

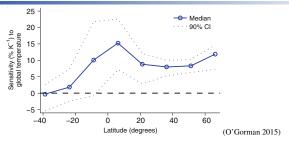
The quest for water vapour parametrization in weather and climate models

Yue-Kin Tsang

Centre for Geophysical and Astrophysical Fluid Dynamics Mathematics, University of Exeter

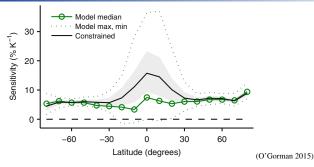
Extreme Precipitation

- exceptionally heavy rainfall in November and December 2015
- 26th December
 rainfall of up to 120mm fell within 24 hours in the Lancashire
 and Yorkshire areas
 ≈ average rainfall for the entire month of December (145mm)
- Boxing-day floods in Leeds


Extreme Precipitation and Climate Change

- Is climate change a contributing factor to extreme precipitation?
- How will precipitation extremes respond to future change in climate?

We can gain some insights by:


- looking into past: records of observed precipitation
- predicting the future: model projection

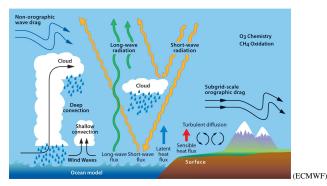
Analysis of observed precipitation extremes

- data from rain gauges over land stations from 1910 to 2010
- maximum daily precipitation rate at each grid box (station) for each year in the record, $P_{\text{max}}(x, y, t)$
- **9** global-mean surface temperature anomaly $\Delta T(t)$ from 1910 to 2010
- regress $P_{\max}(x, y, t)$ against $\Delta T(t)$, regression coefficient = m(x, y)
- Sensitivity = $m(x, y)/\langle P_{\text{max}}(x, y, t)\rangle_t \times 100\%$
- averaged over the 15° latitude bands (median)

Climate model prediction

- climate-model simulations using a projected scenario of greenhouse gas concentration into the 21st century (RCP8.5)
- compare results across many different climate models (CMIP5)
- large inter-model scatter in the Tropics \Rightarrow results unreliable!
 - tropical precipitation depends strongly on small-scale processes that are not resolved in model
 - results sensitive to parametrization of these subgrid-scale processes

Parametrization

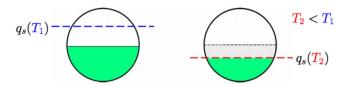

 atmospheric states: continuous fields governed by differential equations — describe motions on all scales. For example,

specific humidity field
$$q(\vec{x}, t)$$
: $\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = \kappa \nabla^2 q + S - C$

- weather/climate models: numerical solutions of a discrete version of the governing differential equations on a grid
 - ⇒ cannot describe processes below the grid scale subgrid-scale processes affect the atmospheric state on large-scales
- Parametrization: technique to represent the statistical effects of subgrid-scale processes in terms of the resolved scales

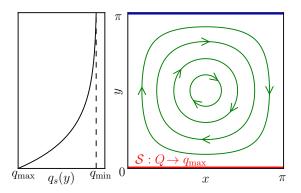
Subgrid-scale processes

- typical resolution of climate models: horizontal ~ 100 km vertical ~ 10 km
- subgrid-scale processes
 - convective cloud $\sim 1 \text{ km}$
 - small-scale turbulent mixing $\sim 1 \text{ mm} 1 \text{ m}$
 - raindrops $\sim 1 \text{ mm}$
 - cloud droplets (form by condensation) $\sim 1 \ \mu m$

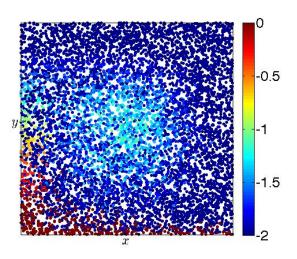


Condensation of water vapour

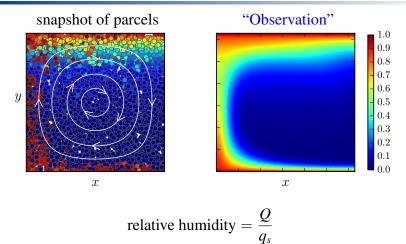
specific humidity of an air parcel:


$$Q = \frac{\text{mass of water vapor}}{\text{total air mass}}$$

- saturation specific humidity, $q_s(T)$
 - $Q = \begin{cases} q_s & \text{if} \quad Q > q_s \\ Q & \text{otherwise} \end{cases}$ (excessive moisture condensed)
 - $q_s(T)$ decreases with temperature T, hence position dependent


An idealised atmosphere

- bounded domain: $[0,\pi] \times [0,\pi]$, reflective boundaries
- resetting source: $Q = q_{\text{max}}$ if parcel hits y = 0
- large-scale cellular flow: $\psi = \sin x \sin y$; $(u, v) = (-\psi_y, \psi_x)$
- small-scale turbulence: Brownian motion



Moist parcels in idealised atmosphere

specific humidity of air parcels: $\log_{10} Q(t)$

Relative humidity

 Observation: divide the domain into small bins and average over parcels in each bin

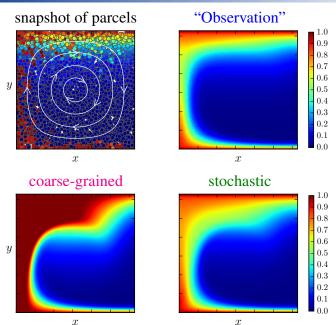
Parametrization of condensation

• Governing equation for the specific humidity field q(x, y, t):

$$\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = \kappa \nabla^2 q + S - \mathbf{C}$$

• Numerical solution on a grid: $\overline{q}(i,j,t_n)$ represents the average of the many parcels within a grid box.

What should be the form of the condensation term C?


• coarse-grained:

$$C_{ ext{avg}} = egin{cases} rac{1}{\Delta t} ig[\overline{q}(i,j,t) - q_s(j) ig] & ext{if} & \overline{q} > q_s \ 0 & ext{otherwise} \end{cases}$$

stochastic:

$$C_{ ext{stoc}} = rac{1}{\Delta t} \int_{q_s(j)}^{q_{ ext{max}}} (q'-q_s) \Phi_0(q'|i,j;t_n) \, \mathrm{d}q'$$

Comparison of parametrization schemes: relative humidity

