

Advection-condensation of water vapor with coherent stirring: a stochastic approach

Yue-Kin Tsang

Centre for Geophysical and Astrophysical Fluid Dynamics University of Exeter

Jacques Vanneste

School of Mathematics, University of Edinburgh

Condensation of water vapour

specific humidity of an air parcel:

$$q = \frac{\text{mass of water vapor}}{\text{total air mass}}$$

- saturation specific humidity, $q_s(T)$
 - when $q > q_s$, condensation occurs
 - excessive moisture precipitates out, $q \rightarrow q_s$
 - $q_s(T)$ decreases with temperature T
 - *T* decreases with latitude \Rightarrow *q*^{*s*} position dependent

Atmospheric moisture and climate

- Earth's radiation budget:
 - absorption of incoming shortwave radiation generates heat
 - heat carried away by outgoing longwave radiation (OLR)
- water vapor is a greenhouse gas that traps OLR
- OLR $\sim \langle \log q \rangle$

• OLR ~
$$-\langle \log[\langle q \rangle + q'] \rangle \approx -\log \langle q \rangle + \frac{1}{2 \langle q \rangle^2} \langle q'^2 \rangle$$

- how fluctuation q' is generated?
- what is the probability distribution of water vapor in the atmosphere?

Advection-condensation paradigm

Large-scale advection + condensation

 \rightarrow reproduce (leading-order) observed humidity distribution

Observation

Simulation

- velocity and q_s field from observation
- trace parcel trajectories backward to the lower boundary layer (source)
- track condensation along the way

ignore: cloud-scale microphysics, molecular diffusion,...

(Pierrehumbert & Roca, GRL, 1998)

Advection-condensation model

PDE formualtion:

$$\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = S - C$$

q is treated as a passive scalar advected by a prescribed \vec{u}

Particle formulation:

 $d\vec{X}(t) = \vec{u} dt$, dQ(t) = (S - C)dt

air parcel at location \vec{X} carrying specific humidity Q

- \blacksquare *S* = moisture source (evaporation)
- C = condensation sink, in the rapid condensation limit $C: q(\vec{x}, t) \mapsto \min [q(\vec{x}, t), q_s(\vec{x})]$
- saturation profile: $q_s(y) = q_0 \exp(-\alpha y)$
- y = latitude (advection on a midlatitude isentropic
 surface) or altitude (vertical convection in troposphere)

Previous analytical results

1D stochastic models: $u \sim$ spatially uncorrelated random process

- Pierrehumbert, Brogniez & Roca 2007: white noise, S = 0
- **O'Gorman & Schneider 2006**: Ornstein-Uhlenbeck process, S = 0

FIGURE 6.8. Decay of ensemble mean specific humidity at y = 0.5 for the bounded random walk with a barrier at y = 0. The thin

FIG. 2. Mean specific humidity vs meridional distance for initial value problem. Moisture distributions are shown after the evolution times T at which $L(T) = 4L_s$ in each case. Solid lines are

Sukhatme & Young 2011: white noise with a boundary source

Coherent circulation in the atmosphere

- moist, warm air rises near the equator
- poleward transport in the upper troposphere
- subsidence in the subtropics ($\sim 30^{\circ}$ N and 30° S)
- transport towards the equator in the lower troposphere

Q: response of rainfall patterns to changes in the Hadley cells?

Steady-state problem

bounded domain: [0, π] × [0, π], reflective B.C.
q_s(y) = q_{max} exp(-αy): q_s(0) = q_{max} and q_s(π) = q_{min}
resetting source: Q = q_{max} if particle hits y = 0

Stochastic system with source

$$dX(t) = u(X, Y) dt + \sqrt{2\kappa} dW_1(t)$$

$$dY(t) = v(X, Y) dt + \sqrt{2\kappa} dW_2(t)$$

$$dQ(t) = [S(Y) - C(Q, Y)] dt$$

$$\psi = -U\sin x \sin y$$
$$u = -\psi_y$$
$$v = \psi_x$$

Source boundary layer

Bimodal distribution: layer consists mainly of either:

- $Q \approx q_{\text{max}}$ from the resetting source

▶ particles with $Q \approx q_{\text{max}}$ spreading into the domain as x increases

Condensation boundary layer

- moist particles move up into region of low $q_s(y)$
- at some fixed height y_1 : mainly consists of $Q = q_{\min}$ (diffuse in from the interior) and $Q = q_s(y_1)$ **Bimodal distribution**
- condensation \Rightarrow localized rainfall over a narrow $O(\epsilon^{1/2})$ region

Interior region

- a homogeneous region of very dry air $Q \approx q_{\min}$ is created in the domain interior
- the vortex "shields" the source from the interior
- interior effectively undergoing stochastic drying

Steady-state problem

Steady-state Fokker-Planck equation for P(x, y, q):

$$\epsilon^{-1}\vec{u}\cdot\nabla P - \partial_q[(S-C)P] = \nabla^2 P, \quad \epsilon = \kappa/(UL) \ll 1$$

Rapid condensation limit:

$$P(x, y, q) \neq 0 \\ C = 0$$
 for $x, y \in [0, \pi]$ and $q \in [q_{\min}, q_s(y)]$

Resetting source at bottom boundary:

$$P(x, y = 0, q) = \pi^{-1}\delta(q - q_{\max})$$

At the top boundary: $P(x, y = \pi, q) = \pi^{-1} \delta(q - q_{\min})$

Hence,

$$\epsilon^{-1}\vec{u}\cdot\nabla P = \nabla^2 P$$

which predicts a boundary layer of thickness $O(\epsilon^{1/2})$

Matched asymptotics

1. domain interior, to leading-order:

$$P_0 = \pi^{-2}\delta(q - q_{\min})$$

2. source boundary layer:

$$P_0 = G(x, y) \,\delta(q - q_{\min}) + H(q, x, y)$$

3. condensation boundary layer:

$$P_0 = G(x, y) \,\delta(q - q_{\min}) + \left[\pi^{-2} - G(x, y)\right] \,\delta(q - q_s(y))$$

In the $O(\epsilon^{1/2})$ boundary layers, introducing coordinates (Childress 1979):

$$\zeta = \epsilon^{-1/2} \psi$$
 and $\sigma = \int |\nabla \psi| \, \mathrm{d}l$, $l = \text{arclength}$

Equation for $G(\sigma, \zeta)$ reduces to:

$$\partial_{\sigma}G = \partial_{\zeta\zeta}G$$

Mean moisture input rate Φ

Other diagnostics: horizontal rainfall profile, vertical moisture flux, ... etc