

Intermittency and Multifractality in Two-Dimensional Turbulence with Drag

Yue-Kin Tsang,^{1,3} Edward Ott,^{1,2,3} Thomas M. Antonsen, Jr.,^{1,2,3} Parvez N. Guzdar³ University of Maryland, College Park, MD, USA ¹Department of Physics, ²Department of Electrical Engineering, ³Institute for Research in Electronics and Applied Physics

Turbulence: 2-D versus 3-D

3-D Turbulence

• Navier-Stokes momentum equation

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} + \vec{f} \qquad (\nabla \cdot \vec{v} = 0$$

• Kolmogorov's Phenomenology $(r_d \ll r \ll L, Re \rightarrow \infty)$

- mean energy dissipation rate $\langle \varepsilon \rangle$

- structure functions

 $S'_{3p}(r) = \langle [\vec{v}(\vec{x} + \vec{r}) - \vec{v}(\vec{x})]^{3p} \rangle \sim r^{\zeta_{3p}}$ $\zeta_{3p} = p\zeta_3$ ($\zeta_3 = 1$)

- experiments contradict Kolmogorov's hypotheses

2-D Turbulence

• Vorticity equation $(\omega = \hat{z} \cdot \nabla \times \vec{v})$

$$\frac{\partial \omega}{\partial t} + \vec{v} \cdot \nabla \omega = \nu \nabla^2 \omega + f_\omega \qquad (\nabla \cdot \vec{v} = 0)$$

- Kraichnan's Phenomenology (for forward cascade)
- mean enstrophy dissipation rate $\langle \eta \rangle$ (enstrophy= $\frac{1}{2}\omega^2$) structure functions

$$\begin{split} S_{2q}(r) \;&=\; \left\langle \left| \omega(\vec{x}+\vec{r}) - \omega(\vec{x}) \right|^{2q} \right\rangle \sim r^{\zeta_{2q}} \\ \zeta_{2q} \;&=\; q \zeta_2 \qquad (\zeta_2=0) \qquad \text{linear in } q \end{split}$$

- recent experiment (magnetically forced stratified flow) supports Kraichnan's theory

Why care about 2-D Turbulence?

What is the effect of **DRAG** on 2-D turbulence?

pe

• DRAG $(\mu \neq 0) \Rightarrow$ INTERMITTENCY $(\zeta_{2q} \neq q\zeta_2)$

• probability density function of h, P(h,t) with large time asymptotic form:

 $P(h,t) \sim \exp[-tG(h)]$

theoretical result for ζ_{2g}:

(*i*",*i*) *P*(*h*,*i*)

Multifractal Dissipation

• 3-D Turbulence anomalous scaling of $S'_{3n}(r) \longleftrightarrow$ multifractality in ε

• 2-D Turbulence with Drag

anomalous scaling of $S_{2q}(r) \longleftrightarrow$ multifractality in η

snapshot of $|\nabla \omega(x, y)|^2 \sim \eta$

Quantifying Multifractality

Divide the region R occupied by the fluid into grid of square boxes $R_i(\epsilon)$ of size ϵ ,

Measure
$$p_i(\epsilon) = \frac{\int_{R_i(\epsilon)} |\nabla \omega|^2 d\vec{x}}{\int_R |\nabla \omega|^2 d\vec{x}}$$

Generalized Dimension
$$D_q$$
 : $\sum_i p_i^q \sim \epsilon^{(q-1)D_q}$

Singularity Spectrum $f(\alpha)$: $p_i \sim \epsilon^{\alpha_i}$; $N(\alpha) \sim \epsilon^{-f(\alpha)}$

If the measure $p_i(\epsilon)$ is multifractal, then

- D_q varies with q
- f(α) is a non-trivial function of α

At the dissipative scale r_d , the vorticity field is smoothed out by the action of viscosity, thus

It then follows.

$$D_q = 2 + \frac{\zeta_{2q} - q\zeta_2}{q - 1}$$

Conclusion

For two-dimensional turbulence with linear drag,

- the vorticity field is intermittent, $\zeta_{2q} \neq q\zeta_2$
- ζ_{2a} can be obtained in terms of the finite-time Lyapunov exponent and the drag coefficient μ
- the measure based on the viscous enstrophy dissipation is multifractal, $D_q \neq \text{constant}$
- D_q is related to ζ_{2q}