A Test of Local Effective Diffusivity Parameterization in a Two-Layer, Wind-Driven Isopycnal Primitive Equation Model

Yue-Kin Tsang

K. Shafer Smith

Center for Atmosphere Ocean Science Courant Institute of Mathematical Sciences New York University

Means and Eddies

Low-pass filtering via running average in space and time:

$$\bar{f}(x,y,t) = \frac{1}{\tau\ell^2} \int_{t-\tau/2}^{t+\tau/2} dt' \int_{x-\ell/2}^{x+\ell/2} dx' \int_{y-\ell/2}^{y+\ell/2} dy' f(x',y',t')$$

- Eddy components: $f' \equiv f \bar{f}$
- Averaging the passive tracer advection-diffusion equation

$$c_t + \nabla \cdot (\mathbf{u}c) = \kappa \nabla^2 c + S$$

gives the large-scale equation

$$\bar{c}_t + \nabla \cdot (\mathbf{F} + \bar{\mathbf{u}}\bar{c}) = \kappa \nabla^2 \bar{c} + \bar{S}$$

• Eddy tracer flux: $\mathbf{F} = \overline{\mathbf{u}'c'}$

Eddy Diffusivity

Flux-gradient relation:

$$\mathbf{F} = \overline{\mathbf{u}'c'} = -\mathbf{K}\nabla\bar{c}, \text{ where } \mathbf{K} = \begin{pmatrix} K^{\mathsf{x}\mathsf{x}} & K^{\mathsf{x}\mathsf{y}} \\ K^{\mathsf{y}\mathsf{x}} & K^{\mathsf{y}\mathsf{y}} \end{pmatrix}$$

• Eddy diffusion for \overline{c} ,

$$\bar{c}_t + \nabla \cdot (\bar{\mathbf{u}}\bar{c}) = \nabla \cdot [(\kappa \mathbf{I} - \mathbf{K})\nabla \bar{c}] + \bar{S}$$

- If the small-scale statistics is inhomogeneous, $\mathbf{K} = \mathbf{K}(\mathbf{x})$
- Try to identify approximately local homogeneous regions (cells) and make estimation to K that is constant in a cell

Ocean Circulation Model

- Two-layer, adiabatic, isopycnal primitive equations model (HIM)
- Mid-latitude, flat bottom basin of size $22^{\circ} \times 20^{\circ}$
- Zonal sinusoidal wind-forcing (double-gyre configuration)
- Linear bottom drag and biharmonic viscosity
- **•** Resolution: 1/20 degree

Snapshots of u and v

Example of Averaging

Snapshots of u^\prime and v^\prime

u'

v'

PDF of u' and v'

divide the domain into $2^{\circ} \times 2^{\circ}$ cells **10⁰ 10⁰** 10⁰ **10⁰ 10⁰ 10⁰** [▶]_10⁻⁵ 0.5-0.5 −10° ┌─ 10⁻⁵ 0.5₋₀0.5 -10 □ __10^{_5}___ 0.5_0.5 __10 ___ 10^{-5} _0.5 0 0 0 0 0 0 0.2 -10^{-5} 0.5-0.2 -10^{-5} -10^{-5} 0.2-0.2 -10^{0} **10⁻⁵**' 10⁻⁵ L 10⁻⁵ ۰0⁻⁵ 1 –0.5 1 –0.5 -10⁰⁻¹ ↓0^{0−1} 10⁰⁻¹ 0 0 0 0 0 0.2 0 ____ا0⁻⁵ ل 0.5__0.5 _10° --**-10⁻⁵ 0.5--0.5 -10⁰ 10⁻⁵ L __10^{_5}___ 0.5_0.2 __10° ___ 10⁻⁵ 10⁻⁵ 1 -0.5 10° ┌─ -5 10⁰⁻¹ 1[−]1 10⁰ Γ 0 0 0 0.2 0 0 0 0.5–0.5 0.5–0.5 10⁻⁵ -10⁻⁵ └-1 -0.5 -10° ┌─ 10⁰⁻¹ 0 0 0 0 0 0 0.2 10⁻⁵ ___10^{_5}___ 0.2–0.1 __10^{_5} 0.5–0.2 __10^{_5}____ 0.2__0.2 [™]_10^{-∍} └_ 0.5–0.5 <u>*</u>40^{-∍}∟ 0.5–0.5 0.1 -0.5 0 0 0 0 0 0

- Can we "measure" K directly from high resolution data?
- Can we make theoretical prediction on K?

Measuring $K(\mathbf{x})$

Recall $\overline{\mathbf{u}'c'} = -\mathbf{K}\nabla \overline{c}$, write $\mathbf{G} = \nabla \overline{c}$:

 $\overline{u'c'} = \mathbf{K}^{xx}\mathbf{G}_x + \mathbf{K}^{xy}\mathbf{G}_y$ $\overline{v'c'} = \mathbf{K}^{yx}\mathbf{G}_x + \mathbf{K}^{yy}\mathbf{G}_y$

 \Rightarrow four unknowns and two equations.

K is property of flow, use two independent tracers a and b forced by different large-scale gradients: $\Gamma = \nabla \bar{a}$, $\Lambda = \nabla \bar{b}$,

$$\overline{u'a'} = \mathbf{K}^{\mathbf{x}\mathbf{x}}\Gamma_x + \mathbf{K}^{\mathbf{x}\mathbf{y}}\Gamma_y$$
$$\overline{v'a'} = \mathbf{K}^{\mathbf{y}\mathbf{x}}\Gamma_x + \mathbf{K}^{\mathbf{y}\mathbf{y}}\Gamma_y$$
$$\overline{u'b'} = \mathbf{K}^{\mathbf{x}\mathbf{x}}\Lambda_x + \mathbf{K}^{\mathbf{x}\mathbf{y}}\Lambda_y$$
$$\overline{v'b'} = \mathbf{K}^{\mathbf{y}\mathbf{x}}\Lambda_x + \mathbf{K}^{\mathbf{y}\mathbf{y}}\Lambda_y$$

 \Rightarrow four unknowns and four equations.

Tracer *a* **and** *b*

 \boldsymbol{a}

Measured $K(\mathbf{x})$

Transport Theory

Isotropic local mixing length estimate

$$V_T = \sqrt{u'^2 + v'^2}$$
$$L_{mix} = V_T / |\nabla V_T|$$
$$\mathbf{K}^{\mathbf{x}\mathbf{x}} = \mathbf{K}^{\mathbf{y}\mathbf{y}} = cV_T L_{mix}$$

Shear dispersion in x + Mixing length in y

$$\mathbf{K}^{\mathbf{y}\mathbf{y}} = cV_T L_{jet} \quad (L_{jet} \approx \text{ jet width})$$
$$\mathbf{K}^{\mathbf{x}\mathbf{x}} = \frac{U_{jet}^2 L_{jet}^2}{\mathbf{K}^{\mathbf{y}\mathbf{y}}} \quad (U_{jet} \approx \text{ jet speed})$$

K. S. Smith, J. Fluid Mech. 544, 133 (2005)

Isotropic Mixing Length Estimate

 $\mathbf{K}^{\mathbf{x}\mathbf{x}}$ (or $\mathbf{K}^{\mathbf{y}\mathbf{y}}$)

Summary

- Study the eddy diffusivity tensor K(x) in an inhomogeneous system (the double-gyre configuration)
- Measure $\mathbf{K}(\mathbf{x})$ from high resolution simulation data
- Make theoretical estimation on K(x) in some regions of the domain using mixing length theory
- Work in progress:

 - ${\scriptstyle \ensuremath{\, \hbox{\tiny $ \ensuremath{\, \ensuremath$