to the magnetic boundary condition, so B ≈ BPol

τTor has the same shape as in the interior but it is irrelevant

τ
Pol

changes shape as r → rcmb, τ = τ
Pol

∼ l−1

contribution of Ḃθ and Ḃϕ to Ḃ in the interior masked by the boundary conditions



Change in the scaling of τ : who causes it?

τ ∼

√
F

FḂ

∼

√
l0

FḂ

∼ FḂ
− 1
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Change in the scaling of τ : who causes it?

τ ∼

√
F

FḂ

∼

√
l0

FḂ

∼ FḂ
− 1

2 FḂ ∼ l =⇒ τ ∼ l−0.5 (interior)

FḂ ∼ l2 =⇒ τ ∼ l−1 (surface)



Balance of terms (large scales) in the induction equation

Ḃ = ∇× (u×B) + η∇2B = C +H

interior: FC ∼ FH ∼ l , FḂ ≈ FC (magnetic diffusion negligible) , FḂ ∼ l

CMB: FC ∼ FH ∼ l , FC ≈ FH (C and H cancel to leading order) , FḂ ∼ l2

H is important ⇒ frozen-flux argument is not applicable in explaining τ ∼ l−1 at CMB



Summary

scaling of τ(l, r) with l observed outside the outer core is different from that in the interior

for the large scales:

τ ∼ l−0.5, in the interior

τ ∼ l−1, at the CMB

the transition occurs within a boundary layer under the CMB

time variation of BTor in the interior is hidden from surface observation

for the large scales, FḂ is responsible for the transition (τ =
√

F/FḂ)

in the interior, induction term C dominates, Ḃ ≈ C and FḂ ∼ l

at the CMB (no-slip), balance between the induction term and magnetic diffusion leads
to FḂ ∼ l2, meaning frozen-flux argument not applicable


