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Means and Eddies

Low-pass filtering via running average in space and time:

f̄(x, y, t) =
1

τℓ2

∫ t+τ/2

t−τ/2

dt′
∫ x+ℓ/2

x−ℓ/2

dx′

∫ y+ℓ/2

y−ℓ/2

dy′f(x′, y′, t′)

Eddy components: f ′ ≡ f − f̄

Averaging the passive tracer advection-diffusion equation

ct + ∇ · (uc) = κ∇2c + S

gives the large-scale equation

c̄t + ∇ · (F + ūc̄) = κ∇2c̄ + S̄

Eddy tracer flux: F = u′c′



Eddy Diffusivity

Flux-gradient relation:

F = u′c′ = −KKK∇c̄, where KKK =





Kxx Kxy

Kyx Kyy





Eddy diffusion for c̄,

c̄t + ∇ · (ūc̄) = ∇ · [ (κIII −KKK)∇c̄ ] + S̄

If the small-scale statistics is inhomogeneous, KKK = KKK(x)

Try to identify approximately local homogeneous regions
(cells) and make estimation to KKK that is constant in a cell



Ocean Circulation Model

Two-layer, adiabatic, isopycnal primitive equations
model (HIM)

Mid-latitude, flat bottom basin of size 22◦ × 20◦

Zonal sinusoidal wind-forcing (double-gyre
configuration)

Linear bottom drag and biharmonic viscosity

Resolution: 1/20 degree



Snapshots of u and v
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Example of Averaging
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Snapshots of u′ and v′

u′ v′



PDF of u′ and v′

divide the domain into 2◦ × 2◦ cells
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Questions

Can we “measure” KKK directly from high resolution
data?

Can we make theoretical prediction on KKK?



Measuring KKK(x)

Recall u′c′ = −KKK∇c̄, write G = ∇c̄:

u′c′ = KKK
xx
Gx + KKK

xy
Gy

v′c′ = KKK
yx
Gx + KKK

yy
Gy

⇒ four unknowns and two equations.

KKK is property of flow, use two independent tracers a and b forced
by different large-scale gradients: Γ = ∇ā, Λ = ∇b̄,

u′a′ = KKK
xxΓx + KKK

xyΓy

v′a′ = KKK
yxΓx + KKK

yyΓy

u′b′ = KKK
xxΛx + KKK

xyΛy

v′b′ = KKK
yxΛx + KKK

yyΛy

⇒ four unknowns and four equations.



Tracer a and b
a b
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Measured KKK(x)

KKK
xx

KKK
xy

KKK
yx
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Transport Theory

Isotropic local mixing length estimate

VT =
√

u′2 + v′2

Lmix = VT/|∇VT |

KKK
xx = KKK

yy = cVTLmix

Shear dispersion in x + Mixing length in y

KKK
yy = cVTLjet (Ljet ≈ jet width)

KKK
xx =

U 2

jetL
2

jet

KKKyy
(Ujet ≈ jet speed)

K. S. Smith, J. Fluid Mech. 544, 133 (2005)



Isotropic Mixing Length Estimate

KKK
xx (or KKK

yy)



Summary

Study the eddy diffusivity tensor KKK(x) in an
inhomogeneous system (the double-gyre
configuration)

Measure KKK(x) from high resolution simulation data

Make theoretical estimation on KKK(x) in some
regions of the domain using mixing length theory

Work in progress:
improve measurement of KKK(x)

use more sophisticated theory to predict KKK(x) in
the whole domain
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