

Two Dimensional Turbulence with Drag: Wavenumber Energy Spectrum and Intermittency

Yue-Kin Tsang,^{1,3} Edward Ott,^{1,2,3} Thomas M. Antonsen,^{1,2,3} Parvez N. Guzdar³ University of Maryland, College Park, MD, USA

¹Department of Physics, ²Department of Electrical Engineering, ³Institute for Research in Electronics and Applied Physics

Two-Dimensional Turbulence

- Soap film flows
- Rotating fluids
- Magnetically forced stratified flows
- Plasma in the equatorial ionosphere
- Geophysical flow: heat transport in the Earth's atmosphere, mixing of chemical species in the polar stratosphere

Navier-Stokes momentum equation:

$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\frac{1}{2} \vec{\nabla} p + \nu \nabla^2 \vec{v} + \vec{f}$

We focus on *small wave number* forcing. In two dimensions, with vorticity defined as $\omega = \hat{z} \cdot \vec{\nabla} \times \vec{v}$,

$$\frac{\partial \omega}{\partial t} + \vec{v} \cdot \vec{\nabla} \omega = \nu \nabla^2 \omega + S_\omega$$

 $\vec{\nabla} \cdot \vec{v} = 0$ (incompressibility)

Passive scalar advection:

```
\frac{\partial \phi}{\partial t} + \vec{v} \cdot \vec{\nabla} \phi = \kappa \nabla^2 \phi + S_\phi
```

Energy Cascade and Intermittency

Power spectrum

$$E_{\omega}(k) = \int \frac{d\vec{k'}}{(2\pi L)^2} \delta(k - k') |\tilde{\omega}(\vec{k'})|^2 \label{eq:eq:electropy}$$

In the inertial range, energy injected at k_f cascade to both smaller $(k > k_f)$ and larger $(k < k_f)$ scales and $E_E(k) \sim k^{-(3+\xi)}$:

Structure functions

- $S_{2q}(r) = \left\langle \left| \omega(\vec{x} + \vec{r}) \omega(\vec{x}) \right|^{2q} \right\rangle_{\neg} \sim r^{\zeta_{2q}} \qquad (\text{isotropic})$
- dimensional analysis $\Rightarrow \zeta_{2q} = q\zeta_2$ (normal scaling)

• $\omega(\vec{r})$ is intermittent:

– uneven distribution of $\omega(\vec{r})$ over space, large values of $\omega(\vec{r})$ occupy small area fractions $-\omega(\vec{r})$ is not self-similar $\Rightarrow \zeta_{2a} \neq q\zeta_2$ (anomalous scaling)

Classical Results

In the absence of drag, for two-dimensional turbulence

- $E_E(k) \sim k^{-3}$ $(k > k_f)$, *i.e.* $\xi = 0$ (with logarithm correction)
- $\zeta_{2a} = q\zeta_2 = 0$, *i.e.* no intermittency

Drag is an important physical effect in most situations involving two-dimensional turbulence.

What is the effect of a linear drag force on ξ and ζ_{2a} ?

$$\frac{\partial \omega}{\partial t} + \vec{v} \cdot \vec{\nabla} \omega = \nu \nabla^2 \omega - \mu \omega + S_\omega$$

Our approach: relate ξ and ζ_{2q} to the distribution of the finitetime Lyapunov exponent

The finite-time Lyapunov exponent is defined as

 $h(\vec{x}, t) = \frac{1}{t} \log \frac{|\delta \vec{x}(t)|}{|\delta \vec{x}(0)|}$ P(h,t) : probability density function that characterizes the

distribution of values of h and is flow dependent.

 $P(h,t) \sim \exp[-tG(h)]$

• $G(\bar{h}) = G'(\bar{h}) = 0$ where $\bar{h} = \lim_{t \to 0} h(t)$

h

Passive scalar

For a smooth velocity field $\vec{v}(\vec{x}, t)$.

$$E_{\phi}(k) \sim k^{-(1+\xi)}$$

where $\xi = \min\left\{\frac{G(h)}{h} + \frac{2\mu}{h}\right\}$

Theoretical Results

Vorticity

• $\tilde{\omega}(\vec{k})$ at large k is passively advected by the chaotic velocity field of large structures which determine h

• \vec{v} is smooth if $E_E(k) \sim k^{-(3+\xi)}$ with $\xi > 0$

Apply passive scalar results to vorticity:

$$E_E(k) = \frac{E_\omega(k)}{k^2} \sim k^{-(3+\xi)}$$

$$\zeta_{2q} = \min\left\{\frac{G(h)}{h} + \frac{2q\mu}{h}\right\}$$

Relation between D_a and ζ_{2a} . $\zeta_{2q} - q\zeta_2$

$$D_q = 2 + \frac{32q}{q-1}$$

Numerical Simulations

Grid size of simulation is 4096×4096 , physical size is $2\pi \times 2\pi$. Hyperviscousity ∇^8 with $\nu = 7.5 \times 10^{-15}$ is used. $\mu = 0.2$ and $S_{\omega} = \sin(2x)$. A snapshot of $\omega(\vec{x}, t)$ is shown below:

Energy wavenumber Spectrum

Fractal Dimensions

q	1.0	1.2	1.4	1.6	1.8	2.0
D_q (numerical)	1.69	1.62	1.56	1.51	1.47	1.43
D_q (theory)	-	1.58	1.53	1.49	1.45	1.43

 D_a (theory) is calculated using values of ζ_{2a} obtained from the numerical simulations.

Conclusion

In two-dimensional turbulence with linear drag.

- $E_E(k) \sim k^{-(3+\xi)}$ with $\xi > 0$
- vorticity field becomes intermittent, $\zeta_{2q} \neq q\zeta_2$
- the measure of vorticity gradient becomes fractal, D_q < 2
- relate ξ and ζ_{2q} to the finite-time Lyapunov exponent and the drag coefficient μ
- relate D_a to ζ_{2a}

Structure Functions