

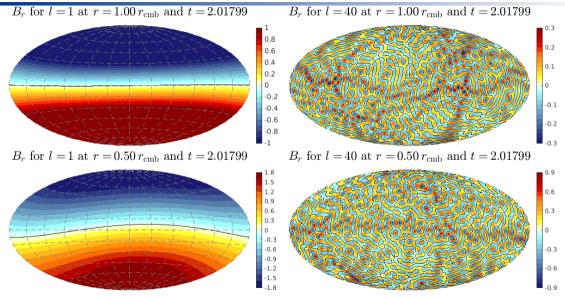
Transition in the geomagnetic secular variation time scale below the CMB

Yue-Kin Tsang

School of Mathematics, Statistics and Physics Newcastle University

Chris Jones, Newcastle University

Geomagnetic secular variation at different spatial scales and depths



Spectra: to study properties at different spatial scales

Spectrum—a function of spherical harmonic degree l. For a potential field $(\mathbf{B} = -\nabla \Phi)$ specified by the Gauss coefficients (g_{lm}, h_{lm}) , the following spectra are defined for $r \geqslant r_{\text{cmb}}$:

(1) Lowes spectrum (magnetic energy per spherical harmonic degree l)

$$R(l,r,t) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{l=0}^{l} \left[g_{lm}^{2}(t) + h_{lm}^{2}(t)\right]$$
 (a = Earth's radius)

(2) Secular variation spectrum

$$R_{\rm sv}(l,r,t) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{l=0}^{l} \left[\dot{g}_{lm}^{2}(t) + \dot{h}_{lm}^{2}(t)\right]$$

(3) Secular variation time-scale spectrum

$$\tau_{\rm sv}(l,t) = \sqrt{\frac{R}{R_{\rm sv}}} = \sqrt{\frac{\sum_{m=0}^{l} \left(g_{lm}^2 + h_{lm}^2\right)}{\sum_{m=0}^{l} \left(\dot{g}_{lm}^2 + \dot{h}_{lm}^2\right)}}$$

Secular variation time-scale spectrum au_{sv}

$$au_{
m sv}(l,t) = \sqrt{rac{R}{R_{
m sv}}} \quad (r \geqslant r_{
m cmb})$$

- ullet Characteristic time scale of magnetic field structures with spatial scale characterised by l
- Numerical simulations and some satellite data support the simple power-law:

$$\tau_{\rm sv}(l) \sim l^{-1}$$

(Christensen and Tilgner 2004, Holme and Olsen 2006, Lesur et al. 2008, Lhuillier et al. 2011)

- $m{ ilde au}_{
 m sv}$ is sometimes interpreted as a characteristic time scale of the magnetohydrodynamics in the outer core
- Question: τ_{sv} is defined using the Gauss coefficients derived from \boldsymbol{B} observed at the Earth's surface. Do τ_{sv} and the scaling law $\tau_{sv} \sim l^{-1}$ describe the time variation of \boldsymbol{B} inside the outer core?

Generalisation to inside the dynamo region (outer core)

For a magnetic field \boldsymbol{B} (not necessarily potential) at some r, expand in a set of vector spherical harmonics basis,

$$\boldsymbol{B}(r,\theta,\phi,t) = \sum \left[q_{lm}(r,t) \hat{\boldsymbol{Y}}_{lm}(\theta,\phi) + s_{lm}(r,t) \hat{\boldsymbol{\Psi}}_{lm}(\theta,\phi) + t_{lm}(r,t) \hat{\boldsymbol{\Phi}}_{lm}(\theta,\phi) \right]$$

We define the magnetic energy spectrum F(l, r, t) for any r:

$$\sum_{l=1}^{\infty} F(l,r,t) \equiv \frac{1}{4\pi} \oint |\mathbf{B}(r,\theta,\phi,t)|^2 d\Omega = \sum_{l=1}^{\infty} \left[\frac{1}{(2l+1)} \sum_{m=0}^{l} (|q_{lm}|^2 + |s_{lm}|^2 + |t_{lm}|^2) (4 - 3\delta_{m,0}) \right]$$

Similarly, define the time variation spectrum $F_{\dot{R}}(l,r,t)$:

$$\sum_{l=1}^{\infty} F_{\dot{B}}(l,r,t) \equiv \frac{1}{4\pi} \oint |\dot{B}(r,\theta,\phi,t)|^2 d\Omega = \sum_{l=1}^{\infty} \left[\frac{1}{(2l+1)} \sum_{m=0}^{l} \left(|\dot{q}_{lm}|^2 + |\dot{s}_{lm}|^2 + |\dot{t}_{lm}|^2 \right) (4 - 3\delta_{m,0}) \right]$$

Then, the (time-averaged) magnetic time-scale spectrum is defined as:

$$\tau(l,r) = \left\langle \sqrt{\frac{F(l,r,t)}{F_{\dot{B}}(l,r,t)}} \right\rangle \quad \text{for any } r$$

• Outside the dynamo region: F = R, $F_{\dot{R}} = R_{\rm sv}$, $\tau = \tau_{\rm sv}$

A numerical model of geodynamo

Boussinesq, composition-driven, rotating convection of an electrically conducting fluid:

$$\begin{split} \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} + 2\frac{Pm}{Ek}\hat{\boldsymbol{z}} \times \boldsymbol{u} &= -\frac{Pm}{Ek}\nabla\Pi' + \left(\frac{RaPm^2}{Pr}\right)Cr\,\hat{\boldsymbol{r}} + \frac{Pm}{Ek}(\nabla\times\boldsymbol{B}) \times \boldsymbol{B} + Pm\nabla^2\boldsymbol{u}, \\ \frac{\partial\boldsymbol{B}}{\partial t} &= \nabla\times(\boldsymbol{u}\times\boldsymbol{B}) + \nabla^2\boldsymbol{B} \end{split}$$

$$\frac{\mathrm{D}C}{\mathrm{D}t} = \frac{Pm}{Pr}\nabla^2 C - 1$$

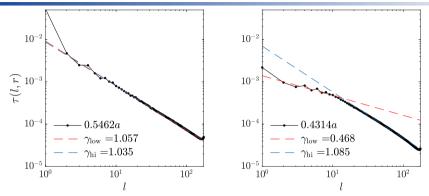
$$\nabla \cdot \boldsymbol{u} = 0$$

$$\nabla \cdot \boldsymbol{B} = 0$$

Boundary conditions: **no-slip** for u, fixed-flux for CDomain: a spherical shell $0.1912 a \le r \le 0.5462 a \equiv r_{cmb}$ (or r_o)

$$Ra = 2.7 \times 10^8$$
, $Ek = 2.5 \times 10^{-5}$, $Pm = 2.5$, $Pr = 1$

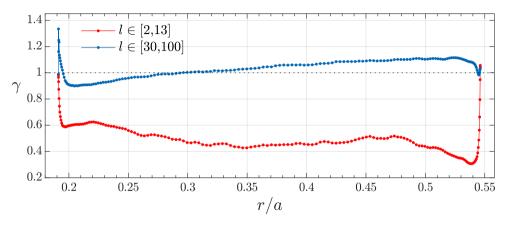
Magnetic time-scale spectrum au(l,r) at different depth



For the large-scale modes (small l),

- At the surface: $\tau \sim l^{-1}$
- In the interior: $\tau \sim l^{-0.5}$, the large-scale modes speed up in the interior!
- This suggests $\tau_{sv}(l)$ observed at the Earth's surface is unreliable as an estimate of time scales inside the outer core

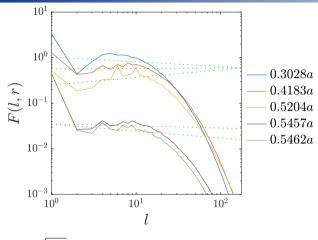
Transition in the scaling of τ : where does it occur?



 \bullet γ for the large-scale modes increases sharply within a boundary layer under CMB

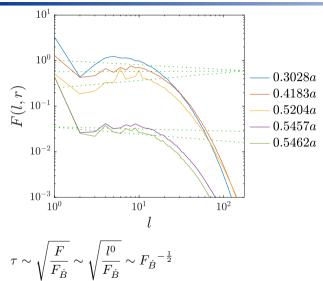
Focus on the large scales in following discussion ...

Change in the scaling of τ : who causes it?

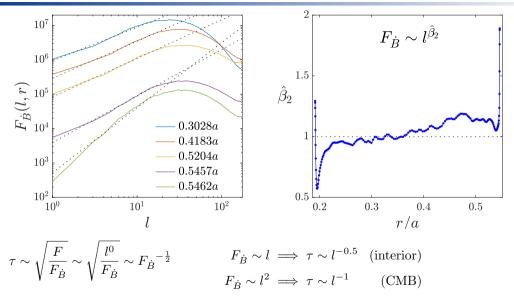


$$\sim \sqrt{rac{F}{F_{\dot{E}}}}$$

Change in the scaling of τ : who causes it?



Change in the scaling of τ : who causes it?



Transition in the scaling of τ : physical meaning

• Write B as the sum of a poloidal B_{Pol} and a toroidal B_{Tor} components:

$$\boldsymbol{B} = (B_r, B_\theta, B_\phi) = \underbrace{\nabla \times \nabla \times (\mathbf{P} \, \boldsymbol{r})}_{\boldsymbol{B}_{Pol}} + \underbrace{\nabla \times (T \, \boldsymbol{r})}_{\boldsymbol{B}_{Tor}}$$
 ($\boldsymbol{r} = r \, \hat{\boldsymbol{r}}$)

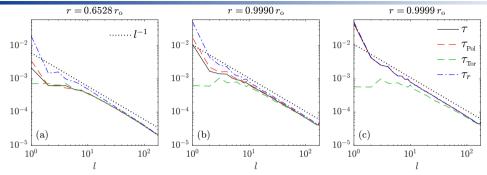
- \blacksquare Radial magnetic field is related to the poloidal potential: $B_r \longrightarrow P$
- Toroidal potential contributes to the horizontal magnetic field: $(B_{\theta}, B_{\phi}) \longrightarrow (P, T)$
- Define the three time scales:

$$au_{ ext{Pol}} = \sqrt{\frac{ ext{spectrum of } m{B}_{ ext{Pol}}}{ ext{spectrum of } m{B}_{ ext{Pol}}}}$$

$$au_{ ext{Tor}} = \sqrt{\frac{ ext{spectrum of } m{B}_{ ext{Tor}}}{ ext{spectrum of } m{B}_{ ext{Tor}}}}$$

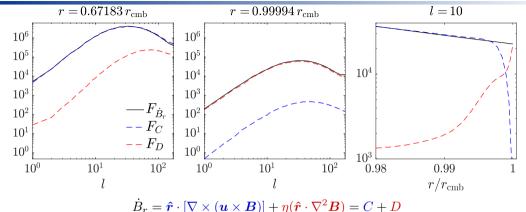
$$au_r = \sqrt{\frac{ ext{spectrum of } m{B}_r}{ ext{spectrum of } m{B}_r}}$$

Transition in the scaling of τ : physical meaning



- In the interior (for the large scales):
 - $\tau_r \sim l^{-1}$ and $\tau_{\text{Tor}} \sim l^{-0.5}$
 - \bullet $au pprox au_{ ext{Tor}} \ll au_r$
 - (B_{θ}, B_{ϕ}) vary faster than $B_r \implies \dot{\mathbf{B}}$ is dominated by $(\dot{B}_{\theta}, \dot{B}_{\phi})$
- τ_r has same scaling in the interior and at the surface, no abrupt transition for B_r
- Transition is a result of the magnetic boundary condition: T=0 at $r=r_{\rm cmb}$

Process controlling the secular variation of B_r : induction vs. diffusion



- Interior: $\dot{B}_r \approx \hat{r} \cdot [\nabla \times (\boldsymbol{u} \times \boldsymbol{B})]$, magnetic diffusion negligible
- At CMB: $\dot{B}_r \approx \eta(\hat{r} \cdot \nabla^2 B)$, controlled by magnetic diffusion (: no-slip)
- Inside the CMB boundary layer: sharp transition for both C and D but \dot{B}_r varies very weakly despite the switch in the controlling mechanism

Summary

• For the large scales, scaling of $\tau(l,r)$ with l at the CMB is different from that in the interior of the outer core:

$$\tau \sim l^{-0.5}$$
, in the interior $\tau \sim l^{-1}$, at the CMB

- The transition in scaling occurs within a thin boundary layer under the CMB.
- $F_{\dot{B}}$ is responsible for the transition $(\tau = \sqrt{F/F_{\dot{B}}})$ which is enforced by the magnetic boundary condition at the CMB
- $\dot{B} \sim \dot{B}_r$ at the CMB and $\dot{B} \sim (\dot{B}_{\theta}, \dot{B}_{\phi}) \gg \dot{B}_r$ in the interior
- mechanism controlling \dot{B}_r changes "stealthily" from induction to diffusion as $r \to r_{\rm cmb}$ from below