

Parametrization of moisture condensation using stochastic Lagrangian models

Yue-Kin Tsang

School of Mathematics, University of Leeds

Feasibility project funded by the EPSRC network Research on Changes of Variability and Environmental Risk (ReCoVER). Co-I: Geoff Vallis (Exeter), Jacques Vanneste (Edinburgh)

Condensation of water vapour

specific humidity of an air parcel:

$$Q = \frac{\text{mass of water vapour}}{\text{total air mass}}$$

• saturation specific humidity, $q_s(T)$ • $Q = \begin{cases} q_s & \text{if } Q > q_s & (\text{excessive moisture condensed}) \\ Q & \text{otherwise} \end{cases}$

 ${\scriptstyle { \bullet } \ } q_s(T)$ decreases with temperature T, hence generally decreases with height

Water vapour transport in the atmosphere

- specific humidity described by a continuous field q(x, y, t)
- evolution of q(x, y, t) governed by a partial differential equation (advection-diffusion-condensation):

$$egin{aligned} &rac{\partial q}{\partial t} + ec{u} \cdot
abla q = \kappa
abla^2 q + S - C \ & C = rac{1}{ au_c} (q - q_s) \, \mathcal{H}(q - q_s) \end{aligned}$$

 $\kappa:$ eddy diffusivity representing small-scale turbulence

Water vapour transport in the atmosphere

- specific humidity described by a continuous field q(x, y, t)
- evolution of q(x, y, t) governed by a partial differential equation (advection-diffusion-condensation, fast condensation limit):

$$\frac{\partial q_*}{\partial t} + \vec{u} \cdot \nabla q_* = \kappa \nabla^2 q_* + S$$
$$C: q \to \min[q_*, q_s]$$

 $\kappa:$ eddy diffusivity representing small-scale turbulence

a set of equations for cloudy planetary boundary layer (Bougeault, JAS, 1981)

$$\frac{\partial u_i}{\partial t} = -\frac{\partial}{\partial x_\alpha} (u_\alpha u_i) - \frac{1}{\rho_0} \frac{\partial p}{\partial x_i} + \beta \delta_{3l} \theta_v + \nu \nabla^2 u_i + \epsilon_{ijk} \Omega_j u_k \frac{\partial \theta_l}{\partial t} = -\frac{\partial}{\partial x_\alpha} (u_\alpha \theta_l) + \nu_\theta \nabla^2 \theta \frac{\partial q_w}{\partial t} = -\frac{\partial}{\partial x_\alpha} (u_\alpha q_w) + \nu_q \nabla^2 q \theta = \theta_l + \left[\frac{p_0}{p_r(z)}\right]^k \frac{L}{c_p} q_l q_l = \{q_w - q_s[\theta, p + p_r(z)]\} \times H\{q_w - q_s[\theta, p + p_r(z)]\}$$

Subgrid-scale fluctuations

9 governing PDEs describe the atmospheric state at all scales

- weather/climate models: numerical solutions of a discrete version of these equations on a coarse grid (horizontal resolution ~ kilometers)
- \blacksquare humidity inside a grid box is represented by a single value of q
- missing subgrid-scale moisture variability has significant effects on the resolved scales—system tends to saturate!

Advection-condensation model

- bounded domain: $[0, \pi] \times [0, \pi]$, reflective boundaries
- large-scale cellular flow: $\psi = \sin x \sin y$; $(u, v) = (-\psi_y, \psi_x)$
- small-scale turbulence
- $q_s(y) = q_{\max} \exp(-\alpha y)$: $q_s(0) = q_{\max}$ and $q_s(\pi) = q_{\min}$
- **9** resetting source: $Q = q_{\text{max}}$ if parcel hits y = 0

Eulerian field formulation: PDE

$$\frac{\partial q_*}{\partial t} + \vec{u} \cdot \nabla q_* = \kappa \nabla^2 q_*$$
$$C: q(x, y, t) \to \min[q_*(x, y, t), q_s(y)]$$

• boundary source: $q(x, y = 0, t) = q_{\max}$

• relative humidity: $r(x, y, t) = \frac{q(x, y, t)}{q_s(y)}$

Stochastic Lagrangian model: SDE

$$dX(t) = u(X, Y) dt + \sqrt{2\kappa} dW_1(t) \qquad \psi = -\sin x \sin y$$

$$dY(t) = v(X, Y) dt + \sqrt{2\kappa} dW_2(t) \qquad u = -\psi_y$$

$$dQ(t) = [S(Y) - C(Q, Y)] dt \qquad \psi = \psi_x$$

$$\kappa = 10^{-2}$$

fast condensation $C: Q \to \min[Q, q_s(Y)]$

Tsang & Vanneste, Proc. R. Soc. A 473, 20170196 (2017)

Eulerian versus Lagrangian formulation

• to facilitate comparison, divide the domain into small bins and average over parcels in each bin to produce a field $r_{\text{bin}}(x, y)$: making a coarse-resolution "observation"

 $\frac{1}{x}$

"observed" $r_{\rm bin}(x,y)$

1.0 0.9 0.8 0.7 0.6

 $0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0$

Eulerian versus Lagrangian formulation

 $1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6$

 $0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0$

 $1.0 \\ 0.9$

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Why are PDE models so wet?

The coarse-graining process and the condensation process do not commute and local fluctuation is lost:

Why are PDE models so wet?

The coarse-graining process and the condensation process do not commute and local fluctuation is lost:

- Lagrangian formulation is generally computational expensive
- However, it is possible for the Eulerian model to mimic the Lagrangian model by parametrizing subgrid-scale condensation

An effective subgrid condensation

● In the stochastic Lagrangian model, (Q, X, Y) are governed by SDEs ⇒ the joint PDF P(q, x, y; t) satisfies the Fokker–Planck equation

$$\frac{\partial P}{\partial t} + \vec{u} \cdot \nabla P - \frac{\partial}{\partial q} (CP) = \kappa \nabla^2 P \qquad C = \frac{1}{\tau_c} (q - q_s) \mathcal{H}(q - q_s)$$

• $q_{\text{bin}}(x,y,t) \approx \overline{q}(x,y,t) = \int_{q_{\min}}^{q_{\max}} q' \, \hat{P}(q'|x,y;t) \, \mathrm{d}q'$

$$\frac{\partial \overline{q}}{\partial t} + \vec{u} \cdot \nabla \overline{q} = \kappa \nabla^2 \overline{q} - \int_{q_{\min}}^{q_{\max}} C(q', q_s) \hat{P}(q'|x, y; t) \, \mathrm{d}q'$$

An effective subgrid condensation

● In the stochastic Lagrangian model, (Q, X, Y) are governed by SDEs ⇒ the joint PDF P(q, x, y; t) satisfies the Fokker–Planck equation

$$\frac{\partial P}{\partial t} + \vec{u} \cdot \nabla P - \frac{\partial}{\partial q} (CP) = \kappa \nabla^2 P \qquad C = \frac{1}{\tau_c} (q - q_s) \mathcal{H}(q - q_s)$$

• $q_{\text{bin}}(x, y, t) \approx \overline{q}(x, y, t) = \int_{q_{\min}}^{q_{\max}} q' \hat{P}(q'|x, y; t) \, \mathrm{d}q'$ $\frac{\partial \overline{q}}{\partial t} + \vec{u} \cdot \nabla \overline{q} = \kappa \nabla^2 \overline{q} - \int_{q_{\min}}^{q_{\max}} C(q', q_s) \hat{P}(q'|x, y; t) \, \mathrm{d}q'$

9 In the Eulerian model, the coarse-grained field q(x, y, t) satisfies

$$\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = \kappa \nabla^2 q - C(q, q_s)$$

Effective condensation to put back some local variability:

$$C(q,q_s) \to C_{\text{eff}}(q,q_s) = \int_{q_{\min}}^{q_{\max}} C(q',q_s) \Phi_*(q'|x,y;t) \,\mathrm{d}q'$$

 $\Phi_*(q'|x,y;t)$ is an approximation to $\hat{P}(q'|x,y;t)$. How?

Assumed PDF and matching moments

1. method of assumed PDF with small number of parameters: (β, a, σ)

$$\Phi_*(q'|x, y, t) = \beta(x, y, t)\delta(q - q_{\min}) + \tilde{\Phi}_*(q'|x, y, t)$$

2. (a) from the Fokker–Planck equation, derive the equations governing the moments in the stochastic Lagrangian model (m = 1, 2, ..., M)

$$\mu_m(x, y, t) \equiv \int q'^m \hat{P}(q'|x, y, t_n) \mathrm{d}q',$$

(b) to determine (β, a, σ) , solve for μ_m and set

$$\int q'^m \Phi_*(q'|x,y,t_n) \mathrm{d}q' = \mu_m$$

Results: relative humidity

1.00.9 0.80.70.6

0.50.40.30.20.10.0

> 1.00.9 0.8 0.7 0.6

0.50.40.30.20.10.0

Condensation parametrization in atmospheric models

- the idea of representing subgrid-scale moisture variability by a probability distribution has been employed in weather and climate models since Sommeria & Deardorff (1977),
 - such distributions are introduced in an ad hoc manner
 - the parameters in the PDF are determined using various forms of turbulent closures
- \checkmark Here, using an advection–condensation model, we demonstrate:
 - mathematically how the Lagrangian formulation gives more realistic results than Eulerian coarse-resolution models by accounting for local variability.
 - an Eulerian model for a coarse-grained moisture field $q(\vec{x}, t)$ can mimic its Lagrangian counterpart when an effective condensation is implemented

Based on the present results, we propose a strategy to build a condensation parametrization in atmospheric GCMs using stochastic Lagrangian models.

Condensation parametrization in atmospheric models

- 1. choose a suitable stochastic Lagrangian model to describe parcel trajectories in subgrid-scale atmospheric transport (Lagrangian Modeling of the Atmosphere, 2013)
- 2. fix the assumed PDF $\Phi_*(q'|x, y; t)$ in the effective condensation:

$$C_{ ext{eff}} = \int_{q_{ ext{min}}}^{q_{ ext{max}}} C(q',q_s) \Phi_*(q'|x,y;t) \, \mathrm{d} q' \quad C = rac{1}{ au_c}(q-q_s) \, \mathcal{H}(q-q_s)$$

using information from the stochastic Lagrangian model, e.g. by matching moments

- 3. implement C_{eff} in the Eulerian PDE governing the moisture field in the atmospheric GCM
- a consistent unified approach: the stochastic Lagrangian model
 (i) provides the theoretical basis for the probabilistic effective condensation as well as (ii) fixes the assumed PDF

Tsang & Vallis, J. Atmo. Sci., accepted (2018)