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Condensation of water vapour

specific humidity of an air parcel:

q =
mass of water vapor

total air mass

saturation specific humidity, qs(T )

when q > qs, condensation occurs

excessive moisture precipitates out, q → qs

qs(T ) decreases with temperature T

T decreases with latitude ⇒ qs position dependent

qs(T1)

qs(T2)

T2 < T1



Atmospheric moisture and climate

Earth’s radiation budget:

absorption of incoming shortwave radiation
generates heat

heat carried away by outgoing longwave radiation
(OLR)

water vapor is a greenhouse gas that traps OLR

OLR ∼ −〈log q〉

OLR ∼ −〈log[〈q〉+ q′]〉 ≈ − log 〈q〉+ 1

2 〈q〉2
〈q′2〉

how fluctuation q′ is generated?

what is the probability distribution of water vapor in
the atmosphere?



Advection-condensation paradigm

Large-scale advection + condensation

→ reproduce (leading-order) observed humidity distribution

Observation

Simulation
– velocity and qs field from observation
– trace parcel trajectories backward

to the lower boundary layer (source)
– track condensation along the way

ignore: cloud-scale microphysics,
molecular diffusion, . . .

(Pierrehumbert & Roca, GRL, 1998)



Advection-condensation model
PDE formualtion:

∂q

∂t
+ ~u · ∇q = S − C

q is treated as a passive scalar advected by a prescribed ~u

Particle formulation:

d ~X(t) = ~u dt , dQ(t) = (S − C)dt

air parcel at location ~X carrying specific humidity Q

S = moisture source (evaporation)

C = condensation sink, in the rapid condensation limit

C : q(~x, t) 7→ min [ q(~x, t) , qs(~x) ]

saturation profile: qs(y) = q0 exp(−αy)
y = latitude (advection on a midlatitude isentropic

surface) or altitude (vertical convection in troposphere)



Previous analytical results
1D stochastic models: u ∼ spatially uncorrelated random process

Pierrehumbert, Brogniez & Roca 2007: white noise, S = 0

O’Gorman & Schneider 2006: Ornstein-Uhlenbeck process, S = 0
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FIGURE 6.8. Decay of ensemble mean specific humidity at y = 0.5

for the bounded random walk with a barrier at y = 0. The thin

FIG. 2. Mean specific humidity vs meridional distance for initial

value problem. Moisture distributions are shown after the evolu-

tion times T at which L(T ) 5 4Ls in each case. Solid lines are

shown in order of decreasing magnitude: saturation specific hu-

Sukhatme & Young 2011: white noise with a boundary source
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Coherent circulation in the atmosphere

moist, warm air rises near the equator

poleward transport in the upper troposphere

subsidence in the subtropics (∼ 30◦N and 30◦S)

transport towards the equator in the lower troposphere

Q: response of rainfall patterns to changes in the Hadley cells?



Steady-state problem

bounded domain: [0, π]× [0, π], reflective B.C.

q
s
(y) = qmax exp(−αy): qs(0) = qmax and q

s
(π) = qmin

resetting source: Q = qmax if particle hits y = 0

0 π
0

π

x

y

cellular flow: ψ = −U sin(x) sin(y); (u, v) = (−ψy, ψx)



Stochastic system with source

dX(t) = u(X,Y ) dt+
√
2κ dW1(t)

dY (t) = v(X,Y ) dt+
√
2κ dW2(t)

dQ(t) = [S(Y )− C(Q, Y )]dt

ψ = −U sin x sin y
u = −ψy

v = ψx

U = 1

κ = 10−2
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Source boundary layer
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Bimodal distribution: layer consists mainly of either:

Q = qmin from upstream of the flow and diffuse in from the

domain interior

Q ≈ qmax from the resetting source

particles with Q ≈ qmax spreading into the domain as x increases



Condensation boundary layer
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at some fixed height y1: mainly consists of Q = qmin (diffuse in

from the interior) and Q = qs(y1) — Bimodal distribution

condensation ⇒ localized rainfall over a narrow O(ǫ1/2) region



Interior region
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a homogeneous region of very dry air Q ≈ qmin is created in the

domain interior

the vortex "shields" the source from the interior

interior effectively undergoing stochastic drying



Steady-state problem

Steady-state Fokker-Planck equation for P (x, y, q):

ǫ−1~u · ∇P − ∂q[(S − C)P ] = ∇2P , ǫ = κ/(UL) ≪ 1

Rapid condensation limit:

P (x, y, q) 6= 0

C = 0

}

for x, y ∈ [0, π] and q ∈ [qmin, qs(y)]

Resetting source at bottom boundary:

P (x, y = 0, q) = π−1δ(q − qmax)

At the top boundary: P (x, y = π, q) = π−1δ(q − qmin)

Hence,

ǫ−1~u · ∇P = ∇2P

which predicts a boundary layer of thickness O(ǫ1/2)



Matched asymptotics
1. domain interior, to leading-order:

P0 = π−2δ(q − qmin)

2. source boundary layer:

P0 = G(x, y) δ(q − qmin) +H(q, x, y)

3. condensation boundary layer:

P0 = G(x, y) δ(q − qmin) + [π−2 −G(x, y)] δ(q − qs(y))

In the O(ǫ1/2) boundary layers, introducing coordinates (Childress 1979):

ζ = ǫ−1/2ψ and σ =

∫

|∇ψ| dl , l = arclength

Equation for G(σ, ζ) reduces to:

∂σG = ∂ζζG



Mean moisture input rate Φ

Φ = ǫ−1/2

√

8κ

π
(qmax − qmin) , ǫ = κ/(UL)
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Other diagnostics: horizontal rainfall profile, vertical moisture flux, . . . etc
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