

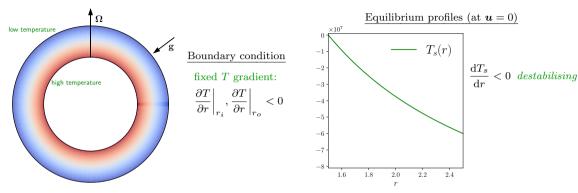
Oscillatory double-diffusive convection in a rotating spherical shell

Yue-Kin Tsang

School of Mathematics, Statistics and Physics Newcastle University

Céline Guervilly, Graeme R. Sarson

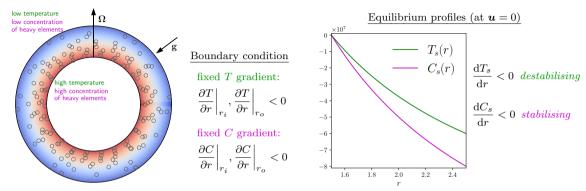
Pure thermal convection in a spherical shell



Consider a Boussinesq fluid in a rotating spherical shell of inner radius r_i and outer radius r_o

- thermal diffusivity: κ_T
- density: $\rho(T) = \rho_m [1 \alpha_T (T T_m)]$
- buoyancy frequency: $N^2 = -\frac{g}{\rho_m} \frac{\mathrm{d}}{\mathrm{d}r} \rho(T_s) \implies N^2 = g\alpha_T \frac{\mathrm{d}T_s}{\mathrm{d}r} < 0$ (top-heavy)

Oscillatory double-diffusive convection (ODDC) in a spherical shell



Consider a Boussinesq fluid in a rotating spherical shell of inner radius r_i and outer radius r_o

- composition diffusivity: $\kappa_C \ll \kappa_T$
- density: $\rho(T,C) = \rho_m [1 \alpha_T (T T_m) + \alpha_C (C C_m)]$
- buoyancy frequency: $N^2 = -\frac{g}{\rho_m} \frac{\mathrm{d}}{\mathrm{d}r} [\rho(T_s, C_s)] \implies N^2 = g\alpha_T \frac{\mathrm{d}T_s}{\mathrm{d}r} g\alpha_C \frac{\mathrm{d}C_s}{\mathrm{d}r}$

Governing equations of ODDC

Non-dimensional equations:

$$\begin{split} \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \frac{2}{Ek} \hat{\boldsymbol{z}} \times \boldsymbol{u} &= -\nabla \Pi + (\Theta - \xi) r \, \hat{\boldsymbol{r}} + \nabla^2 \boldsymbol{u}, \\ \nabla \cdot \boldsymbol{u} &= 0, \\ \frac{\partial \Theta}{\partial t} + \boldsymbol{u} \cdot \nabla \Theta &= \frac{Ra_T}{Pr} \left(\frac{\gamma}{1 - \gamma} \right)^2 \frac{u_r}{r^2} + \frac{1}{Pr} \nabla^2 \Theta, \quad \Theta(\boldsymbol{x}, t) = T(\boldsymbol{x}, t) - T_s(r) \end{split}$$

Dimensionless numbers:

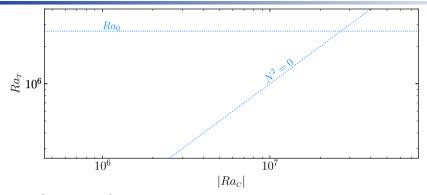
$$\gamma = \frac{r_i}{r_o} = 0.6, \qquad Ek = \frac{\nu}{\Omega D^2} = 10^{-5}, \qquad Pr = \frac{\nu}{\kappa_T} = 0.3, \qquad Sc = \frac{\nu}{\kappa_C} = 3$$

$$Ra_{\scriptscriptstyle T} = rac{g_o lpha_{\scriptscriptstyle T} D^5}{r_o
u \kappa_{\scriptscriptstyle T}} ig| T_s'(r_i) ig| \quad ext{and} \quad Ra_{\scriptscriptstyle C} = -rac{g_o lpha_{\scriptscriptstyle C} D^5}{r_o
u \kappa_{\scriptscriptstyle C}} ig| C_s'(r_i) ig|$$

Numerical simulations using XSHELLS by Nathanaël Schaeffer (Université Grenoble Alpes).

 $\frac{\partial \xi}{\partial t} + \boldsymbol{u} \cdot \nabla \xi = \frac{|Ra_c|}{S_c} \left(\frac{\gamma}{1-\alpha}\right)^2 \frac{u_r}{r^2} + \frac{1}{S_c} \nabla^2 \xi, \quad \xi(\boldsymbol{x},t) = C(\boldsymbol{x},t) - C_s(r)$

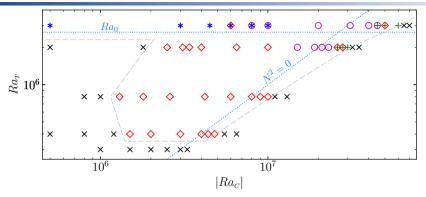
ODDC at low Rayleigh numbers



$$N^2 = -\frac{Ra_T}{Pr} \frac{r_i^2}{r} + \frac{|Ra_C|}{Sc} \frac{r_i^2}{r}$$

- $Arr N^2 < 0$: top-heavy, $N^2 > 0$: bottom-heavy
- \blacksquare Ra_0 = critical Rayleigh number for pure thermal convection
- pure thermal convection: unstable when $N^2 < 0$ and $Ra_T > Ra_0$

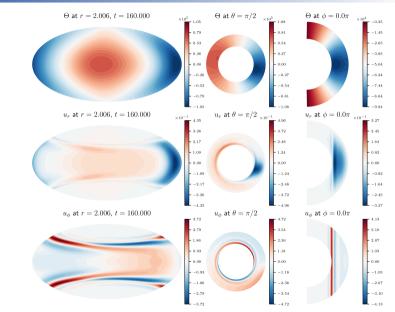
Phase diagram: $Ek = 10^{-5}$



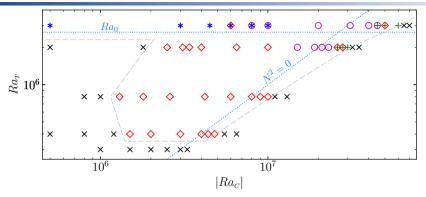
- Expected features:
 - at small $|Ra_C|$, similar to pure thermal convection
 - at large $|Ra_c|$, compositional effects stabilise the system
- Counter-intuitive features (intermediate $|Ra_C|$):
 - the system can become unstable even when $N^2 > 0$ (bottom-heavy)
 - sustained motion is possible at some $Ra_T < Ra_0$

$Ra_T = 8 \times 10^5 \, (< Ra_0) \,, \, Ra_C = 1.8 \times 10^6$

- large-scale structures
- retrograde
- only exists at small Ek (rapid rotation)

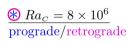


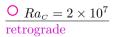
Phase diagram: $Ek = 10^{-5}$

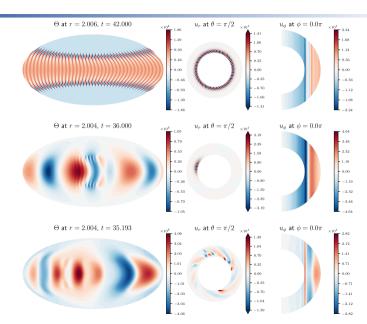


- Expected features:
 - at small $|Ra_C|$, similar to pure thermal convection
 - at large $|Ra_c|$, compositional effects stabilise the system
- Counter-intuitive features (intermediate $|Ra_C|$):
 - the system can become unstable even when $N^2 > 0$ (bottom-heavy)
 - sustained motion is possible at some $Ra_T < Ra_0$

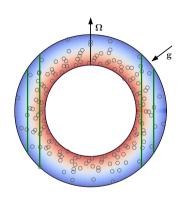
$$\frac{* Ra_C = 5 \times 10^5}{\text{prograde}}$$







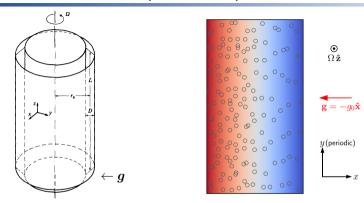
Thin cylindrical annulus model (Busse 1986)





- cylinderical annulus with top and bottom tilted at a constant angle χ
- captures two pieces of physics of the spherical shell
 - 1. rotation
 - 2. curvature of the spherical geometry

Thin cylindrical annulus model (Busse 1986)



- rapid rotation: geostrophic balance at leading order (columnar structures)
- ullet integration (average) over height \Rightarrow two-dimensional system
- **•** thin annulus \Rightarrow Cartesian coordinate (x, y)

ODDC on a two-dimensional β -plane

$$(u,v) = \left(-\partial_y \psi, \partial_x \psi\right)$$

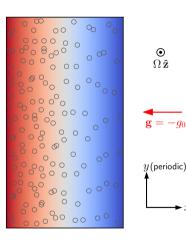
$$J(A,B) = \partial_x A \, \partial_y B - \partial_y A \, \partial_x B$$

$$\frac{\partial}{\partial t} \nabla^2 \psi + J(\psi, \nabla^2 \psi) - \beta \frac{\partial \psi}{\partial y} = -\frac{\partial}{\partial y} (\Theta - \xi) + \nabla^4 \psi$$

$$\frac{\partial \Theta}{\partial t} + J(\psi, \Theta) = -\frac{Ra_T}{Pr} \frac{\partial \psi}{\partial y} + \frac{1}{Pr} \nabla^2 \Theta$$

$$\frac{\partial \xi}{\partial t} + J(\psi, \xi) = -\frac{|Ra_C|}{Sc} \frac{\partial \psi}{\partial y} + \frac{1}{Sc} \nabla^2 \xi$$

$$\beta = \frac{4D \tan \chi}{L \cdot Ek}$$



Linear stability analysis

Linearised equations:

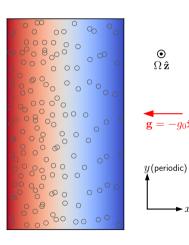
$$\begin{split} \frac{\partial}{\partial t} \nabla^2 \psi - \beta \frac{\partial \psi}{\partial y} &= -\frac{\partial \Theta}{\partial y} + \frac{\partial \xi}{\partial y} + \nabla^4 \psi \\ \frac{\partial \Theta}{\partial t} &= -\frac{Ra_T}{Pr} \frac{\partial \psi}{\partial y} + \frac{1}{Pr} \nabla^2 \Theta \\ \frac{\partial \xi}{\partial t} &= -\frac{|Ra_C|}{Sc} \frac{\partial \psi}{\partial y} + \frac{1}{Sc} \nabla^2 \xi \end{split}$$

Eigenmodes:
$$\psi(x, y, t) = \hat{\psi} \sin(kx) e^{ily} e^{\lambda t}$$

 $\Theta(x, y, t) = \hat{\Theta} \cos(kx) e^{ily} e^{\lambda t}$
 $\xi(x, y, t) = \hat{\xi} \cos(kx) e^{ily} e^{\lambda t}$

Complex growth rate:

$$\lambda = \sigma + i\omega \quad (\sigma, \omega \in \mathbb{R})$$



Maximum growth rate

Solvability condition:

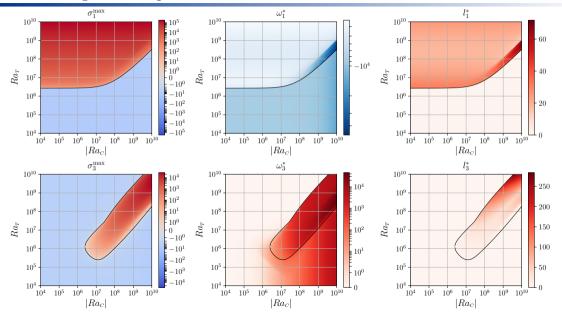
$$\lambda^{3} + \left(\frac{Pr+1+\tau}{Pr}k_{\rm h}^{2} + i\frac{\beta l}{k_{\rm h}^{2}}\right)\lambda^{2} + \left[\frac{Pr(1+\tau)+\tau}{Pr^{2}}k_{\rm h}^{4} + \frac{\tau|Ra_{C}|-Ra_{T}}{Pr}\frac{l^{2}}{k_{\rm h}^{2}} + i\frac{\beta(1+\tau)}{Pr}l\right]\lambda + \frac{\tau}{Pr^{2}}\left[k_{\rm h}^{6} + (|Ra_{C}|-Ra_{T})l^{2} + i\beta k_{\rm h}^{2}l\right] = 0.$$

$$k = m\pi, \quad k_{\rm h}^2 \equiv k^2 + l^2, \quad m, n \in \mathbb{Z}; \quad \tau = Pr/Sc = 0.1, \quad \beta = 1.78 \times 10^5$$

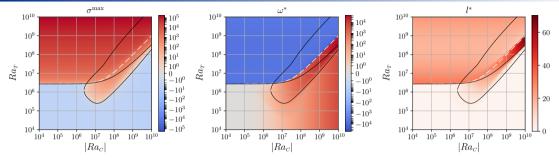
- three roots: $\lambda_q = \sigma_q + i\omega_q$, q = 1, 2, 3
- for each $(k, l), Ra_T, Ra_C$: calculate $\lambda_q(k, l; Ra_T, Ra_C), q = 1, 2, 3$

- **●** There is always a decaying solution: $\sigma_2 < 0$

Results: σ_1^{\max} and σ_3^{\max}

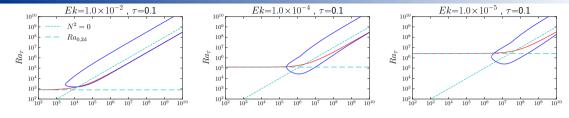


Understanding the nonlinear spherical results using σ^{\max}



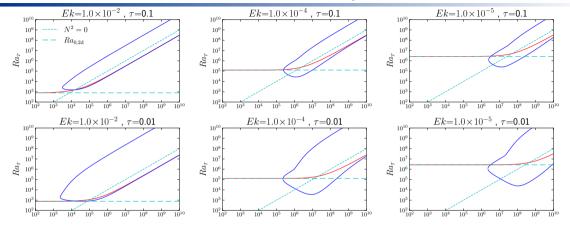
- $\lambda_1 = \sigma_1 + i\omega_1$: short-wavelength, prograde mode
 - unstable when $Ra_T > Ra_{0,2d} = \text{critical } Ra_T \text{ for pure thermal convection}$
 - ullet ~ pure thermal convection (modified by compositional effects)
- $\lambda_3 = \sigma_3 + i\omega_3$: long-wavelength, retrograde mode
 - can exists at some $Ra_T < Ra_{0.2d}$ (strong rotation needed)
 - a 'genuine' double-diffusive effect
- there is a range of $|Ra_C|$ in which the two modes can coexists with minimal interaction

Effects of the Ekman number Ek and diffusivity ratio au



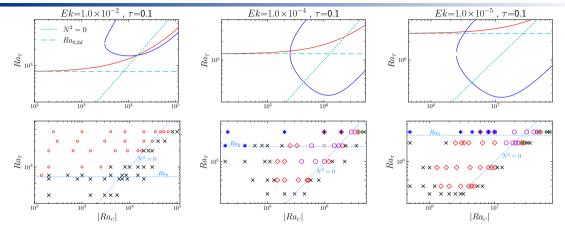
• unstable 'tongue' below $Ra_{0,2d}$ disappears at weak rotation (large Ek)

Effects of the Ekman number Ek and diffusivity ratio au



- unstable 'tongue' below $Ra_{0,2d}$ disappears at weak rotation (large Ek)
- width of the ODDC unstable region increases as $\tau = \kappa_C/\kappa_T$ decreases

Role of rotation: linear annulus model and nonlinear spherical simulations



 \blacksquare unstable 'tongue' below $Ra_{0,2d}$ disappears at weak rotation (large Ek)