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Condensation of water vapour

specific humidity of an air parcel:

Q =
mass of water vapour

total air mass

saturation specific humidity, qs(T )

Q =

{
qs if Q > qs (excessive moisture condensed)

Q otherwise

qs(T ) decreases with temperature T , hence generally decreases
with height



Water vapour transport in the atmosphere

specific humidity described by a continuous field q(x, y, t)

evolution of q(x, y, t) governed by a partial differential equation
(advection–diffusion–condensation):

∂q

∂t
+ ~u · ∇q = κ∇2q + S − C

C =
1

τc
(q − qs)H(q − qs)

κ: eddy diffusivity representing small-scale turbulence

∂q∗
∂t

+ ~u · ∇q∗ = κ∇2q∗ + S

C : q → min[q∗, qs]

κ: eddy diffusivity representing small-scale turbulence

a set of equations for cloudy
planetary boundary layer

(Bougeault, JAS, 1981)
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Subgrid-scale fluctuations

governing PDEs describe the atmospheric state at all scales

weather/climate models: numerical solutions of a discrete
version of these equations on a coarse grid (horizontal resolution
∼ kilometers)

humidity inside a grid box is represented by a single value of q

missing subgrid-scale moisture variability has significant effects
on the resolved scales—system tends to saturate!



Advection–condensation model

bounded domain: [0, π]× [0, π], reflective boundaries

large-scale cellular flow: ψ = sinx sin y; (u, v) = (−ψy, ψx)

small-scale turbulence

qs(y) = qmax exp(−αy): qs(0) = qmax and qs(π) = qmin

resetting source: Q = qmax if parcel hits y = 0

qs(y)qmax qmin x

S : Q→ qmax
0 π

π

y



Eulerian field formulation: PDE

∂q∗
∂t

+ ~u · ∇q∗ = κ∇2q∗

C : q(x, y, t)→ min[q∗(x, y, t), qs(y)]

boundary source: q(x, y = 0, t) = qmax

relative humidity: r(x, y, t) =
q(x, y, t)

qs(y)
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Stochastic Lagrangian model: SDE

dX(t) = u(X,Y ) dt+
√

2κdW1(t)

dY (t) = v(X,Y ) dt+
√

2κdW2(t)

dQ(t) = [S(Y )− C(Q,Y )]dt

fast condensation C : Q→ min[Q , qs(Y ) ]

ψ = − sinx sin y

u = −ψy
v = ψx
κ = 10−2

Tsang & Vanneste, Proc. R. Soc. A 473, 20170196 (2017)



Eulerian versus Lagrangian formulation

to facilitate comparison, divide the domain into small bins and
average over parcels in each bin to produce a field rbin(x, y):
making a coarse-resolution “observation”

snapshot of parcels “observed” rbin(x, y)
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Eulerian versus Lagrangian formulation
snapshot of parcels “observed” rbin(x, y)
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Why are PDE models so wet?

The coarse-graining process and the condensation process do not
commute and local fluctuation is lost:
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Lagrangian formulation is generally computational expensive

However, it is possible for the Eulerian model to mimic the
Lagrangian model by parametrizing subgrid-scale condensation



An effective subgrid condensation

In the stochastic Lagrangian model, (Q,X, Y ) are governed by SDEs
⇒ the joint PDF P (q, x, y; t) satisfies the Fokker–Planck equation

∂P

∂t
+~u·∇P− ∂

∂q
(CP ) = κ∇2P C = 1

τc
(q − qs)H(q − qs)

qbin(x, y, t) ≈ q(x, y, t) =

∫ qmax

qmin

q′ P̂ (q′|x, y; t) dq′

∂q

∂t
+ ~u · ∇q = κ∇2q −

∫ qmax

qmin

C(q′, qs)P̂ (q′|x, y; t) dq′

In the Eulerian model, the coarse-grained field q(x, y, t) satisfies

∂q

∂t
+ ~u · ∇q = κ∇2q − C(q, qs)

Effective condensation to put back some local variability:

C(q, qs)→ Ceff(q, qs) =

∫ qmax

qmin

C(q′, qs)Φ∗(q
′|x, y; t) dq′

Φ∗(q
′|x, y; t) is an approximation to P̂ (q′|x, y; t). How?
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Assumed PDF and matching moments

1. method of assumed PDF with small number of parameters: (β, a, σ)

Φ∗(q
′|x, y, t) = β(x, y, t)δ(q − qmin) + Φ̃∗(q

′|x, y, t)
2. (a) from the Fokker–Planck equation, derive the equations governing

the moments in the stochastic Lagrangian model (m = 1, 2, . . . ,M)

µm(x, y, t) ≡
∫
q′mP̂ (q′|x, y, tn)dq′,

(b) to determine (β, a, σ), solve for µm and set∫
q′mΦ∗(q

′|x, y, tn)dq′ = µm

Φ
∗(
q′
|x
,y
,t

)

β

qmin qmax

q∗

qs(y)

σ

2σ

a

before condensation

Φ
1(
q′
|x
,y
,t

)
β

qmin qmax

q∗

qs(y)
α

after condensation



Results: relative humidity

snapshot of parcels rbin(x, y)
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Condensation parametrization in atmospheric models

the idea of representing subgrid-scale moisture variability by a
probability distribution has been employed in weather and
climate models since Sommeria & Deardorff (1977),

such distributions are introduced in an ad hoc manner

the parameters in the PDF are determined using various
forms of turbulent closures

Here, using an advection–condensation model, we demonstrate:

mathematically how the Lagrangian formulation gives more
realistic results than Eulerian coarse-resolution models by
accounting for local variability.

an Eulerian model for a coarse-grained moisture field q(~x, t)
can mimic its Lagrangian counterpart when an effective
condensation is implemented

Based on the present results, we propose a strategy to build a
condensation parametrization in atmospheric GCMs using
stochastic Lagrangian models.



Condensation parametrization in atmospheric models

1. choose a suitable stochastic Lagrangian model to describe parcel
trajectories in subgrid-scale atmospheric transport (Lagrangian
Modeling of the Atmosphere, 2013)

2. fix the assumed PDF Φ∗(q
′|x, y; t) in the effective condensation:

Ceff =

∫ qmax

qmin

C(q′, qs)Φ∗(q
′|x, y; t) dq′ C = 1

τc
(q − qs)H(q − qs)

using information from the stochastic Lagrangian model, e.g. by
matching moments

3. implement Ceff in the Eulerian PDE governing the moisture field
in the atmospheric GCM

a consistent unified approach: the stochastic Lagrangian model
(i) provides the theoretical basis for the probabilistic effective
condensation as well as (ii) fixes the assumed PDF

Tsang & Vallis, J. Atmo. Sci., accepted (2018)


