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Atmospheric moisture and climate

Earth’s radiation budget:
absorption of incoming short-wave radiation generates heat
heat carried away by outgoing long-wave radiation (OLR)

water vapour is a greenhouse gas that traps OLR

OLR ∼ −〈log[〈q〉+ q′]〉 ≈ − log 〈q〉+
1

2 〈q〉2
〈q′2〉

how fluctuation q′ is generated?

what is the probability distribution of water vapour in the
atmosphere?



Condensation of water vapour

specific humidity of an air parcel:

q =
mass of water vapour

total air mass

saturation specific humidity, qs(T)

when q > qs, condensation occurs
excessive moisture precipitates out, q→ qs

qs(T) decreases with temperature T

qs(y) as T = T(y), y = latitude (advection on a mid-latitude
isentropic surface) or altitude (vertical convection in troposphere)



Advection–condensation paradigm

Large-scale advection + condensation
→ reproduce (leading-order) observed humidity distribution

observation simulation

velocity and qs field from observation

trace parcel trajectories backward to the lower boundary layer (source)

track the minimum qs encountered along the way

ignore: cloud-scale microphysics, molecular diffusion, . . . etc

(Pierrehumbert & Roca, GRL, 1998)



Advection–condensation model

Particle formulation:

d~X(t) = ~u dt , dQ(t) = (S− C)dt

air parcel at location ~X(t) carrying specific humidity Q(t)
S = moisture source (evaporation)
C = condensation sink, in the rapid condensation limit

C : Q 7→ min [ Q , qs(~X) ]

saturation profile: qs(y) = q0 exp(−αy)

Mean-field formulation:
∂q̄
∂t

+ ~u · ∇q̄ = S− C

q̄(~x, t) is treated as a passive scalar field advected by ~u



Particle models: previous analytical results

1-D stochastic models: u ∼ spatially uncorrelated random process

Pierrehumbert, Brogniez & Roca 2007: white noise, S = 0

O’Gorman & Schneider 2006: Ornstein–Uhlenbeck process, S = 0

Sukhatme & Young 2011: white noise with a boundary source

Coherent circulation in the atmosphere

Q: response of rainfall patterns to changes in the Hadley cells?



Advection–condensation in cellular flows

bounded domain: [0, π]× [0, π], reflective boundaries

qs(y) = qmax exp(−αy): qs(0) = qmax and qs(π) = qmin

resetting source: Q = qmax if particle hits y = 0

0 π
0

π

x

y

cellular flow: ψ = −U sin(x) sin(y); (u, v) = (−ψy, ψx)



Particle formulation

dX(t) = u(X,Y) dt +
√

2κ dW1(t)

dY(t) = v(X,Y) dt +
√

2κ dW2(t)
dQ(t) = [S(Y)− C(Q,Y)]dt

ψ = −U sin x sin y
u = −ψy

v = ψx
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PDF of specific humidity – a dry spike

dX(t) = u(X,Y) dt +
√

2κ dW1(t)

dY(t) = v(X,Y) dt +
√

2κ dW2(t)
dQ(t) = [S(Y)− C(Q,Y)]dt

ψ = −U sin x sin y
u = −ψy

v = ψx
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Fokker-Planck equation: solution and diagnostics

Steady-state Fokker-Planck equation for P(x, y, q):
ε−1~u · ∇P = ∇2P , ε = κ/(UL)� 1

solve for P(x, y, q) by matched asymptotics as ε→ 0

dry spike: P(x, y, q) = δ(q− qmin)β(x, y)/π2 + F(x, y, q)

mean moisture input rate: Φ = ε−1/2κ
√

8/π(qmax − qmin)
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Other diagnostics: horizontal rainfall profile, moisture flux, . . . etc, see “Advection–condensation of
water vapour in a model of coherent stirring”, Yue-Kin Tsang & Jacques Vanneste (2016)



Mean-field PDE model

Weather/climate models represent atmospheric moisture as a
coarse-grained field q̄(~x, t) governed by deterministic PDE

Advection–condensation–diffusion:
∂q̄
∂t

+ ~u · ∇q̄ = κq∇2q̄ − C + S

κq: eddy diffusivity representing un-resolved processes
boundary source: q̄(x, y = 0, t) = qmax

rapid condensation C : q̄(~x, t)→ min[q̄(~x, t), qs(y)]
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Why PDE models saturate the domain?

The coarse-graining process and the condensation process do not
commute:
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Parametrization of condensation
∂q̄
∂t

+~u · ∇q̄ = κq∇2q̄, q̄→ C(q̄, qs)

at a grid point (x, y) and time t, after advection and diffusion steps
let’s say q̄(x, y, t) = q∗

imagine there is a distribution P0(q|x, y) such that

q∗ =

∫
q′P0(q′|x, y) dq′

then, q̄(x, y, t + ∆t) =

∫
q′P1(q′|x, y) dq′
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Test results

P0(q|x, y): a top hat distribution of width 2σ

as a test, prescribe a constant σ

for q̄− σ < qs < q̄ + σ, condensation occurs as:

q̄→ q̄− [q̄ + σ − qs]
2

4σ

κq = 0.01



Parametrization with dry spike

subsidence of dry air parcels is important

include a dry spike of amplitude β in P0(q|x, y)
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Amplitude of dry spike

P(qmin, x, y, t) = π−2β(x, y)δ(q− qmin)

∂β

∂t
+~u · ∇β = κq∇2β

β(x, 0, t) = 0 , β(x, π, t) = 1



Results with dry spike


