

Improving global stability analysis of Kolmogorov flows using enstrophy

Yue-Kin Tsang

School of Mathematics and Statistics University of St Andrews

William R. Young (SIO, UCSD) Richard R. Kerswell (Mathematics, Bristol)

 $\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + v\nabla^2\zeta$ velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-D periodic domain) vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2\psi$

- *single-scaled* sinusoidal body force (at $k_f = 1$)
 - initially used by Kolmogorov (with $\beta = \mu = 0$) to study bifurcations as Reynolds number increases
 - subsequent work by others: viscous linear stability (*Meshalkin & Sinai*), weakly nonlinear theory (*Sivashinsky*), energy stability (*Fukuta & Murakami*)
 - quasi-2D laboratory experiments with approximate sinusoidal forcing (e.g. *Rivera & Wu, Burgess et al.*)

$$\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + v\nabla^2\zeta$$

velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-D periodic domain)
vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2\psi$

- Two-dimensional flows:
 - Jual conservation of energy E and enstrophy Z,

$$E = \frac{1}{2} \left\langle |\nabla \psi|^2 \right\rangle, \qquad Z = \frac{1}{2} \left\langle (\nabla^2 \psi)^2 \right\rangle$$

- nonlinear interactions transfer *E* simultaneously up (*k* < 1) and down (*k* > 1) scale
- Iarge-scale dissipation (e.g. sidewall drag, Ekman friction) needed to achieve statistically steady state

 $\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + v\nabla^2\zeta$ velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-D periodic domain) vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2\psi$

- Geophysical flows:
 - variation of the Coriolis parameter with latitude modeled using the β-plane approximation
 - Solution Kolmogorov flow on a β -plane as a model of zonal jet formation

 $\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x + v\nabla^2\zeta$ velocity: $(u, v) = (-\psi_y, \psi_x)$ (2-D periodic domain) vorticity: $\zeta(x, y) = v_x - u_y = \nabla^2\psi$

- Geophysical flows:
 - variation of the Coriolis parameter with latitude modeled using the β-plane approximation
 - Solution Kolmogorov flow on a β -plane as a model of zonal jet formation

We shall first consider the inviscid case: v = 0

Stability of the Laminar Solution

y

Stability of the Laminar Solution

Stability of the Laminar Solution

Goal: Neutral Curve

$$\zeta_t + u\zeta_x + v\zeta_y + \beta\psi_x = -\mu\zeta + \cos x$$

Stability Analysis

$$\psi(x, y, t) = \psi_{\mathsf{L}}(x) + \varphi(x, y, t)$$

- Linear Instability
 - assume infinitesimal disturbance $φ \sim e^{-iωt}$
 - $\mathfrak{I}{\omega} > 0 \implies \psi_{\mathsf{L}}$ is unstable
 - gives sufficient condition for instability
- Global Stability (Asymptotic Stability)
 - φ is *not* assumed to be small
 - disturbance energy

$$E_{\varphi}(t) = \frac{1}{2} \left\langle |\nabla \varphi|^2 \right\rangle \to 0 \quad as \quad t \to \infty$$

gives sufficient condition for stability

Energy Method

•

$$\nabla^2 \psi_t + J(\psi, \nabla^2 \psi) + \beta \psi_x = -\mu \nabla^2 \psi + \cos x$$
$$\psi_{\mathsf{L}}(x) = -a \cos(x - x_\beta)$$

Time evolution equation for φ ($\psi = \psi_{L} + \varphi$):

 $\nabla^2 \varphi_t + J(\psi_{\mathsf{L}}, \nabla^2 \varphi) + J(\varphi, \nabla^2 \psi_{\mathsf{L}}) + J(\varphi, \nabla^2 \varphi) + \beta \varphi_x = -\mu \nabla^2 \varphi$

$$\frac{dE_{\varphi}}{dt} = \left\langle \varphi J(\psi_{\mathsf{L}}, \nabla^2 \varphi) \right\rangle - \mu \left\langle |\nabla \varphi|^2 \right\rangle$$
$$= a \left\langle \varphi_x \varphi_y \cos x \right\rangle - 2\mu E_{\varphi}$$

Energy Method

$$\frac{dE_{\varphi}}{dt} = 2\left(a\Re[\varphi] - \mu\right)E_{\varphi}$$

where
$$\Re[\varphi] \equiv \frac{\left\langle\varphi_{x}\varphi_{y}\cos x\right\rangle}{\left\langle|\nabla\varphi|^{2}\right\rangle}$$

Now define $\Re_* \equiv \max_{\varphi \in \Phi} \Re[\varphi]$

 $\Phi:$ set of all functions satisfying periodic boundary conditions

Then,

$$\frac{dE_{\varphi}}{dt} < 2\left(a\mathcal{R}_* - \mu\right)E_{\varphi}$$

Energy Method

By Gronwall's inequality,

$$\frac{dE_{\varphi}}{dt} < 2(a\mathcal{R}_* - \mu)E_{\varphi}$$
$$\Rightarrow \quad E_{\varphi}(t) < E_{\varphi}(0)e^{2(a\mathcal{R}_* - \mu)t}$$
$$\therefore \quad E_{\varphi}(t \to \infty) \to 0 \quad if \quad a\mathcal{R}_* - \mu < 0$$

Neutral condition

$$a = \frac{1}{\mathcal{R}_*}\mu \quad \Rightarrow \quad \beta = \sqrt{\frac{\mathcal{R}_*^2}{\mu^2} - \mu^2}$$

Variational Results

Energy Stability Curve

Energy Stability and Linear Stability Curve

Limitations of the Energy Method

• requires $E_{\varphi}(t)$ to decrease monotonically for all φ , thus excludes transient growth of $E_{\varphi}(t)$

- the most efficient energy-releasing disturbance $\varphi_*(x, y)$ is unphysical: $l \to \infty$
- a gap between the energy stability curve and the neutral curve from linear stability analysis

Energy-Enstrophy Balance

1 -

Disturbance enstrophy: $Z_{\varphi} = \frac{1}{2} \left\langle (\nabla^2 \varphi)^2 \right\rangle$

$$\frac{dZ_{\varphi}}{dt} = a\left\langle\varphi_x\,\varphi_y\cos x\right\rangle - 2\mu Z_{\varphi}$$

Recall,

$$\frac{dE_{\varphi}}{dt} = a\left\langle \varphi_x \,\varphi_y \cos x \right\rangle - 2\mu E_{\varphi}$$

Then,

$$\frac{d}{dt}(E_{\varphi}-Z_{\varphi})=-2\mu(E_{\varphi}-Z_{\varphi})$$

$$E_{\varphi}(t) - Z_{\varphi}(t) = e^{-2\mu t} \left[E_{\varphi}(0) - Z_{\varphi}(0) \right]$$

Energy-Enstrophy Balance

$$E_{\varphi}(t) - Z_{\varphi}(t) \to 0 \quad as \quad t \to \infty$$
$$\Phi_{EZ} = \{ \varphi \in \Phi \text{ such that } E_{\varphi} = Z_{\varphi} \}$$

 $\Rightarrow \Phi_{EZ}$ attracts all initial conditions

Optimization with Constraints

Energy-Enstrophy (EZ) Stability (v = 0)

$$\beta = \sqrt{\frac{0.13}{\mu^2} - \mu^2} \quad (a = 2.8\mu)$$

Energy-Enstrophy (EZ) Stability (v = 0)

The viscous case: v > 0

$$\nabla^2 \psi_t + J(\psi, \nabla^2 \psi) + \beta \psi_x = -\mu \nabla^2 \psi + \cos x + \nu \nabla^2 \zeta$$
$$\psi_{\mathsf{L}}(x) = -a \cos(x - x_\beta)$$
$$a = \frac{1}{\sqrt{\beta^2 + (\mu + \nu)^2}}$$

$$\frac{dE_{\varphi}}{dt} = a\left\langle \varphi_x \,\varphi_y \cos x \right\rangle - 2\mu E_{\varphi} + 2\nu Z_{\varphi}$$

$$\frac{dZ_{\varphi}}{dt} = a\left\langle\varphi_x\,\varphi_y\cos x\right\rangle - 2\mu Z_{\varphi} + 2\nu P_{\varphi}$$

$$P_{\varphi} = \frac{1}{2} \left\langle |\nabla(\nabla^2 \varphi)|^2 \right\rangle$$

Extended Energy-Enstrophy (EEZ) Stability

Consider a family of norm with the parameter α :

$$Q(\alpha) = (1 - \alpha) E_{\varphi} + \alpha Z_{\varphi}, \quad 0 \le \alpha \le 1$$
$$\frac{\mathrm{d}Q}{\mathrm{d}t} = 2\left\{\mathcal{R}_{Q}[\varphi; \alpha, \nu, a] - \mu\right\}Q$$

Global stability : $Q(\alpha) \rightarrow 0$ as $t \rightarrow \infty$ for some α .

Extended Energy-Enstrophy (EEZ) Stability

Consider a family of norm with the parameter α :

$$Q(\alpha) = (1 - \alpha) E_{\varphi} + \alpha Z_{\varphi}, \quad 0 \le \alpha \le 1$$
$$\frac{\mathrm{d}Q}{\mathrm{d}t} = 2\left\{\mathcal{R}_{Q}[\varphi; \alpha, \nu, \alpha] - \mu\right\}Q$$

Global stability : $Q(\alpha) \to 0$ as $t \to \infty$ for some α .

$$\mathcal{R}_Q^*(\alpha,\nu,a) = \max_{\varphi \in \Phi} \mathcal{R}_Q[\varphi;\alpha,\nu,a]$$

For each α , neutral condition : $\Re^*_Q(\alpha, \nu, a) = \mu$

$$\mathcal{R}^*_Q(\alpha_2) < \mathcal{R}^*_Q(\alpha_1)$$

Extended Energy-Enstrophy (EEZ) Stability

Consider a family of norm with the parameter α :

$$Q(\alpha) = (1 - \alpha) E_{\varphi} + \alpha Z_{\varphi}, \quad 0 \le \alpha \le 1$$
$$\frac{\mathrm{d}Q}{\mathrm{d}t} = 2\left\{\mathcal{R}_{Q}[\varphi; \alpha, \nu, a] - \mu\right\}Q$$

Global stability : $Q(\alpha) \to 0$ as $t \to \infty$ for some α .

$$\mathcal{R}_Q^*(\alpha,\nu,a) = \max_{\varphi \in \Phi} \mathcal{R}_Q[\varphi;\alpha,\nu,a]$$

For each α , neutral condition : $\Re_Q^*(\alpha, \nu, a) = \mu$

"Optimal" neutral condition : $\min_{\alpha} \mathcal{R}^*_Q(\alpha, \nu, a) = \mu$

$$\mathcal{R}^*_Q(\alpha_2) < \mathcal{R}^*_Q(\alpha_1)$$

Extended EZ Stability ($\nu = 10^{-3}$)

Extended EZ Stability for different *v*

Summary

By incorporating information based on the enstrophy, we develop the EZ and EEZ stability method which

- allows <u>transient</u> growth in $E_{\varphi}(t)$ ($\varphi(t=0) \notin \Phi_{EZ}$)
- identifies a physically <u>realistic</u> most-unstable disturbance
- lies <u>closer</u> to the linear stability neutral curve

EZ stability: Tsang & Young, Phys. Fluids 20, 084102 (2008)