How Fast Does a Passive Scalar Decay?

(Decay of Chaotically Advected Passive Scalars in the Zero Diffusivity Limit)

Yue-Kin Tsang

Courant Institute of Mathematical Sciences

New York University

Thomas M. Antonsen, Jr. and Edward Ott

University of Maryland, College Park

Decay of Variance

$$\begin{aligned} \frac{\partial \phi}{\partial t} + \vec{u} \cdot \nabla \phi &= \kappa \nabla^2 \phi \\ \nabla \cdot \vec{u} &= 0 \end{aligned} \ \ \text{(incompressible)} \end{aligned}$$

•
$$\phi(\vec{x},0) \sim \sin\left[\frac{2\pi}{L_D}(x+y)\right]$$

• $\vec{u}(\vec{x},t)$: doubly periodic with period L_f

• Mean is conserved:
$$\frac{d\langle\phi\rangle}{dt} = 0$$

• Vairance = $\left< \phi^2 \right>$ (take $\left< \phi \right> = 0$)

Decay of Variance

$$\frac{d\left\langle \phi^2 \right\rangle}{dt} = -2\kappa \left\langle |\nabla \phi|^2 \right\rangle$$

- variance decay due to diffusion ($\kappa \neq 0$)
- \checkmark decay rate increases with $|
 abla \phi|$

Decay of Variance

$$\frac{d\left\langle \phi^2 \right\rangle}{dt} = -2\kappa \left\langle |\nabla \phi|^2 \right\rangle$$

- variance decay due to diffusion ($\kappa \neq 0$)
- decay rate increases with $|
 abla \phi|$

stirring/stretching of fluid \Rightarrow filaments \Rightarrow large $|\nabla \phi|$ \Rightarrow enhanced diffusion \Rightarrow faster mixing/variance decay

Exponential Decay Rate γ_0

We are interested in long time behavior of ϕ as $\kappa \to 0$.

numerical simulations and experiments show:

$$\left\langle \phi^2 \right\rangle \sim e^{-\gamma(\kappa)t}$$

some numerical evidence support the prediction:

$$\lim_{\kappa \to 0^+} \gamma(\kappa) \equiv \gamma_0$$

Question: Given a certain flow $\vec{u}(\vec{x},t)$, can we predict the decay rate γ_0 ?

- 1. R.T. Pierrehumbert, Chaos, Solitons and Fractals 4, 1091 (1994)
- 2. Voth el at., Phys. Fluids 15, 2560 (2003)

$$\varphi_{j}(\vec{x}_{j}(t)) = A_{j}(t) \sin[\vec{k}_{j}(t) \cdot \vec{x}_{j}(t) + \vartheta_{j}(t)]$$

$$\omega_{j}(t) = \left\langle \varphi_{j}^{2} \right\rangle$$

$$\vec{x}_{j}(t) \neq \vec{k}_{j}(t)$$

$$\vec{x}_{j}(t) \neq \vec{k}_{j}(t)$$

$$\varphi_{j}(\vec{x}_{j}(t)) = A_{j}(t) \sin[\vec{k}_{j}(t) \cdot \vec{x}_{j}(t) + \vartheta_{j}(t)]$$

$$\omega_{j}(t) = \left\langle \varphi_{j}^{2} \right\rangle$$

$$\phi(\vec{x}, t) = \sum \varphi_{j}$$

$$\vec{x}_{j}(t) \xrightarrow{\vec{x}_{j}(t)} \vec{k}_{j}(0)$$

$$\vec{x}_{j}(0) \xrightarrow{\vec{x}_{j}(0)} \vec{k}_{j}(0)$$

$$\varphi_{j}(\vec{x}_{j}(t)) = A_{j}(t) \sin[\vec{k}_{j}(t) \cdot \vec{x}_{j}(t) + \vartheta_{j}(t)]$$

$$\omega_{j}(t) = \left\langle \varphi_{j}^{2} \right\rangle$$

$$\phi(\vec{x}, t) = \sum \varphi_{j}$$

$$\vec{y}_{j}(t) \xrightarrow{\vec{x}_{j}(0)} \vec{k}_{j}(0)$$

$$\frac{d\omega_j}{dt} = -2\kappa k_j^2 \omega_j$$

• $\vec{k}_j(t)$ is determined by the stretching of fluid elements induced by the smooth velocity field \vec{u}

Characterizing Stretching

Along a fluid trajectory,

$$\frac{d\vec{x}(t)}{dt} = \vec{u}(\vec{x}(t), t)$$

Finite-time Lyapunov Exponent, h

$$|\delta \vec{x}(t)| = |\delta \vec{x}(0)|e^{ht}$$

Probability Distribution Function for h, $P(h \mid t)$ $P(h \mid t) \sim \exp[-tG(h)]$

(Reference: R.S. Ellis, "Entropy, Large Deviations and Statistical Mechanics", 1985)

 $P(h \mid t)$ and G(h)

$$\varphi_{j}(\vec{x}_{j}(t)) = A_{j}(t) \sin[\vec{k}_{j}(t) \cdot \vec{x}_{j}(t) + \vartheta_{j}(t)]$$

$$\omega_{j}(t) = \langle \varphi_{j}^{2} \rangle$$

$$\phi(\vec{x}, t) = \sum \varphi_{j}$$

$$C(t) \equiv \langle \phi^{2} \rangle = \sum \omega_{j}(t) \xrightarrow{\vec{x}_{j}(0)} \vec{k}_{j}(0)$$

$$\frac{d\omega_{j}}{dt} = -2\kappa k_{j}^{2} \omega_{j}$$

$$\varphi_{j}(\vec{x}_{j}(t)) = A_{j}(t) \sin[\vec{k}_{j}(t) \cdot \vec{x}_{j}(t) + \vartheta_{j}(t)]$$

$$\omega_{j}(t) = \langle \varphi_{j}^{2} \rangle$$

$$\phi(\vec{x}, t) = \sum \varphi_{j}$$

$$C(t) \equiv \langle \phi^{2} \rangle = \sum \omega_{j}(t)$$

$$\frac{d\omega_{j}}{dt} = -2\kappa k_{j}^{2} \omega_{j}$$

$$|\vec{k}_{j}(t)| \approx |\vec{k}_{j}(0)| \cos \theta e^{h_{j}t}$$

$$\gamma_{0} = \min_{h} [h + G(h)]$$

Antonsen el at., Phys. Fluids 8, 3094 (1996)

Comparison with Numerics

$$\frac{\text{Flow Model: } T = 1, \ U = \pi \ (L_f = L_D = 2\pi) \\
\vec{u}(\vec{x}, t) = \begin{cases} U \cos(\frac{2\pi}{L_f}y + \alpha_n) \, \hat{i} \,, & nT \le t < (n + \frac{1}{2})T \\
U \cos(\frac{2\pi}{L_f}x + \beta_n) \, \hat{j} \,, & (n + \frac{1}{2})T \le t < (n + 1)T \end{cases}$$

Laboratory Experiment

G. A. Voth, T.C. Saint, Greg Dobler, and J.P. Gollub, Phys. Fluids 15, 2560 (2003)

Laboratory Experiment

G. A. Voth, T.C. Saint, Greg Dobler, and J.P. Gollub, Phys. Fluids 15, 2560 (2003)

- measured decay rate is 10 times smaller than predicted γ_0 !
- Reason: the ratio L_D/L_f is an important factor

Variance Damping Mechanisms

$\underline{L_D \approx L_f}$

- decay rate controlled by processes at small length scales (large k)
- γ_0 predicted by Lagrangian stretching theory (short wavelength mechanism)

$\underline{L_D \gg L_f}$

- variance being "leaked" out of the longest wavelength mode (smallest k)
- decay rate limited by spatial diffusion on the large scales (long wavelength mechanism)

(D.R. Fereday, P.H. Haynes, A. Wonhas and J.C. Vassilicos, Phys. Rev. E 65 035301(R), (2002))

Wavenumber Spectrum

$$S(k,t) = \int \frac{d\mathbf{k}'}{(2\pi)^2} \,\delta(k - |\mathbf{k}'|) \,\frac{|\tilde{\phi}(\mathbf{k}',t)|^2}{L_D^2} \sim S(k) e^{-\gamma(\kappa)t}$$
"strange eigenmode"

 $S(k) = \left\langle S(k,t) / C(t) \right\rangle_t$

 $L_D = L_f$

• for each time period t > 20T, remove all Fourier modes of ϕ with $|k_x|$ and $|k_y|$ less than $k_{filter} = a(2\pi/L_D)$

 $L_D = L_f$

decay rate (controlled by large k processes) is not affected by this filtering (fixed k_d/k_{filter})

 $L_D = M L_f \ (M > 1)$

- at each time step n, remove all but the lowest k mode
 (*i.e.* remove everything that leaks out of the lowest k mode)
- \bullet decay rate = rate of "leaking" from the lowest k mode

 $L_D = M L_f \ (M > 1)$

•
$$\phi_{n+1} = [J_0(\eta)]^2 \phi_n$$
 where $\eta = \pi UT/(ML_f)$

• leaking rate $= -\ln[J_0(\eta)]^4/T$ (dashed line)

Upper Bound on γ_0

$$S(k)e^{-\gamma_0 t} = \int_0^\infty dk' \, S(k') \left\langle \delta(k-k'|\cos\theta|e^{ht}) \right\rangle_{h,\theta}$$

Assuming $S(k) \sim k^{-\psi}$ (can generalize to anisotropic case), one can show

$$\gamma_0 = \min_h \left[h + G(h) - |\psi|h \right]$$

Two consequences:

$$\gamma_0 < \min_h \left[h + G(h) \right]$$

$$\psi = 1 + \min_{h} \left[\frac{G(h) - \gamma_0}{h} \right]$$

Wavenumber Spectra Exponent ψ

- short wavelength mechanism \Rightarrow flat spectra
- long wavelength mechanism \Rightarrow power-law spectra

Summary

- For $L_D \approx L_f$, short wavelength mechanism applies and γ_0 can be predicted using local stretching theory
- For $L_D \gg L_f$, long wavelength mechanism applies, γ_0 limited by the decay of the longest wavelength mode
- Decay rate predicted by the local stretching theory provides an upper bound on γ_0
- Long wavelength mechanism gives a power-law power spectrum, $k^{-\psi}$ with $\psi > 0$, short wavelength mechanism gives a flat power spectrum ($\psi = 0$)

Tsang, Antonsen and Ott, Phys. Rev. E 71, 066301 (2005)