PHYS 4520: Physics in Meteorology

Introduction to the Earth's atmosphere

Yue-Kin Tsang

Atmospheric science: weather forecast

atmospheric models

based on physical principles from fluid dynamics, thermodynamics,...etc

parameterization

represents phenomena at the unresolved scales of the model

observational systems

acquire various weather variables (e.g. temperature, pressure) using radar, satellite, GPS

data assimilation:

combines information from current data (based on imperfect observation) and from a short-term forecast (based on a model) to produce a current state estimate.

Atmospheric science: atmospheric chemistry

- Ozone depletion
 - ozone absorbs UV radiation from the Sun
 - 1974: Crutzen, Rowland and Molina proposed CFCs may reduce ozone concentration in the atmosphere
 - CFC dissociated by UV light releasing Cl atom which is a catalyst of the destruction of ozone
 - 1985: Antarctic ozone hole discovered by Farman, Gardiner and Shanklin
 - Montreal Protocol
 - 1987: specified a 50% reduction in CFCs production
 - 1990: complete phase out of CFCs by early 21st century
 - 1995: Crutzen, Molina, and Rowland were awarded the Nobel Prize in Chemistry

Atmospheric science: climate dynamics

- Greenhouse warming
 - human-induced warming due to the buildup of greenhouse gases (e.g. CO₂) in the atmosphere
 - Keeling curve (*Scripps Institution of Oceanography*, http://scrippsco2.ucsd.edu)

Composition of the atmosphere

Constituent	Fractional concentration by volume	
Nitrogen (N ₂)	78.08%	Argon
Oxygen (O ₂)	20.95%	
Argon (Ar)	0.93%	
Water vapor (H ₂ O)	0 – 5%	Oxygen
Carbon dioxide (CO ₂)	380 ppm	
Neon (Ne)	18 ppm	Nitrogen
Helium (He)	5 ppm	
Methane (CH_4)	1.75 ppm	
Krypton (Kr)	1 ppm	
Hydrogen (H ₂)	0.5 ppm	(The Atmosphere, Lutgens & Tarbuck)
Nitrous oxide (N ₂ O)	0.3 ppm	(
Ozone (O ₃)	0–0.1 ppm	

ppm: parts per million = 0.0001%

(Atmospheric Science, Wallace & Hobbs)

Composition of the atmosphere

- Nitrogen and Oxygen (~ 99%)
 of little or no importance in affecting weather phenomena
- Water vapor (highly variable, up to 5%)
 significantly affects our weather and climate: cloud,
 fog, thunderstorm, tropical cyclone, tornado, hail
- Carbon dioxide (~ 0.038%)
 significantly affects our climate through the greenhouse effect
- Ozone (~ 0.0000005%, layered 25km from surface) protect living things on Earth from ultraviolet radiation from the Sun

• a thin layer of gas surrounding the Earth "thickness" of the atmosphere, $h \sim 50$ km radius of the Earth, $R \approx 6400$ km $h \ll R \implies \text{thin}$

variation with height *z* of thermodynamic properties: temperature (*T*), pressure (*p*) and density (*ρ*)

Troposphere and Tropopause (0 – 20 km)

- contained about 80% of the mass of the atmosphere
- heated from below by the Earth's surface
- **J** lapse rate $\Gamma \equiv \frac{\partial T}{\partial z} \approx -7^{\circ} \text{C/km}$
- **•** temperature inversion: embedded layer with $\Gamma > 0$
- contains nearly all the atmospheric water vapor, the moving weather systems and the associated clouds are almost entirely confined to this layer
 - large-scale turbulence and mixing

Stratosphere and Stratopause (20 – 50 km)

- temperature increases slowly with height up to about 30 km, above which it rises rapidly
- free from cloud and weather phenomena, vertical mixing is inhibited by the stratification of temperature
- ozone layer formed here because there is sufficient UV radiation to break O₂ into O atom and enough O₂ molecules to react with the O atom to form O₃
- ozone absorbs UV radiation and releases heat, less UV radiation reaches the lower stratosphere, hence the lower temperature there

Mesosphere and Mesopause (50 – 80 km)

- temperature decreases with height and approaches a minimum of about -90°C at around 80 km
- most meteors enter the atmosphere melt or vaporize here

Thermosphere (80 – 550 km)

- temperature increases with height due to the photodissociation of nitrogen and oxygen molecules and photoionization of their atoms
- temperature in the outer thermosphere varies widely in response to the Sun's activities
- temperature can be over 1000°C, but...
- density is extremely low, so one won't feel warm here since there is not enough contact with the few high-speed gas particles to transfer the energy
- Aurora occurs here due the presence of ions

Vertical profile of atmospheric pressure

 $p(z) \approx p_0 e^{-z/H}$

H =scale height

 p_0 = reference pressure

Vertical profile of atmospheric density

A simple hydrostatic model

(1) Assume the atmosphere is at rest and in static equilibrium, the net force on a small cylinder of air is zero:

$$p(z) \Delta A = p(z + \Delta z) \Delta A + g \rho(z) \Delta z \Delta A,$$
$$p(z + \Delta z) \approx p(z) + \Delta z \frac{dp}{dz}.$$

We get the hydrostatic balance equation,

$$\frac{dp(z)}{dz} = -\rho(z) g \,.$$

A simple hydrostatic model

(2) Assume the atmosphere behaves as an ideal gas:

 $pV = nR^*T$,

n = number of modes, $R^* =$ universal gas constant.

In terms of ρ instead of *V*,

$$p = \rho RT$$
 ,

 $R \equiv R^*/M$ where *M* is the molar mass.

For dry air, M = 0.028964 kg.

A simple hydrostatic model

Combining (1) and (2),

$$\frac{dp}{dz} = -\frac{g}{RT}p,$$

$$p(z) = p_0 \exp\left[-\frac{g}{R} \int_0^z \frac{1}{T(z')} dz'\right].$$

(3) Assume the atmosphere is **isothermal**: $T = T_0$,

$$p(z)=p_0\,e^{-\frac{g}{RT_0}z}\,,$$

$$\rho(z)=\rho_0\,e^{-\frac{g}{RT_0}z}\,.$$

Hence, the scale height $H = g/RT_0$. Take $T_0 = 290 \text{ K} \implies H \approx 7.1 \text{ km}$.