
MATH3474 Prof. M A Kelmanson 1

MATH3474 Numerical Methods

Professor M A Kelmanson

(revised by Dr. Yue-Kin Tsang)

MATH3474 Prof. M A Kelmanson 2

Contents

0 Preliminaries 4

0.1 Useful formulae . 4

0.1.1 Binomial Theorem . 4

0.1.2 Taylor expansion . 4

0.1.3 Taylor’s theorem for a function of two variables 5

0.2 Greek alphabet and notation . 6

1 Approximation Theory 7

1.1 Polynomial interpolation . 7

1.1.1 Lagrange interpolation . 7

1.1.2 Newton divided differences . 10

1.1.3 Interpolation error . 14

1.2 Approximation of functions . 17

1.2.1 The Lp norms . 17

1.2.2 Weierstrass’ theorem . 18

1.2.3 Minimax approximation . 20

1.2.4 Error-oscillation theorems . 22

1.2.5 Chebyshev polynomials . 24

1.2.6 Chebyshev least-squares approximation . 27

1.2.7 Near-minimax approximation . 29

1.2.8 Chebyshev interpolation . 31

1.2.9 Forced oscillation of the Chebyshev error . 34

1.2.10 Spectrally accurate computation of rapidly decaying Fourier coefficients 37

2 Numerical Differentiation 41

2.1 Finite differences in 1-D . 41

2.1.1 Higher-order accuracy and/or derivatives . 43

2.1.2 Operator methods for 1-D finite-difference formulae 44

2.1.3 Finite-difference formulae for first derivatives 46

2.1.4 Finite-difference formulae for higher derivatives 49

2.1.5 A summary . 50

MATH3474 Prof. M A Kelmanson 3

2.1.6 Implicit finite-difference formulae . 51

2.2 Finite-difference formulae in 2-D . 53

2.2.1 Higher-order approximations to the Laplacian 55

2.2.2 “Mehrstellenverfahren” for the Poisson equation 56

2.2.3 Higher-order multidimensional derivatives . 58

3 Numerical Linear Algebra 60

3.1 Fundamentals . 60

3.1.1 Matrix and vector norms; spectral radius . 60

3.1.2 Diagonal dominance and eigenvalue theorems 61

3.1.3 Sparse systems of equations . 62

3.2 Solution of sparse systems . 63

3.2.1 Direct method: LU-factorisation for tridiagonal systems 63

3.2.2 Iterative stationary methods: Jacobi, Gauss-Seidel and SOR 64

3.2.3 Convergence of iterative schemes . 65

3.2.4 The optimum relaxation parameter for SOR . 67

3.2.5 The optimum SOR parameter for 2-cyclic matrices 69

MATH3474 Prof. M A Kelmanson 4

0 Preliminaries

0.1 Useful formulae

0.1.1 Binomial Theorem

(a+ b)n =
n∑

m=0

(
n

m

)
an−mbm =

n∑
m=0

n!

m!(n−m)!
an−mbm,

valid for all integers n > 0. If the exponent, ν say, of (a+ b) is not a positive integer, then

(a+ b)ν = aν + νaν−1b+
ν(ν − 1)

2!
aν−2b2 +

ν(ν − 1)(ν − 2)

3!
aν−3b3 + · · · ,

which converges, by the ratio test, only if |b/a| < 1. Useful examples are:

√
a+ b = (a+ b)1/2 = a1/2 +

1

2
a−1/2b− 1

8
a−3/2b2 +

1

16
a−5/2b3 + · · · ;

1√
a+ b

= (a+ b)−1/2 = a−1/2 − 1

2
a−3/2b+

3

8
a−5/2b2 − 5

16
a−7/2b3 + · · · ;

1

a+ b
= (a+ b)−1 = a−1 − a−2b+ a−3b2 − a−4b3 + · · · .

0.1.2 Taylor expansion

If a function u(x) is infinitely differentiable at x = x0, we can express it as the power series, with
coefficients an,

u(x) = a0 + a1(x− x0) + a2(x− x0)
2 + a3(x− x0)

3 + · · · =
∞∑
n=0

an(x− x0)
n.

Differentiating this series repeatedly with respect to x, we obtain

u′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · · ,

u′′(x) = 2a2 + 6a3(x− x0) + · · · , u′′′(x) = 6a3 + · · · , etc.

Using u(n)(x) to denote the nth derivative dnf/dxn (with u(0)(x) understood to mean u(x)), we can see
that the coefficients an are found by setting x = x0 in the above differentiated expressions to give

u(n)(x0) = n! an ⇒ an =
u(n)(x0)

n!
, n = 1, ...,∞.

Thus we have the Taylor expansion of u(x), with centre x0,

u(x) =

∞∑
n=0

u(n)(x0)

n!
(x− x0)

n.

The maximum value of |x − x0| for which the infinite expansion converges is called the radius of
convergence, denoted by R, calculated as either 1/L1 from the ratio test, or 1/L2 from the nth-root test.

MATH3474 Prof. M A Kelmanson 5

If now ξ is a point lying between x and x0, then the truncated Taylor expansion with remainder is

u(x) =

N∑
n=0

u(n)(x0)

n!
(x− x0)

n +RN (x), (0.1)

where the remainder or truncation error RN (x) is given by

RN (x) =
u(N+1)(ξ)

(N + 1)!
(x− x0)

N+1.

The form (0.1) of the Taylor expansion allows us both to calculate only a finite number of terms and to
examine the consequences of neglecting the remainder.

If x0 = 0 we have a Maclaurin series, common examples of which are:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, all x;

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)nx2n

(2n)!
, all x;

expx = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!
, all x; (0.2)

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n+1xn

n
, |x| < 1. (0.3)

0.1.3 Taylor’s theorem for a function of two variables

Noting that (0.1) can be written in the alternative form

u(x+ h) =
N∑
n=0

hn

n!
u(n)(x) +O(hN+1) , (0.4)

the corresponding form (with N = 3) for a function u(x, y) of two independent variables x and y is

u(x+ h, y + k) = u(x, y) + hux(x, y) + kuy(x, y)

+
1

2

(
h2uxx(x, y) + 2hkuxy(x, y) + k2uyy(x, y)

)
+

1

6

(
h3uxxx(x, y) + 3h2kuxxy(x, y) + 3hk2uxyy(x, y) + k3uyyy(x, y)

)
+ O(h4, h3k, h2k2, hk3, k4), (0.5)

wherein we note the coefficient pattern is that of Pascal’s triangle. In particular, if h = k we have
(dropping (x,y) on the RHS)

u(x+ h, y + k) = u+ h (ux + uy)

+
h2

2
(uxx + 2uxy + uyy)

+
h3

6
(uxxx + 3uxxy + 3uxyy + uyyy)

+
h4

24
(uxxxx + 4uxxxy + 6uxxyy + 4uxyyy + uyyyy)

+ O(h5).

MATH3474 Prof. M A Kelmanson 6

0.2 Greek alphabet and notation

Letter Lower case Upper case
alpha α

beta β

gamma γ Γ

delta δ ∆

epsilon ε or ε
zeta ζ

eta η

theta θ or ϑ Θ

iota ι

kappa κ

lambda λ Λ

mu µ

nu ν

xi ξ Ξ

pi π or $ (rare) Π

rho ρ or % (rare)
sigma σ or ς (rare) Σ

tau τ

upsilon υ Υ

phi φ or ϕ Φ

chi χ

psi ψ Ψ

omega ω Ω

• The symbol for partial differentiation, ∂, is never to be confused with that for total differ-
entiation, d, or the above δ.

• The symbol for the Laplacian operator, ∇, is called nabla and is not to be confused with
the above ∆, which is actually an alternative symbol for ∇2. The name comes from the
word nebel, an ancient Assyrian harp with a triangular frame held with its point facing
downwards.

• The calligraphic font

A,B, C,D, E ,F ,G,H, I,J ,K,L,M,N ,O,P ,Q,R,S, T ,U ,V ,W ,X ,Y ,Z

will sometimes be used in the notes.

• Vectors may be either underlined x or bold x.

•
n∑
i=0

′
fi =

1

2
f0 + f1 + · · ·+ fn−1 + fn and

n∑
i=0

′′
fi =

1

2
f0 + f1 + · · ·+ fn−1 +

1

2
fn

MATH3474 Prof. M A Kelmanson 7

1 Approximation Theory

1.1 Polynomial interpolation

The concept of interpolation is the selection of a function p(x) from a class of functions in such
a way that the graph of u = p(x) passes through a finite set of data points having the values
{u0, u1, . . . , un} at the nodes {x0, x1, . . . , xn}, that is, p(xi) = ui. These data points may be the
values of some mathematical functions or come empirically from observations or experiments.
Several different ways of constructing such an interpolating function are considered, our goal
being to differentiate a tabulated function approximately by taking derivatives of its continuous
interpolating polynomial at discrete points.

1.1.1 Lagrange interpolation

Let {x0, x1, . . . , xn} be n + 1 distinct real numbers (x0 < x1 < · · · < xn) with associated
function values {u0, u1, . . . , un}. The idea of Lagrange interpolation is to multiply each ui by a
polynomial whose value is 1 at xi and 0 at all the other nodes. Specifically, Lagrange’s formula
for the polynomial that interpolates this data is

pn(x) =
n∑
i=0

`i(x)ui , (1.1)

in which the polynomials `i(x) are given by

`i(x) =
n∏
j=0
j 6=i

(
x− xj
xi − xj

)
i = 0(1)n . (1.2)

The notation i = m(h)n means i = m,m + h,m + 2h, . . . , n. There are n + 1 terms in (1.1),
each a polynomial of degree n. When (1.1) is applied at a node xk, (1.2) gives

`i(xk) =
n∏
j=0
j 6=i

(
xk − xj
xi − xj

)
i = 0(1)n , (1.3)

which is a polynomial of degree n in xk. The numerator of this polynomial is

(xk − x0)(xk − x1) . . . (xk − xi−1)(xk − xi+1) . . . (xk − xn) ,

one factor of which must vanish when k 6= i. Therefore `i(xk) = 0 when i 6= k and the n
roots of `i(xk) satisfy xk ∈ {x0, x1, . . . , xi−1, xi+1, . . . , xn}. Moreover `i(xk) is clearly 1 when
i = k. Hence `i(xk) = δik, the Kronecker delta,

δij =

{
0 i 6= j

1 i = j
,

MATH3474 Prof. M A Kelmanson 8

whence (1.1) gives, upon using the “filtering property” of the Kronecker delta,

pn(xk) =
n∑
i=0

`i(xk)ui =
n∑
i=0

δikui = uk , (1.4)

as required. [For later use, it is convenient to introduce the function

Ψn(x) ≡
n∏
i=0

(x− xi) , (1.5)

so that Ψn(x) has roots at the n+ 1 nodes {x0, . . . , xn}].

2 Example 1.1 n = 2 for quadratic interpolation of discrete data
The polynomial of degree≤ 2 that interpolates the data points (0, 1), (−1, 2) and (1, 3) is, from
(1.1) and (1.2),

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
u0 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
u1 +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
u2 ,

and so p2(x) for the given data is

p2(x) =
(x+ 1)(x− 1)

(0 + 1)(0− 1)
· 1 +

(x− 0)(x− 1)

(−1− 0)(−1− 1)
· 2 +

(x− 0)(x+ 1)

(1− 0)(1 + 1)
· 3 =

1

2
(2 + x+ 3x2) .

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0 0(x)
1(x)
2(x)

date points
interpolation p2(x)

See Python script 3474 1.1.py for implementation of this algorithm. 2

As well as interpolating discrete data, (1.1) may be used to approximate a given continuous
function u(x) — e.g. for solving ODEs — at and between the data points {x0, x1, . . . , xn}. The
sum

pn(x;u) =
n∑
i=0

`i(x)u(xi) (1.6)

has the required property since, by analogy with (1.4),

pn(xk;u) =
n∑
i=0

`i(xk)u(xi) =
n∑
i=0

δiku(xi) = u(xk) . (1.7)

MATH3474 Prof. M A Kelmanson 9

The interpolation error is clearly

En(x;u) ≡ u(x)− pn(x;u) = u(x)−
n∑
i=0

`i(x)u(xi) (1.8)

which, by (1.7), vanishes at all the data nodes x = xk, k = 0(1)n. However, the same is not
true when x 6= xk, i.e. between the nodes, when we have (without proof) the error formula

En(x;u) =
u(n+1)(ξ)

(n+ 1)!
Ψn(x) , (1.9)

for some ξ ∈ [x0, xn] (assume x0 ≤ x ≤ xn for simplicity) and Ψn(x) is given by (1.5). Note
that ξ depends on x.

Hence u(x) should be n + 1 times continuously differentiable with respect to x for the error
to be bounded. Being able to quantify—and, indeed, optimise—how well a function can be
approximated between given data is considered in some detail in §1.2.3.

2 Example 1.2 Bounding the error of linear interpolation p1 of u(x) = log10 x

This example corresponds to the former practice of interpolating three- or four-figure log tables.

With u(x) = log10 x = log10 e · lnx we have u′′(ξ) = − log10 e/ξ
2 ≈ −0.4343/ξ2. With

1 < x0 < x1 (so that u(x) > 0 for x ∈ [x0, x1]) (1.9) gives the error approximation

E1(x) =
0.4343

2ξ2
· (x− x0)(x1 − x) ,

so that the upper and lower error bounds are

0.4343

2x2
1

· (x− x0)(x1 − x) ≤ E1(x) ≤ 0.4343

2x2
0

· (x− x0)(x1 − x) .

Moreover, since

max
x∈[x0,x1]

(x− x0)(x1 − x) =
(x1 − x0)2

4
,

a uniform bound of the error is then

0 ≤ log10 x− p1(x) ≤ 0.4343

2x2
0

· (x1 − x0)2

4
<

0.05429(x1 − x0)2

x2
0

< 0.05429(x1 − x0)2 ,

because x0 > 1. 2

2 Example 1.3 Approximating derivatives via Lagrange interpolation
Substituting (1.9) into (1.8) and differentiating w.r.t. x gives

u′(x) =
n∑
i=0

`′i(x)u(xi) +
u(n+1)(ξ)

(n+ 1)!
Ψ′n(x)

and so, when n = 1,

u′(x) =

(
x− x1

x0 − x1

)′
u(x0) +

(
x− x0

x1 − x0

)′
u(x1) +

u′′(ξ)

2
[(x− x0)(x− x1)]′

=
u(x1)− u(x0)

x1 − x0

+ L(x)u′′(ξ) , (1.10)

MATH3474 Prof. M A Kelmanson 10

in which L(x) ≡ x − 1
2
(x0 + x1) is linear, and so maximised at an endpoint, where L(x0) =

1
2
(x0 − x1) and L(x1) = 1

2
(x1 − x0). With |x1 − x0| = h, we obtain the error bound∣∣∣∣u′(x)− u(x1)− u(x0)

h

∣∣∣∣ ≤ h

2
|u′′(ξ)| , (1.11)

where ξ ∈ [x0, x0 + h]. In order to approximate u′′(x) we would have to take n ≥ 2. 2

The polynomial interpolation pn(x) in (1.1) for a given set of n+ 1 data points is unique (prove
it using the fact that a polynomial of degree n with n + 1 zeros must be identically zero).
Importantly, this means the error estimate (1.9) is valid regardless of the method we use to
obtain the polynomial interpolation. In the next section, we discuss a more efficient way to
compute pn(x).

1.1.2 Newton divided differences

Whilst the Lagrange polynomials in §1.1.1 are useful for interpolating tabulated (particularly
regularly spaced) nodes, their main disadvantage stems from the fact that if one wants to im-
prove an approximation by increasing n (adding another node xn) the entire calculation must
be redone from scratch. We would prefer to have some sort of correction term C(x) such that
when we increase the number of nodes from n to n+ 1, we have

pn(x) = pn−1(x) + C(x) . (1.12)

pn, pn−1 and C are assumed to be polynomials of degrees n, n − 1 and n respectively. By
construction, at the nodes xi we have

pn−1(xi) = u(xi) i = 0(1)n− 1 and pn(xi) = u(xi) i = 0(1)n .

So for the first n nodes x0, . . . , xn−1, (1.12) gives

C(xi) = pn(xi)− pn−1(xi) = u(xi)− u(xi) = 0 i = 0(1)n− 1 .

Since C(x) is generally of degree n and it vanishes at nodes x0 to xn−1, it must have the form

C(x) = anΨn−1(x) , (1.13)

where Ψn(x) is defined in (1.5). The constant an can be determined from the fact that at the
new node xn, we have pn(xn) = u(xn), (1.12) then gives

an =
u(xn)− pn−1(xn)

Ψn−1(xn)
, (1.14)

which, together with (1.13), allows the correction term in (1.12) to be found. The coefficient an
is called the nth-order Newton divided difference of u and is denoted by

an ≡ u[x0, x1, . . . , xn] . (1.15)

From (1.12) and (1.13), you should convince yourself that u[x0, x1, . . . , xn] is the coefficient of
xn in the polynomial pn interpolating u(x) at x0, . . . , xn.

MATH3474 Prof. M A Kelmanson 11

Useful formulae (without proof) for computing u[x0, x1, . . . , xn] are

u[x0, x1] =
u(x1)− u(x0)

x1 − x0

,

u[x0, x1, x2] =
u[x1, x2]− u[x0, x1]

x2 − x0

, . . .

u[x0, x1, . . . , xn] =
u[x1, x2, . . . , xn]− u[x0, x1, . . . , xn−1]

xn − x0

n > 2 , (1.16)

which explains the name. Formula (1.16) also reveals the possibility of large rounding errors if
insufficient digits are used in the calculations (see Example 1.4). Combining (1.12), (1.13) and
(1.15) gives

pn(x) = pn−1(x) + u[x0, x1, . . . , xn]Ψn−1(x) , (1.17)

and so, noting that p0(x0) ≡ u(x0),

p1(x) = u(x0) + u[x0, x1]Ψ0(x)

p2(x) = u(x0) + u[x0, x1]Ψ0(x) + u[x0, x1, x2]Ψ1(x)
...

pn(x) = u(x0) +
∑n

i=0 u[x0, ..., xi]Ψi−1(x) ,

 (1.18)

which is Newton’s divided difference formula for the interpolating polynomial and is much
better for computation than the Lagrange formula: once all divided differences have been cal-
culated we can progress from degree n− 1 to degree n with the minimum of calculation.

An efficient construction of pn(x) can be obtained. Using (1.5) and the notation D0 ≡ u(x0)

and Di ≡ u[x0, ..., xi] for i > 0, the last equation in (1.18) becomes

pn(x) = D0 +D1(x− x0) +D2(x− x0)(x− x1) +D3(x− x0)(x− x1)(x− x2) + · · ·

which admits the nested form

pn(x) = D0 + (x−x0) [D1 + (x− x1) [D2 + · · ·+ (x− xn−2) [Dn−1 + (x− xn−1)Dn] · · ·]] .

(1.19)
Given that the Di are themselves evaluated iteratively using (1.16), (1.19) is an efficient recur-
sive formula.

We now derive a formula for the error En(x) = u(x) − pn(x) at some x ∈ [x0, xn] in terms
of the divided difference. To do this, we examine the interpolation pn+1 through the nodes
x0, . . . , xn, x. (1.17) gives

pn+1(x)− pn(x) = u[x0, x1, . . . , xn, x]Ψn(x) .

Since x is a node of pn+1, we have pn+1(x) = u(x). It immediately follows

En(x) = u[x0, x1, . . . , xn, x]Ψn(x) (1.20)

when x ∈ [x0, xn]. The two expressions (1.9) and (1.20) for En(x) must be equivalent because
pn is unique. Relabelling the nodes {x0, . . . , xn, x} so that x0 < x1 < · · · < xm where
m = n+ 1, we relate the divided difference to the derivatives of u(x),

u[x0, x1, . . . , xm] =
u(m)(ξ)

m!
, (1.21)

for some ξ ∈ [x0, xm].

MATH3474 Prof. M A Kelmanson 12

A note on workload reduction due to nested multiplication

The cubic polynomial
p3(x) = a+ bx+ cx2 + dx3

is computed as
p3(x) = a+ b.x+ c.x.x+ d.x.x.x ,

in which there are clearly 1 + 1 + 1 = 3 additions and 1 + 2 + 3 = 6 multiplications. In nested
(or Horner’s) form, the same polynomial is computed using

p3(x) = a+ x(b+ x(c+ xd)) = a+ x.(b+ x.(c+ x.d)) ,

in which there are now 3 additions and 3 multiplications. It is easy to see that standard and
nested computations of pn require workloads of respectively n

2
(n + 1) + n = n

2
(n + 3) and

n+ n = 2n, so that the nested form workload is
4

n+ 3
times that of the standard.

Some properties of divided differences

(i) The result (1.16) is independent of the permutation of the integers {0, 1, . . . , n}. E.g. when
n = 1 we have

u[x0, x1] =
u(x0)− u(x1)

x0 − x1

=
u(x1)− u(x0)

x1 − x0

= u[x1, x0] .

When n = 2 we have

u[x0, x1, x2] =
u(x0)

(x0 − x1)(x0 − x2)
+

u(x1)

(x1 − x0)(x1 − x2)
+

u(x2)

(x2 − x0)(x2 − x1)
. (1.22)

Swapping, e.g., 1 and 2 gives

u[x0, x2, x1] =
u(x0)

(x0 − x2)(x0 − x1)
+

u(x2)

(x2 − x0)(x2 − x1)
+

u(x1)

(x1 − x0)(x1 − x2)
,

which is identical to u[x0, x1, x2]; the other four permutations yield the same result.

(ii) When the nodes are coincident, the divided differences can be defined as limiting cases of
(1.16). When n = 1, we have

u[x0, x0] = lim
x1→x0

u[x0, x1] = lim
x1→x0

u(x1)− u(x0)

x1 − x0

= u′(x0)

and, similarly, for n > 1 coincident nodes, we see from (1.21) as ξ → x0,

u[x0, x0, . . . , x0︸ ︷︷ ︸
n+1 times

] =
u(n)(x0)

n!
.

(iii) When only some of the nodes are coincident we have, e.g.,

u[x0, x1, x0] = u[x0, x0, x1] =
u[x0, x1]− u[x0, x0]

x1 − x0

=
u[x0, x1]− u′(x0)

x1 − x0

.

MATH3474 Prof. M A Kelmanson 13

2 Example 1.4 Constructing divided differences
The table below shows how the divided differences can be constructed systematically. The
right-most entries of a particular colour are constructed from (1.16) using the four entries of the
same colour in earlier columns. The Di’s in the polynomial interpolation (1.19) appear at the
top of each column.

xi u(xi) u[xi, xi+1] u[xi, xi+1, xi+2] u[xi, xi+1, xi+2, xi+3]

x0 u0

u[x0, x1]

x1 u1 u[x0, x1, x2]

u[x1, x2] u[x0, x1, x2, x3]

x2 u2 u[x1, x2, x3]

u[x2, x3] u[x1, x2, x3, x4]

x3 u3 u[x2, x3, x4]

u[x3, x4] u[x2, x3, x4, x5]

x4 u4 u[x3, x4, x5]

u[x4, x5] u[x3, x4, x5, x6]

x5 u5 u[x4, x5, x6]

u[x5, x6]

x6 u6

...
...

...
...

...

For the specific case n = 4 and u(x) =
√
x, with the xi equally spaced on the interval [2, 12

5
].

Then, without error, algebraic manipulation gives

u[x0, x1, x2, x3, x4] = 250
3

(2
√

15− 2
√

230 + 6
√

55− 2
√

210 + 5
√

2)

which is−0.0024 8681 0899 39 (correct up to the 14th decimal place) when evaluated using 18-
digit arithmetic. The Python script 3474 1.4.py gives a very concise algorithm for eval-
uating the above table (the indexing is tricky though). It illustrates the effect of rounding error
in finite-precision arithmetic. The interval is now represented in the format [2.0, 2.4]. Using
double-precision (16-digit) computation, this gives the value −0.0024 8681 0899 33, whereas
single-precision (7-digit) computation yields −0.0024 6861. 2

2 Example 1.5 Approximating derivatives using divided differences
Setting n = 1 in (1.20) gives

u(x)− p1(x) = u[x0, x1, x]Ψ1(x) ,

which, together with (1.5), (1.18) and (1.21), give

u(x) = u(x0) + u[x0, x1](x− x0) +
u′′(ξ)

2!
(x− x0)(x− x1) ,

for some ξ ∈ [x0, x1]. Differentiating w.r.t. x yields

u′(x) = u[x0, x1] + L(x)u′′(ξ) , (1.23)

MATH3474 Prof. M A Kelmanson 14

where L(x) is as defined in (1.10) in Example 1.3. Furthermore, since (1.10) and (1.23) are
identical as they should, we obtain the same error bound as in (1.11), namely∣∣∣∣u′(x)− u(x1)− u(x0)

x1 − x0

∣∣∣∣ ≤ x1 − x0

2
u′′(ξ) , (1.24)

where now ξ ∈ [x0, x1]. As before, higher derivatives of u can be obtained using higher-order
divided differences. 2

1.1.3 Interpolation error

The theoretical error formulae (1.9) and (1.20) in principle apply to any polynomial interpola-
tion pn of a given set of nodes. However, in practice, there are rounding errors in finite-precision
computation which are not taken into account by (1.9) or (1.20). Therefore it is not surprising
the pn obtained from two different algorithms, e.g. the Lagrange and the divided-difference
interpolation, has different errors.

2 Example 1.6 Interpolating polynomial degree and floating-point error
The following graphs show the error u(x) − pn(x) in the interpolation of the test function
u =

√
x on the interval [2.0, 2.4] (see Example 1.4) when the nodes are regularly spaced

throughout the interval. The errors for Lagrange (solid lines) and divided-difference (small
circles) interpolation are shown.

–5e–08

0

5e–08

1e–07

2.1 2.2 2.3 2.4
X

–2e–08

–1e–08

0

1e–08

2e–08

3e–08

2.1 2.2 2.3 2.4
X

–2e–08

–1e–08

0

1e–08

2e–08

3e–08

2.1 2.2 2.3 2.4
X

–4e–06

–3e–06

–2e–06

–1e–06

0

2.1 2.2 2.3 2.4
X

–4e–10

–3e–10

–2e–10

–1e–10

0

2.1 2.2 2.3 2.4
X

–4e–11

–2e–11

0

2e–11

4e–11

6e–11

2.1 2.2 2.3 2.4
X

In the first row of figures, n = 4; it is striking that the errors in the two interpolations coincide
at this low value of n. From left to right, calculations were performed with 8-, 10- and 16-digit
accuracy, the first and last of which correspond to single- and double-precision arithmetic in

MATH3474 Prof. M A Kelmanson 15

many programming languages. Note from the vertical scales that the 8-digit interpolations are
far less accurate than the 16-digit ones.

In the second row of figures, n = 6 and, from left to right, calculations were performed with
8-, 12- and 16-digit accuracy. Thus the price to be paid for increasing n—and considerably
reducing the error, as seen from the vertical scales—is that this is only achievable by using
more expensive higher-accuracy computations.

Note that the first two figures in the second row show convincingly that the divided-difference
approximation has a smaller error than Lagrange interpolation when lower-accuracy arithmetic
is used. Note also that the largest errors are towards the interval endpoints, irrespective of n.
This is explained in the next section. 2

2 Example 1.7 The Runge phenomenon
In Example 1.6 the largest errors u(x) − pn(x) for both Lagrange interpolation and divided-
difference interpolation occurred towards the ends of the interval irrespective of n. The errors
are proportional to Ψn(x) as defined in (1.5),

Ψn(x) ≡
n∏
i=0

(x− xi) .

2.0 2.1 2.2 2.3 2.4
x

6

4

2

0

2

4

6
1e 7

2.0 2.1 2.2 2.3 2.4
x

1.25

1.00

0.75

0.50

0.25

0.00

0.25

1e 9

2.0 2.1 2.2 2.3 2.4
x

3

2

1

0

1

2

3

1e 12

The solid lines show, from left to right, Ψ6(x), Ψ9(x) and Ψ12(x) when the xi are regularly
spaced in [a, b]. As n increases, Ψn(x) clearly becomes increasingly peaked toward the interval
ends, thereby explaining the error distribution in Example 1.6.

By contrast, the dashed lines show the same three functions when the xi have been compressed
towards the interval endpoints. Specifically, this compression is a trigonometric transformation
corresponding to placing n + 1 nodes at equal intervals of π/n around a semicircle with base
[a, b], and then projecting parallel with the Ψ-axis down onto the x-axis. Such nodes are located
at the so-called Chebyshev points, considered more fully in §§1.2.5–1.2.8. When they are used,
the error is distributed far more uniformly over [a, b], even as n increases.

These graphs were produced using Python script 3474 1.7.py. 2

MATH3474 Prof. M A Kelmanson 16

Example 1.7 demonstrates that the desirable property

max
x∈[x0,xn]

|u(x)− pn(x)| → 0 n→∞ (1.25)

is not guaranteed for certain node distributions; this is a manifestation of the so-called Runge
phenomenon. However, provided that u(x) is infinitely continuously differentiable, conver-
gence is guaranteed when the nodes are located at the Chebyshev points; it is also guaranteed
when the nodes are regularly spaced provided u(x) is a periodic function of x on [a, b].

When the nodes are regularly spaced, the figures in Example 1.7 reveal that the interpolation
error is far greater near the interval endpoints (the “end-error”) than near the interval midpoint
(the “mid-error”). To quantify the end-error, use n+1 nodes beginning with x0 = 0 and constant
spacing h, so that the ith node is xi = ih. Then (1.5) gives

Ψn(x) ≡
n∏
i=0

(x− ih) . (1.26)

For general n, it is not possible to obtain an explicit formula for the location of the maximum
in [x0, x1]. However, at the midpoint of this first interval, where x = h/2, straightforward
evaluation of (1.26) gives a crude approximation of the end-error as

|Ψn(h
2
)| = (2n)!

22n+1n!
hn+1 . (1.27)

To quantify the mid-error, consider only odd n, where |Ψn(x)| has a local maximum at the
interval midpoint x = nh/2, see for example the graph of Ψ9(x) in Example 1.7. From (1.26),

Ψn(nh
2

) =
n∏
i=0

(n
2
− i)h .

With (odd) n = 2m+ 1, m ∈ N, straightforward evaluation gives the mid-error as

|Ψ2m+1(2m+1
2
h)| =

[
(2m+ 1)!

22m+1m!

]2

h2m+2 . (1.28)

Thus the ratio of the end-error to the mid-error is

Rm ≡
|Ψ2m+1(h

2
)|

|Ψ2m+1(2m+1
2
h)|

=
(4m+ 2)!(m!)2

2[(2m+ 1)!]3
.

By using Stirling’s formula n! ≈ (2πn)1/2nne−n and the definition of the exponential function
e = limn→∞(1 + 1

n
)n, we obtain the asymptotic result

Rm →
22m−1/2

m+ 1
m→∞ , (1.29)

i.e. the error ratio is exponentially large. We conclude that the interpolation nodes should be
chosen so that the interpolation point x is near to the middle of [x0, xn].

MATH3474 Prof. M A Kelmanson 17

1.2 Approximation of functions

In this section, we study using a polynomial q(x) to approximate a given function u(x). Dif-
ferent from polynomial interpolation, here we do not require the polynomial to pass through a
given set of data points, we only require q(x) to be “close” to u(x). But what does it mean by
“close”? We need some ways to quantify how good q(x) is at approximating u(x).

LetA be the set of possible approximations to u(x), and letA ⊆ B, a normed linear space with
norm ||u|| that satisfies the usual triangle inequality and homogeneity condition

||u+ v|| ≤ ||u|| + ||v|| and ||λu|| = |λ| ||u||

for all u, v ∈ B and scalars λ. A theorem asserts that, for every u ∈ B, there exists a q∗ ∈ A
such that q∗ is a best approximation to u. That is, for all other q ∈ A,

||u− q∗|| ≤ ||u− q|| . (1.30)

Methods for constructing q∗, or rather approximations to it, comprise the rest of this chapter.

1.2.1 The Lp norms

In most practical applications, B is C[a, b], the set of continuous functions on [a, b]. In discrete
problems—in which u = (u1, . . . , um)— B is Rm, the set of real m-vectors. For finite p, the
Lp-norm in C[a, b] and Rm is defined to have the value

||u||p ≡
{∫ b

a

|u(x)|p dx
}1/p

and ||u||p ≡

{
m∑
i=1

|ui|p
}1/p

1 ≤ p <∞ (1.31)

respectively. The∞-norms are similarly defined by

||u||∞ ≡ max
x∈[a,b]

|u(x)| and ||u||∞ ≡ max
1≤i≤m

|ui| . (1.32)

The most commonly used norms have p = 1, 2 and ∞. ||u− q||p can be considered as the
“distance” between u and q.

The weighted inner product is defined for u, v ∈ C[a, b] or u, v ∈ Rm by

(u, v) ≡
∫ b

a

w(x)u(x) v(x) dx or (u, v) ≡
m∑
i=1

wi ui vi , (1.33)

in which w(x) > 0 for x ∈ [a, b] or wi > 0 for i = 0(1)n respectively. Hence the standard inner
product simply has weight function w(x) ≡ 1 for x ∈ [a, b] or wi ≡ 1 for i = 0(1)n, and in this
case (1.31), (1.32) and the Cauchy-Schwarz inequality

|(u, v)| ≤ ||u||2 ||v||2

gives

||u||1 ≤ (b− a)1/2 ||u||2 ≤ (b− a) ||u||∞ ∀u ∈ C[a, b] . (1.34)

MATH3474 Prof. M A Kelmanson 18

Frequently used in the context of approximation is a weighted 2-norm

||u||w,2 ≡
{∫ b

a

w(x) |u(x)|2 dx
}1/2

. (1.35)

2 Example 1.8 Practical significance of the∞-norm
In approximating u(x) = 1 by qλ(x) ≡ xλ on [0, 1], where λ > 0 is a parameter, we have for
all x > 0, qλ(x)→ 1 and so Eλ(x) ≡ u(x)− qλ(x)→ 0 as λ→ 0. However, (1.31) and (1.32)
give

||Eλ||1 =
λ

λ+ 1
, ||Eλ||2 =

{
2λ2

(λ+ 1)(2λ+ 1)

}1/2

and ||Eλ||∞ = 1 ,

which respectively converge to 0, 0 and 1 as λ → 0. Hence convergence in the 1- or 2-norm
does not guarantee uniform convergence, so if we develop approximations that converge in the
∞-norm, (1.34) (with u replaced by Eλ) guarantees convergence in both the 1- and 2-norms. In
this sense, the∞-norm is said to be the “least forgiving” norm. 2

1.2.2 Weierstrass’ theorem

Let u(x) be continuous for x ∈ [a, b] and let ε > 0. Then there is a polynomial p(x) for which

||u− p||∞ < ε .

Effectively, there exists a polynomial p that is arbitrarily close to u, hence providing justification
to approximating continuous functions by polynomials. The theorem is proved by construction
on [0, 1], onto which any interval can be mapped by a linear transformation. For n > 0 define

pn(x) =
n∑
k=0

n!

k!(n− k)!
u
(
k
n

)
xk(1− x)n−k x ∈ [0, 1] (1.36)

and let u(x) be bounded on [0, 1]. Then such Bernstein polynomials satisfy

lim
n→∞

pn(x) = u(x) ,

and they also mimic well the qualitative behaviour of u(x) in that

lim
n→∞

∣∣∣∣u(r) − p(r)
n

∣∣∣∣
∞ = 0 u ∈ Cr[0, 1] .

However, the price to pay is that the convergence in the above limits can be very slow, even for
simple functions. For example, when u(x) = x2 and r = 0, it can be shown that

u(x)− pn(x) =
x(x− 1)

n
n > 0 ,

from which

||u− pn||∞ = (4n)−1 , (1.37)

i.e. the norm converges only as 1/n. Our goal is to find alternative approximating functions
pn(x) for which this convergence is considerably more rapid.

MATH3474 Prof. M A Kelmanson 19

2 Example 1.9 “Close” approximations to u(x) = ex on [-1,1]

0

0.5

1

1.5

2

2.5

u

–1 –0.6 0.2 0.4 0.6 0.8 1
x

–0.4

–0.2

0

0.2

0.4

0.6

E

–1 –0.6 0.2 0.4 0.6 0.8 1
x

The left-hand figure shows the curve u = ex and the straight lines are, from top to bottom, the
linear

• interpolation polynomial through (−1, e−1) and (1, e): p1(x) ≈ 1.5431 + 1.1752x;

• optimal polynomial (discussed in §1.2.3): q∗1(x) ≈ 1.2643 + 1.1752x, and;

• Taylor expansion about x = 0: t1(x) = 1 + x.

The right-hand figure shows, from top to bottom, the errors curves Et = u(x) − t1(x), Eq =

u(x)−q∗1(x) andEp = u(x)−p1(x), showing ||Et||∞ > ||Ep||∞ > ||Eq||∞. Because p1 and q∗1 are
parallel, Ep and Eq are translations of each other. However, the optimality of q∗1 is quantified by
the confinement of Eq between the two parallel lines, symmetrically disposed about E = 0, at
E ≈ ±0.2788. Effectively, q∗1 is a linear Lagrange interpolation but with the nodes moved from
{−1, 1} to approximately {−0.6164, 0.7795} which, notably, are not symmetric about x = 0.

0.5

1

1.5

2

2.5

u

–1 –0.6 –0.2 0 0.2 0.4 0.6 0.8 1
x –0.01

0

0.01

0.02

0.03

0.04

0.05

E

–1 –0.6 0.2 0.4 0.6 0.8 1
x

When n is increased to 3, cubic polynomials p3, q∗3 and t3 can be similarly constructed. The
right-hand curves reveal that now ||Et||∞ � ||Ep||∞ ≈ ||Eq||∞, because the Taylor expansion is
ineffective away from x = 0. Ep and Eq are now distributed much more evenly across [−1, 1],
Eq within the parallel lines E ≈ ±0.00553. The error curves Ep and Eq are reminiscent of the
Chebyshev-node plots of Ψ(x) in Example 1.7; these nodes arise in the context of near-optimal
interpolation.

Systematic determination of q∗n is addressed in §1.2.3. 2

MATH3474 Prof. M A Kelmanson 20

1.2.3 Minimax approximation

We seek the polynomial approximation qn(x) (of degree ≤ n) to u(x) that minimises the
maximum error. Define the minimax error by

ρn(u) ≡ min
deg(qn)≤n

||u− qn||∞ . (1.38)

The minimisation is over all polynomials with degree≤ n. In other words, there does not exist a
polynomial qn of degree≤ n that can approximate u with a smaller maximum error than ρn(u).
The minimax approximation, q∗n(x), to u(x) on [a, b] should therefore satisfy

||u− q∗n||∞ = ρn(u) . (1.39)

Whether or not q∗n is unique is considered in §1.2.4.

2 Example 1.10 Constructing q∗1 in Example 1.9
Recall u(x) = ex and postulate q∗1(x) = a0 + a1x so that the error is E1(x) = ex− (a0 + a1x).

0.5

1

1.5

2

2.5

–1 –0.6 –0.2 0 0.2 0.4 0.6 0.8 1
X

Geometric arguments show that |E1(x)|must vanish at exactly 2 points and attain its maximum
value, ρ1, at exactly 3 points, say ξ0, ξ1 and ξ2. From the figure, ξ0 = −1, ξ1 ∈ [0, 1] and ξ2 = 1.
Note also that E1(x) has a local minimum at x = ξ1. Thus we have 4 equations

E1(ξ0) = +ρ1

E1(ξ1) = −ρ1 E ′1(ξ1) = 0

E1(ξ2) = +ρ1

 (1.40)

in the 4 unknowns ξ1, a0, a1 and ρ1. In explicit form these are

e−1 − a0 + a1 = ρ1

eξ1 − a0 − a1 ξ1 = −ρ1 eξ1 − a1 = 0

e− a0 − a1 = ρ1

 , (1.41)

yielding a1 = sinh 1 ≈ 1.1752, ξ1 = ln a1 ≈ 0.1614, ρ1 ≈ 0.2788, a0 ≈ 1.2643, and so

E1(x) = ex − 1.2643− 1.1752x .

Then, by (1.39), ||E1||∞ = ||u− q1||∞ = ρ1 ≈ 0.2788. 2

Note that the above approach works only if u′′(x) is of one sign throughout [a, b].

As the following example shows, matters become considerably more complicated when con-
structing q∗n for n ≥ 2, when the interior values of ξi may not be explicitly calculated as they
could be in Example 1.10.

MATH3474 Prof. M A Kelmanson 21

2 Example 1.11 Constructing q∗2 for u(x) = ex on [−1, 1]

We now postulate q∗2(x) = b0 + b1x + b2x
2 so that the error is E2(x) = u(x) − q∗2(x). By the

arguments preceding (1.40), we seek b0, b1, b2, ξ1, ξ2 and ρ2 from the six nonlinear equations

E2(ξ0) = +ρ2

E2(ξ1) = −ρ2 E ′2(ξ1) = 0

E2(ξ2) = +ρ2 E ′2(ξ2) = 0

E2(ξ3) = −ρ2

 , (1.42)

in which ξ0 = −1 and ξ3 = 1 and the oscillatoryE2(ξi) = (−1)iρ2 should be noted (see §1.2.4).
By excessive manipulation we arrive at

b0 = cosh 1− eξ1 − eξ2
2(ξ1 − ξ2)

b1 = −4 sinh 1 + (ξ1 + ξ2 − 2)(eξ1 − eξ2)
2(ξ1 − ξ2 − 2)

b2 =
eξ1 − eξ2

2(ξ1 − ξ2)

ρ2 =
2(ξ1 − ξ2) sinh 1 + (ξ1 + ξ2 − 2)(eξ1 − eξ2)

ξ1 − ξ2 − 2

in which ξ1 and ξ2 are determined from the coupled equations

f1(ξ1, ξ2) ≡ eξ2 +
2 sinh 1

ξ1 − ξ2 − 2
+

[(ξ1 − ξ2)2 − 2(ξ1 − 3ξ2)](eξ1 − eξ2)
(ξ1 − ξ2)(ξ1 − ξ2 − 2)

= 0 (1.43)

f2(ξ1, ξ2) ≡ eξ1 − cosh 1 +
(ξ1 + ξ2) sinh 1

ξ1 − ξ2 − 2
+

(ξ1 − 1)(2− ξ1 + 3ξ2 + ξ1ξ2 − ξ2
2)(eξ1 − eξ2)

2(ξ1 − ξ2)(ξ1 − ξ2 − 2)
= 0 ,

(1.44)

which can be solved using 2-D Newton-Raphson iteration with initial guess ξ1 = −ξ2 = 0.5.

Digression: n-dimensional Newton-Raphson. Recall that the 1-D Newton-Raphson iteration for
finding a root of f(x) = 0 is x(k+1) = x(k) − f(x(k))/f ′(x(k)). Write this as f ′(x(k))[x(k+1) −
x(k)] = −f ′(x(k)) or f ′(x(k))δx(k) = −f(x(k)) which, with x(k) known, yields the increment
δx(k), so giving the new iteration x(k+1).

The n-dimensional analogy of this is the solution of f(x) = 0 via the iterationJ (f(x(k)))δx(k) =

−f(x(k)), in which J is the Jacobian matrix of f = (f1, . . . , fn), each of whose elements are
functions of x = (x1, . . . , xn), evaluated at x = x(k). Hence we solve a linear problem at each
step k. To solve (1.43) and (1.44) we guess ξ(0)

1 = −0.5 and ξ(0)
2 = 0.5 and iterate using

∂f1

∂ξ1

∂f1

∂ξ2

∂f2

∂ξ1

∂f2

∂ξ2


ξ1=ξ

(k)
1

ξ2=ξ
(k)
2

δξ
(k)
1

δξ
(k)
2

 = −

f1(ξ
(k)
1 , ξ

(k)
2)

f2(ξ
(k)
1 , ξ

(k)
2)

 or J (ξ(k)) δξ(k) = −f(ξ(k)) .

The iteration terminates when
∣∣∣∣δξ(k)

∣∣∣∣
2

is less than a pre-specified small tolerance.

MATH3474 Prof. M A Kelmanson 22

We find that ξ1 ≈ −0.4370 and ξ2 ≈ 0.5601, giving b0 ≈ 0.9890, b1 ≈ 1.1302, b2 ≈ 0.5540 and
ρ2 ≈ 0.04502. With this data, we construct the quadratic minimax approximation to ex, which
is compared with the quadratic interpolation through the nodes {x0, x1, x2} = {−1, 0, 1} and
the Taylor expansion about x = 0 in the figures below.

0.5

1

1.5

2

2.5

–1 –0.6 –0.2 0 0.2 0.4 0.6 0.8 1
X

–0.1

–0.05

0

0.05

0.1

0.15

0.2

E

–1 –0.6 0.2 0.4 0.6 0.8 1
x

Note that the right-hand error plot clearly shows that q∗2 is bounded by Eq = ±ρ2. It also
shows, as expected, the Taylor series becomes less accurate as we move away from the centre
of the expansion, in this case x = 0. The minimax approximation q∗2 vanishes at {η0, η1, η2} ≈
{−0.8447, 0.08211, 0.8857}. Hence it can be viewed as an interpolation polynomial with nodes
{η0, η1, η2} and by (1.9), the error of the approximation is given by

E2(x) =
eξ

3!
(x− η0)(x− η1)(x− η2)

for some ξ ∈ [−1, 1]. 2

It is clear that whenEn(x) has more than one local maximum or minimum in (a, b), construction
of q∗n for even the lowest value of n = 1 requires solution of equations such as (1.42), or
extended versions thereof. This illustrates that direct solutions of systems such as (1.42) in the
case of a general u(x) can be unyieldingly complicated. In Example 1.11, it was possible to
express 4 of the 6 unknowns in terms of the other 2, which could then be obtained numerically.
In other cases we might have to solve all 6 equations numerically. It is also clear that a more
systematic approach than the ad hoc methods of Examples 1.9, 1.10 and 1.11 is required.

1.2.4 Error-oscillation theorems

Two theorems arise in the consideration of an error which is uniformly distributed and which
oscillates. The first one is useful for estimating ρn(u) in (1.38) without having to find q∗n, and
the second one forms the basis of an algorithm for determining q∗n(x) and ρn(u).

Theorem (de la Vallée-Poussin) (VP) Let u ∈ C[a, b] and n ≥ 0, and let qn(x) be a polynomial
of degree ≤ n that satisfies

u(ξi)− qn(ξi) = (−1)iei i = 0(1)n+ 1 , (1.45)

MATH3474 Prof. M A Kelmanson 23

with the ei nonzero and of the same sign and with a ≤ ξ0 < ξ1 < · · · < ξn+1 ≤ b. In other
words, the curve of qn alternates between being above and being below the curve of u and the
error u− qn oscillates between positive and negative at the n+ 2 points ξi. Then

emin ≡ min
0≤i≤n+1

|ei|︸ ︷︷ ︸
best

≤ ρn(u) ≡ ||u− q∗n||∞︸ ︷︷ ︸
optimum

≤ ||u− qn||∞︸ ︷︷ ︸
worst

. (1.46)

That is, the minimax error can be estimated using ρn(u) ∈ [emin, ||u− qn||∞]. Or if we have
obtained a qn satisfying (1.45), then a narrow interval of [emin, ||u− qn||∞] indicates that qn is
close to the best approximation q∗n. �

Chebyshev Alternation (Equioscillation) Theorem (CAT) q∗n is the unique polynomial (of
degree≤ n) of best approximation to u ∈ C[a, b] if and only if there exist n+2 points a ≤ ξ0 <

ξ1 < · · · < ξn+1 ≤ b such that

u(ξi)− q∗n(ξi) = (−1)iεn i = 0(1)n+ 1 , (1.47)

where εn = ±ρn(u) = ± ||u− q∗n||∞, i.e. if and only if the difference En(x) ≡ u(x) − q∗n(x)

takes consecutively its maximal value with alternating signs at least n+ 2 times. �

Note carefully that, in (1.45), the distinct errors ei are dependent upon the nodal index i (and,
implicitly, the polynomial degree n) whereas in (1.47), the constant nodal error εn is dependent
upon only n.

2 Example 1.12 CAT for u(x) = ex on [−1, 1]

(i) With n = 1 (Example 1.10), u(x)−q∗1(x) has n+2 = 3 oscillating extrema of approximately
+0.2788, −0.2788 and +0.2788 at the nodes ξ0 = −1, ξ1 ≈ 0.1614 and ξ2 = 1 respectively.

(ii) With n = 2 (Example 1.11), u(x)−q∗2(x) has n+2 = 4 oscillating extrema of approximately
+0.045, −0.045, +0.045 and −0.045 at the nodes ξ0 = −1, ξ1 ≈ −0.4370, ξ2 ≈ 0.5601 and
ξ3 = 1 respectively. 2

An important application of the CAT arises in determining the best approximation to the func-
tion u(x) = xn+1 on [−1, 1] by a polynomial of degree ≤ n.

The Remez Algorithm

The set of nodes Nn = {ξ0, ξ1, . . . ξn+1} in the CAT are referred to as an alternating set of
length n + 2; for n > 1, we have already seen how complicated (e.g. Example 1.11) they can
be to obtain directly. When this set is known, and when the minimax polynomial is postulated
to be of the form (see, e.g., Examples 1.10 and 1.11)

q∗n(x) =
n∑
j=0

ajx
j ,

MATH3474 Prof. M A Kelmanson 24

setting x = ξi in (1.47) of the CAT yields

u(ξi)−
n∑
j=0

ajξ
j
i = (−1)iεn i = 0(1)n+ 1 ,

which are n+ 2 linear equations, readily solved, for the set of unknowns

Un = {a0, a1, . . . , an︸ ︷︷ ︸
coeffs. in q∗n

, εn︸︷︷︸
minimax error

} .

In other words, when the alternating setNn is known, the problem of determining the minimax
polynomial is effectively solved. However, determining the a priori unknown set Nn is a non-
trivial component of the solution process when n > 1.

The Remez/Remes or exchange algorithm does this iteratively (and not directly as in Example
1.10). An initial distribution N (0)

n of nodes is specified from which an initial estimate U (0)
n of

unknowns is computed using the second equation above; these are used in the first equation to
compute an initial approximation q(0)

n (x) of the minimax polynomial. The elements ofN (0)
n are

then exchanged systematically for those that lie at the turning points ofE(0)
n (x) = u(x)−q(0)

n (x),
thereby giving a new set N (1)

n , from which U (1)
n can be determined to yield q(1)

n (x), and hence
E

(1)
n (x).

This process is repeated iteratively and the algorithm terminates at step k when the nodes inN (k)
n

and coefficients in U (k)
n cause the second equation above to be satisfied to within a prescribed

tolerance; the minimax polynomial is then approximated by q∗n(x) ≈ q
(k)
n (x).

However, since there are far simpler direct methods for obtaining near-minimax approxima-
tions, no further details of the Remes algorithm (for which there is an extensive theory) will be
presented.

1.2.5 Chebyshev polynomials

Consider the semicircle of unit radius below.

1 0 10

1

xT2(x)
2

For any x in the interval [−1, 1], there is an angle θ ∈ [0, π] such that

x = cos θ.

The Chebyshev polynomial of degree n is given on [−1, 1] by the rule

Tn(x) = cos(nθ) = cos[n(cos−1 x)] . (1.48)

MATH3474 Prof. M A Kelmanson 25

From the definition (1.48), we have

T0(x) = 1 , T1(x) = x. (1.49)

For n > 1, Tn(x) is given by the 2-term recurrence relation

Tn+1(x) = 2 xTn(x)− Tn−1(x) (1.50)

which is initiated using (1.49); that is, Tn+1(x) is a polynomial in x for all n. The relation
(1.50) can be proved using the trigonometric formula cos(a + b) + cos(a − b) = 2 cos a cos b

with a = nθ and b = θ. It can also be shown that

Tn(−x) = (−1)nTn(x) ,

i.e. when n is even/odd, Tn(x) is an even/odd polynomial respectively. Also, via (1.49) and
(1.50), Tn(x) is a polynomial of degree n in which the coefficient of xn is 2n−1, i.e.

Tn(x) = 2n−1xn + tn−1x
n−1 + · · ·+ t1x+ t0 . (1.51)

We shall come back to this point in §1.2.8.

2 Example 1.13 Examples of Chebyshev polynomials

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

The Chebyshev polynomials

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

are plotted in the above figure. Also, note the coefficient of xn. 2

It is clear from (1.48) that

|Tn(x)| ≤ 1 x ∈ [−1, 1] , (1.52)

the bound ±1 being attained alternately at the n+ 1 Chebyshev extrema, x(e)
k , where

Tn(x
(e)
k) = cosnθ

(e)
k = ±1 , k = 0(1)n .

MATH3474 Prof. M A Kelmanson 26

This gives nθ(e)
k = kπ, therefore, the n+ 1 Chebyshev extrema of Tn(x) are at

x
(e)
k = cos

k

n
π , k = 0(1)n . (1.53)

(1.53) suggests that these Chebyshev extrema, which are distributed more densely towards the
endpoints of [−1, 1], may be constructed geometrically as projections onto the x-axis of equally-
spaced points along the semicircle of unit radius, see the figures below (1.54).

Moreover, by (1.48), Tn(x) switches sign between two consecutive extrema resulting in n zeros,
or Chebyshev roots, xk, where

Tn(xk) = cosnθk = 0 k = 0(1)n .

Hence the n roots of Tn(x) are at

xk = cos
2k − 1

2n
π k = 1(1)n . (1.54)

So Tn(x) has n zeros and n + 1 extrema. The following figures show the 6 extreme points
(left) and the 5 roots (right) of T5(x). Note the rotation of π/10 about (0, 0) of the radial lines
between the two figures.

0

0.2
0.4
0.6
0.8
1

–1 –0.5 0.5 1
x

0

0.2
0.4
0.6
0.8
1

–1 –0.5 0.5 1
x

The following figures show the 9 extreme points (left) and the 8 roots (right) of T8(x). Note the
rotation of π/16 about (0, 0) of the radial lines between the two figures.

0

0.2
0.4
0.6
0.8
1

–1 –0.5 0.5 1
x

0

0.2
0.4
0.6
0.8
1

–1 –0.5 0.5 1
x

Equations (1.53) and (1.54) explain the half-sector rotations.

As we shall see in §§1.2.7 and 1.2.8, the extrema and roots of the Chebyshev polynomials play
an important role in finding so-called near-minimax approximations.

MATH3474 Prof. M A Kelmanson 27

1.2.6 Chebyshev least-squares approximation

We can always write a polynomial given in the usual powers of x in terms of the Chebyshev
polynomials Tk(x),

pn(x) ≡
n∑
k=0

ak x
k =

n∑
k=0

bk Tk(x) .

To see this, note that, for example, the first five Chebyshev polynomials (see list at start of
Example 1.13) may be inverted to give

1 = T0 ,

x = T1 ,

x2 = 1
2
(T0 + T2) ,

x3 = 1
4
(3T1 + T3) ,

x4 = 1
8
(3T0 + 4T2 + T4) .

Similar expressions for other xk allow the relationships between ak and bk be readily found. If
u(t) is given for t ∈ [a, b], we use the change of variable t = 1

2
[(b+ a) + (b− a)x] to map onto

x ∈ [−1, 1]. u(x) can then be approximated using Chebyshev polynomials. Specifically, we
use the approximation

Cn(x) =

n∑′

k=0

ck Tk(x) =
c0

2
T0(x) + c1T1(x) + · · ·+ cnTn(x) , (1.55)

in which the coefficients {c0, c1, . . . , cn} are to be found that minimise ||u− Cn||. The prime on
the summation means that the first (k = 0) term should be halved (see (1.56)). But which norm
should we use?

From our discussion of the minimax approximation in §1.2.3, we know that minimising the
∞-norm ||u− Cn||∞ gives a non-linear system of equations for the ck in (1.55). By instead
minimising ||u− Cn||w,2 (using the norm defined in (1.35)), we obtain a linear system of equa-
tions for the ck; the resulting Cn(x) then has a near-minimax error (§§1.2.7), and it is called the
least-squares approximation to u(x).

Using (1.33) with the weight function w(x) = 1/
√

1− x2 means that the Chebyshev polyno-
mials Tn(x) (n ≥ 0) form a system of orthogonal polynomials on [−1, 1], i.e.

(Tj, Tk) =

∫ 1

−1

Tj(x)Tk(x)√
1− x2

dx =

∫ π

0

cos jθ cos kθ dθ =


0 j 6= k
π

2
j = k > 0

π j = k = 0

, (1.56)

which is proved using (1.48) and the substitution x = cos θ. Via (1.35), (1.55) and (1.56) we
seek to determine the ck that minimise Φ ≡ ||u− Cn||2w,2, from which

Φ =
π

4
c2

0 +
π

2

n∑
k=1

c2
k − c0

∫ 1

−1

u(x) dx√
1− x2

− 2
n∑
k=1

ck

∫ 1

−1

u(x)Tk(x) dx√
1− x2

+

∫ 1

−1

u(x)2 dx√
1− x2

. (1.57)

MATH3474 Prof. M A Kelmanson 28

The necessary conditions for a stationary value of Φ are that

∂Φ

∂ck
= 0 k = 0(1)n

which, because Φ is quadratic in the ck, gives n+1 linear equations for c0, c1, . . . , cn. Applying
these conditions to (1.57) yields

∂Φ

∂c0

=
π

2
c0 −

∫ 1

−1

u(x) dx√
1− x2

= 0

∂Φ

∂ck
= πck − 2

∫ 1

−1

u(x)Tk(x) dx√
1− x2

= 0 k = 1(1)n ,

and so

ck =
2

π

∫ 1

−1

u(x)Tk(x) dx√
1− x2

k = 0(1)n . (1.58)

The substitution x = cos θ, along with (1.48) and (1.49), gives

ck =
2

π

∫ π

0

u(cos θ) cos kθ dθ k = 0(1)n . (1.59)

The approximation problem is thus reduced to the calculation of Fourier coefficients, efficient
computation of which is a (vast) subject in its own right. Although discussion of a cheap method
for calculating ck is deferred to §1.2.10, two points presently arise. First note that (1.59) may
be manipulated into the form

ck =
2

π

∫ π/2

0

{
u(cos θ) + (−1)ku(− cos θ)

}
cos kθ dθ k = 0(1)n , (1.60)

from which it follows that, when u(x) is an even or odd function,

ck =


0 u(x) and k of different parity
4

π

∫ π/2

0

u(cos θ) cos kθ dθ u(x) and k of the same parity
k = 0(1)n . (1.61)

Second, the integrand in (1.59) is an even, 2π-periodic function of θ, and hence

ck =
1

π

∫ π

−π
u(cos θ) cos kθ dθ k = 0(1)n , (1.62)

i.e. the ck are the Fourier coefficients of the even, 2π-periodic function u(cos θ). In §1.2.10 we
show that the simple trapezoidal rule is extremely accurate for computing integrals of the form
(1.62).

2 Example 1.14 Chebyshev least-squares approximations to ex on [−1, 1]

The minimax approximations to ex on [−1, 1] in Example 1.9 for n = 1 and n = 3 were

q∗1(x) ≈ 1.264279+1.175201x and q∗3(x) ≈ 0.994579+0.995668x+0.542973x2+0.179533x3

MATH3474 Prof. M A Kelmanson 29

respectively. Numerical integration of (1.62) here gives

c0 ≈ 2.53213176 c1 ≈ 1.13031821 c2 ≈ 0.27149534 c3 ≈ 0.04433685 ,

from which (1.55) gives the Chebyshev least-squares approximations

C1(x) ≈ 1.266066+1.130318x and C3(x) ≈ 0.994571+0.997308x+0.542991x2+0.177347x3 .

The average error in approximating u(x) by Cn(x) on [a, b] is given by the (weighted) root-
mean-square error, defined by (1.35) to be

〈En〉 ≡
||u− Cn||w,2√

b− a
. (1.63)

Hence, by (1.34) and (1.39), we presently have

〈En〉 = 2−1/2 ||u− Cn||w,2 ≤ ||u− Cn||∞ and ρn(u) ≡ ||u− q∗n||∞ ≤ ||u− Cn||∞ . (1.64)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

E

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1
x

–0.006

–0.004

–0.002

0.002

0.004

0.006

E

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1
x

The graphs show the errors u(x)− q∗n(x) and u(x)− Cn(x) for n = 1 (left) and n = 3 (right).
The solid lines are ±ρn(u) and ± ||u− Cn||∞, and the dotted lines show the root-mean-square
error ±〈En〉 in the Chebyshev least-squares approximations.

For both values of n we have 〈En〉 < ρn(u) < ||u− Cn||∞, in accordance with (1.64). 2

It is clear from Example 1.14 that the Chebyshev least-squares approximation Cn(x) is a very
good—in the sense that ρn(u) ≈ ||u− Cn||∞—approximation to the minimax polynomial q∗n(x)

for even the lowest possible value of n = 1. We now proceed to explain this “near-minimax”
behaviour.

1.2.7 Near-minimax approximation

In proposing the Chebyshev least-squares approximation Cn(x) =
n∑
k=0

′
ck Tk(x) in (1.55) we

implicitly assume that u(x) on [−1, 1] can be represented in the form

u(x) =

∞∑′

k=0

ck Tk(x) , (1.65)

MATH3474 Prof. M A Kelmanson 30

with convergence from Cn(x) to u(x) holding in the sense that lim
n→∞

||u− Cn||w,2 = 0 (cf.

(1.57)). For uniform convergence, it can be shown that, if u(x) is sufficiently differentiable
on [−1, 1],

ρn(u) ≤ ||u− Cn||∞ ≤
(

4 +
4

π2
lnn

)
ρn(u) , (1.66)

which says that Cn(x) is a good approximation to q∗n(x) (because lnn grows slowly with n).
This is a direct result of the rapid decrease (explained in §1.2.10) of |ck| with increasing k.
For example, with u(x) = ex in Example 1.14, we have c0/c1 ≈ 2.2402, c0/c2 ≈ 9.3266,
c0/c3 ≈ 57.111, c0/c4 ≈ 462.55 and c0/c5 ≈ 4663.9 .

Because of this rapid decrease, and provided cn+1 6= 0, (1.55) and (1.65) give

u(x)− Cn(x) =
∞∑

k=n+1

ck Tk(x) ≈ cn+1Tn+1(x) . (1.67)

By (1.52), |Tn+1(x)| ≤ 1, this bound being attained at the n+ 2 extreme points given by (1.53),

x
(e)
k = cos

kπ

n+ 1
k = 0(1)n+ 1 at which Tn+1(x

(e)
k) = (−1)k . (1.68)

It then follows that the approximate error cn+1Tn+1(x) in (1.67) has exactly n + 2 extrema
(−1)kcn+1 of alternating sign and equal magnitude |cn+1| at the points x(e)

k . By the Chebyshev
Alternation Theorem, Cn(x) should be close to the minimax approximation q∗n(x), in which the
n + 2 extrema have magnitude ρn(u). That is, provided that u(x) is sufficiently differentiable,
ρn ≈ |cn+1|.

2 Example 1.15 Chebyshev-expansion error for u(x) = ex on [−1, 1]

In Examples 1.10 and 1.11 we laboriously found that {ρ1, ρ2, ρ3} ≈ {0.279, 0.0450, 0.00553} .
Using (1.62), we compute {|c2|, |c3|, |c4|} ≈ {0.272, 0.0443, 0.00543} , so that ρn ≈ |cn+1| as
predicted; the good agreement is here due to the infinite differentiability of u. 2

2 Example 1.16 Chebyshev least-squares approximation of u(x) = x5 on [−1, 1]

Here n must be ≤ 4. Taking n = 4 in (1.55), we need to find the ck in

C4(x) =

4∑′

k=0

ck Tk(x) .

Using (1.62), we have

ck =
1

π

∫ π

−π
u(cos θ) cos kθ dθ =

1

π

∫ π

−π
cos5 θ cos kθ dθ , k = 0(1)4 .

To perform the integrations, the power form of cos5 θ must first be converted to multiple-angle

form as follows. Let z = eiθ so that cos θ =
1

2

(
z +

1

z

)
. Then

cos5 θ =
1

25

(
z +

1

z

)5

=
1

32

(
z5 + 5z3 + 10z +

10

z
+

5

z3
+

1

z5

)
= 5

16
(z + z−1) + 5

32
(z3 + z−3) + 1

32
(z5 + z−5) .

MATH3474 Prof. M A Kelmanson 31

Now use
zm + z−m = eimθ + e−imθ = 2 cosmθ ,

so that
ck =

1

π

∫ π

−π

(
5
8

cos θ + 5
16

cos 3θ + 1
16

cos 5θ
)

cos kθ dθ k = 0(1)4 .

We then use (1.56) in the form

∫ π

−π
cos jθ cos kθ dθ =


0 j 6= k

π j = k > 0

2π j = k = 0

,

to yield c0 = c2 = c4 = 0, c1 = 5
8

and c3 = 5
16

; we also find |cn+1| = |c5| = 1
16

. Thus, using the
formulae from Example 1.13, we have found that

C4(x) = 5
8
T1(x) + 5

16
T3(x) = 5

16
x (2x− 1) (2x+ 1) .

By direct calculation,

||u− C4||∞ = max
x∈[−1,1]

|u(x)− C4(x)| = |1− C4(1)| = |1− 15
16
| = 1

16
= |c5| .

So here ||u− Cn||∞ = |cn+1| whereas, via (1.67), we discovered ||u− Cn||∞ ≈ |cn+1| in Ex-
ample 1.15. This is a result of the function u(x) being respectively a finite polynomial and a
transcendental function in this and the previous examples. Specifically, here u(x) differs from
Cn(x) by only one term (of order xn+1), and hence the Fourier coefficients ck vanish, rather
than decay, for k > n + 1; then, cn+1Tn+1 is the only omitted term rather than the largest one;
additionally, the roots of Tn+1(x) coincide with the minimax nodes.

Note that c4 = 0 because u(x) is an odd function, i.e. Cn is in fact C3(x) and not C4(x). Hence
here ||u− Cn||∞ = |cn+2|. The generalisation of this is that, for odd or even u(x), (1.67) must
be modified to u(x)− Cn(x) ≈ cn+2Tn+2(x). 2

1.2.8 Chebyshev interpolation

To approximate u(x) using Chebyshev polynomials, an interpolating polynomial is often as
suitable as the truncated expansion (1.55). Interpolation has the advantage that it does not
require the evaluation of Fourier coefficients. We now show that a polynomial interpolation
with nodes at the Chebyshev zeros has near-minimax behaviour.

By (1.67), the error in the near-minimax approximation Cn(x) is approximately cn+1Tn+1(x),
which vanishes at the n+ 1 roots given by (1.54) as

xk = cos
2k − 1

2n+ 2
π k = 1(1)n+ 1 , equivalently xk = cos

2k + 1

2n+ 2
π k = 0(1)n .

Now take these roots as the nodes of the Lagrange polynomial In(x) (of degree ≤ n) that
interpolates u(x), i.e. suppose we sample u(x) at xk to obtain u(xk), then (1.1) gives

In(x) =
n∑
k=0

`k(x)u(xk) =
n∑
k=0

`k(x)Cn(xk) +
n∑
k=0

`k(x) (u(xk)− Cn(xk)) .

MATH3474 Prof. M A Kelmanson 32

But, by (1.67)

u(xk)− Cn(xk) ≈ cn+1Tn+1(xk) = 0 i.e. In(x) ≈
n∑
k=0

`k(x)Cn(xk) =︸︷︷︸
think!

Cn(x) , (1.69)

i.e. In(x), the Lagrange polynomial whose nodes are the roots of Tn+1(x) is approximately
equal to Cn(x) so, by the results of §1.2.7, In(x) is a near-minimax approximation to u(x).

[Warning: if cn+1 = 0 we may have to interpolate using the roots of Tn+2(x) or higher. This
usually happens when u(x) is either even or odd on [−1, 1].]

Another way to see that In(x) is a near-minimax approximation requires the following theorem
on monic polynomials; those in which the coefficient of the highest power of x is 1. First note
that (1.51),

Tn(x) = 2n−1xn + lower-order terms ,

effectively means that 21−n Tn(x) is a monic polynomial which, by (1.52), takes extreme values
±21−n.

Theorem Among all monic polynomials Mn(x) of degree n ≥ 1, the polynomial 21−n Tn(x)

has the smallest∞-norm on [−1, 1], i.e.

max
x∈[−1,1]

|Mn(x)| ≥ max
x∈[−1,1]

|21−n Tn(x)| = 21−n , (1.70)

with equality occurring if and only if Mn(x) ≡ 21−n Tn(x). �

Consider now the problem of determining n+ 1 nodes in [−1, 1] that minimise the error

u(x)− pn(x) =
u(n+1)(ξ)

(n+ 1)!
Ψn(x) ξ ∈ [−1, 1]

in the Lagrange interpolation pn(x) (cf. (1.9)). Here ξ depends upon the xk (and x), but not in
a way that we can determine explicitly. In order to minimise ||u− pn||∞, we therefore focus on
Ψn and determine the nodes xk that minimise

||Ψn||∞ ≡ max
x∈[−1,1]

|(x− x0)(x− x1) . . . (x− xn)| .

Clearly Ψn(x) is a monic polynomial of degree n + 1 so, by the above theorem, ||Ψn||∞ equals
the minimum value of 2−n when the xk are the roots of Tn+1(x), with which choice of nodes
Ψn(x) = 2−n Tn+1(x), pn(x) = In(x) and

||u− In||∞ =

∣∣∣∣u(n+1)(ξ)Ψn

∣∣∣∣
∞

(n+ 1)!
≤
∣∣∣∣u(n+1)(ξ)

∣∣∣∣
∞ ||Ψn||∞

(n+ 1)!
=

∣∣∣∣u(n+1)
∣∣∣∣
∞

2n(n+ 1)!
, (1.71)

which bound is usually over-pessimistic in practice. Here In(x) may also be constructed using
the divided-difference form (1.18) of the interpolating polynomial. Note that this minimisation
of ||Ψn||∞ fully explains the suppression, observed in Example 1.7, of the Runge phenomenon.

The previous theorem (1.71) also allows us to prove the following bound on ρn(u) over the
interval [a, b]:

ρn(u) ≤
(
b− a

2

)n+1
∣∣∣∣u(n+1)

∣∣∣∣
∞

2n(n+ 1)!
. (1.72)

MATH3474 Prof. M A Kelmanson 33

Finally, a further result illustrating the near-minimax behaviour of In(x) is (without proof)

||u− In||∞ ≤
{

2

π
ln(n+ 1) + 2

}
ρn(u) . (1.73)

2 Example 1.17 Chebyshev interpolation of u(x) = ex on [−1, 1]

In Example 1.9 we introduce the minimax expansions

q∗1(x) ≈ 1.264279+1.175201x and q∗3(x) ≈ 0.994579+0.995668x+0.542973x2+0.179533x3

and in Example 1.14 we compute the Chebyshev least-squares approximations

C1(x) ≈ 1.266066+1.130318x and C3(x) ≈ 0.994571+0.997308x+0.542991x2+0.177347x3 .

Here, we find that the Chebyshev interpolating polynomials are

I1(x) ≈ 1.260592+1.085442x and I3(x) ≈ 0.994615+0.998933x+0.542901x2+0.175176x3 .

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

E

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1
X

–0.006

–0.004

–0.002

0.002

0.004

0.006

E

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1
X

The graphs show the errors u(x)− q∗n(x), u(x)− Cn(x) and u(x)− In(x) for n = 1 (left) and
n = 3 (right). The solid lines show ±ρn(u), ± ||u− Cn||∞ and ± ||u− In||∞. Also shown
as a dotted line is ±|cn+1| which, by (1.67), should be approximately ± ||u− Cn||∞. For this
example, the Fourier coefficient provides the even more impressive result that |cn+1| ≈ ρn(u).

It is noteworthy that both Cn(x) and In(x) have smaller errors than q∗n(x) for x ∈ [−1, 0], and
that the situation is reversed for x ∈ [0, 1]. In this sense, the∞-norm is uncompromising. How-
ever, the weighted 2-norm (1.35) will incorporate information from the entire interval [−1, 1].
To this end, if we use (1.35) and (1.63) to define the weighted root-mean-square error

〈E(pn)〉 ≡

{
1

2

∫ 1

−1

{u(x)− pn(x)}2

√
1− x2

dx

}1/2

= 2−1/2 ||u− pn||w,2 ,

we obtain the following, in which there is far more parity between columns:

n 〈E(q∗n)〉 〈E(Cn)〉 〈E(In)〉
1 2.4708× 10−1 2.4384× 10−1 2.4716× 10−1

2 3.9896× 10−2 3.9594× 10−2 3.9893× 10−2

3 4.8994× 10−3 4.8754× 10−3 4.8992× 10−3

By construction, Cn(x) is the optimum approximation under this norm. 2

MATH3474 Prof. M A Kelmanson 34

1.2.9 Forced oscillation of the Chebyshev error

One final near-minimax approximation is now considered. In §1.2.4, the Chebyshev Alternation
Theorem (1.47) states that the error of the best (minimax) approximation q∗n(x) to u(x) has (at
least) n + 2 local maxima and minima of equal magnitude ρn(u) and opposite sign alternating
over the alternating set {ξ0, ξ1, . . . , ξn+1}:

u(ξk
?

)− q∗n(ξk
?

) = (−1)k [±ρn(u)
?

] k = 0(1)n+ 1 . (1.74)

Determining the initially unknown ξk’s and ρn(u) solves the minimax problem. In §1.2.7, we
argue that the Chebyshev least-squares approximation Cn(x) is a near-minimax approximation
because its error has n + 2 local maxima and minima of approximately equal magnitudes (≈
|cn+1|) and opposite sign alternating over locations approximately given by x(e)

k , k = 0(1)n+1.
Recall that x(e)

k are the extrema of Tn+1(x) in (1.68).

Here, we take the above argument in the opposite direction and propose an approximation Fn(x)

to u(x) on [−1, 1] that is a polynomial of degree ≤ n satisfying

u(x
(e)
k√

)− Fn(x
(e)
k√

) = (−1)k φn
?

k = 0(1)n+ 1 , (1.75)

in which we have introduced the unknown φn which we hope will be non-zero. In other words,
we force the error of Fn(x) to alternate exactly at x(e)

k between equal and opposite values that
may not necessarily be extrema (but are hopefully nearly so). By (1.46) in the theorem of de la
Vallée-Poussin, we shall have

|φn| ≤ ρn(u) ≤ ||u− Fn||∞ . (1.76)

Because the alternating set in (1.75) is known, the problem of determining Fn becomes linear
and we can proceed without needing the Remez algorithm.

With the connection between Fn(x) and Cn(x) in mind, we recall (1.55) and propose Fn(x) as

Fn(x) =

n∑′

k=0

cn,k Tk(x) , (1.77)

in which the coefficients {cn,0, cn,1, . . . , cn,n} are to be found that satisfy (1.75). From the above
discussion, we expect the cn,k to be approximations to the Fourier coefficients ck inCn(x). From
(1.75) and (1.77), we have

n∑′

k=0

cn,k Tk(x
(e)
i) + (−1)iφn = u(x

(e)
i) i = 0(1)n+ 1 , (1.78)

which are n+ 2 equations for {cn,0, cn,1, . . . , cn,n} and φn. Note that, by (1.68) and (1.48),

Tk(x
(e)
i) = Tk

(
cos

iπ

n+ 1

)
= cos

ikπ

n+ 1
,

MATH3474 Prof. M A Kelmanson 35

so that Tn+1(x
(e)
i) = cos iπ = (−1)i. Now introduce φn = cn,n+1/2, so that (1.78) can be

written in the concise form
n+1∑′′

k=0

cn,k cos
ikπ

n+ 1
= u(x

(e)
i) i = 0(1)n+ 1 , (1.79)

wherein the double prime means the first and last terms in the sum are halved. Eqn. (1.79) are
now n+ 2 equations for cn,k, k = 0(1)n+ 1, of which the last one is 2φn. These equations can
be inverted using discrete versions of the orthogonality relations (1.56),

n+1∑′′

i=0

cos

(
j
iπ

n+ 1

)
cos

(
k

iπ

n+ 1

)
=


n+ 1 j = k = 0 or n+ 1

n+ 1

2
0 < j = k < n+ 1

0 j 6= k, 0 ≤ j, k ≤ n+ 1 .

(1.80)

To pick out the jth coefficient in (1.79), multiplying it by cos(j
iπ

n+ 1
) and sum over i. Applying

(1.80) then gives,

cn,j =
2

n+ 1

n+1∑′′

i=0

u(x
(e)
i) cos

ijπ

n+ 1
j = 0(1)n+ 1 , (1.81)

so that, when j = n+ 1,

φn =
1

n+ 1

n+1∑′′

i=0

(−1)i u(x
(e)
i) . (1.82)

We can now show that the coefficients cn,j in Fn(x) are indeed approximations to the Fourier
coefficients cj in Cn(x). In (1.59), evaluate the integral using the trapezoidal rule with n + 1

subdivisions; as will be proved in §1.2.10, this rule is spectrally accurate for periodic integrands.
We find

cj =
2

π

∫ π

0

u(cos θ) cos jθ dθ j = 0(1)n

≈ 2

π

n+1∑′′

k=0

u

(
cos

kπ

n+ 1

)
cos

jkπ

n+ 1

π

n+ 1
(1.83)

=
2

n+ 1

n+1∑′′

k=0

u(x
(e)
k) cos

jkπ

n+ 1

= cn,j .

The orthogonality relations used in deriving (1.81) can also be used to remove the “≈” sign in
(1.83) to give

cn,j = cj + c2(n+1)−j + c2(n+1)+j + c4(n+1)−j + c4(n+1)+j + · · · (1.84)

so that, when the Fourier coefficients decrease rapidly (see §1.2.10), Fn(x) is both a good
approximation to Cn(x) and is easier to calculate than Cn(x) because it employs summation
rather than integration.

MATH3474 Prof. M A Kelmanson 36

Fn(x) is also comparable with In(x) in the sense that it can be proved that

||u− Fn||∞ ≤ ω(n) ρn(u) ,

with ω(n) empirically nearly equal to the bounding coefficient in (1.73).

2 Example 1.18 Forced-oscillation approximation to u(x) = ex on [−1, 1]

Recall the Chebyshev least-squares approximations

C1(x) ≈ 1.266066+1.130318x and C3(x) ≈ 0.994571+0.997308x+0.542991x2+0.177347x3 .

from Example 1.14. Using (1.77), (1.81) and (1.82), we find

F1(x) ≈ 1.271540+1.175201x and F3(x) ≈ 0.994526+0.995682x+0.543081x2+0.179519x3 .

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

E

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1
x

–0.006

–0.004

–0.002

0.002

0.004

0.006

E

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1
x

The graphs show the errors u(x)− Cn(x) and u(x)− Fn(x) for n = 1 (left) and n = 3

(right). The solid lines show ±ρn(u), ± ||u− Cn||∞ and ±φn. The blue circles have abscis-
sae at the Chebyshev extrema and ordinates at ±φn; note that these ordinates are exceeded by
± ||u− Fn||∞.

The bounds (1.76) predicted by the theorem of de la Vallée-Poussin are corroborated in the
following table (and, albeit hardly visible on the scale presented, on the above graphs).

n φn ρn(u) ||u− Fn||∞
1 2.715× 10−1 2.788× 10−1 2.861× 10−1

2 4.443× 10−2 4.502× 10−2 4.547× 10−2

3 5.474× 10−3 5.528× 10−3 5.581× 10−3

The following table shows the rapid convergence with n of the coefficients cn,j to cj .

j c1,j c2,j c3,j c4,j · · · cj
0 2.543080634 2.532221710 2.532132152 2.532131756 · · · 2.532131755
1 1.175201194 1.130864333 1.130321417 1.130318219 · · · 1.130318208
2 (0.271540317) 0.276969779 0.271540317 0.271495538 · · · 0.271495340
3 (0.044336861) 0.044879777 0.044340049 · · · 0.044336850
4 (0.005474240) 0.005519217 · · · 0.005474240
5 (0.000542926) · · · 0.000542926

MATH3474 Prof. M A Kelmanson 37

The values of φn are shown in parentheses at the bottom of each n-dependent column; these
reveal that φn ≈ cn+1 (n ≥ 1), in keeping with the theory of Chebyshev interpolation. Recalling
also from Example 1.17 that cn+1 ≈ ρn(u), the forced-oscillation, interpolation and minimax
approximations are consistent. 2

The four methods for approximating functions considered so far are compared below.

Minimax

q∗n(x) =

n∑
k=0

akx
k

• minimise ||u− q∗n||∞
• solve nonlinear equations using Re-

mez algorithm for ξi and ρn(u)

• extrema of error at ξi
• |En(ξi)| = ρn(u) for all i, i.e. all

extrema have equal magnitudes

Chebyshev least-squares

Cn(x) =

n∑′

k=0

ckTk(x)

• minimise ||u− Cn||w,2

• ck are Fourier coefficients using inte-
gral formula (1.59)

• extrema of error at x∗i ≈ x
(e)
k of

Tn+1(x)

• unequal |En(x
∗
i)| ≈ |cn+1| ≈ ρn(u)

when u is sufficiently differentiable

Chebyshev interpolation

In(x) =

n∑
k=0

`k(x)u(xk)

• In(x) passes through the n+ 1 zeros
of Tn+1(x)

• Lagrange formula or Newton divided
difference

similar to the case of Cn(x)

Forced error oscillation

Fn(x) =

n∑′

k=0

cn,kTk(x)

• requires En(x) to alternate between
±φn at x(e)k

• cn,k as a series summation, equals to
trapezoidal approximation of ck

• |En(x
(e)
k)| = |φn| for all k

• generally |φn| 6= maximum error

1.2.10 Spectrally accurate computation of rapidly decaying Fourier coefficients

Integrals such as those in (1.62), with 2π-periodic integrands, can be calculated with great
accuracy using the simple trapezoidal rule. Consider computing the integral

I ≡
∫ π

−π
f(θ) dθ =

∫ 2π

0

f(θ) dθ , (1.85)

in which f(θ) and its first r derivatives are 2π-periodic. We begin by writing f(θ) as the
complex Fourier expansion

f(θ) =
∞∑

k=−∞

ck e
ikθ where ck =

1

2π

∫ π

−π
f(θ) e−ikθ dθ . (1.86)

The N -subdivision trapezoidal-rule approximation to I has stepsize h = 2π/N and so θn ≡
nh = 2πn/N . Then

TN ≡ h

N∑
n=0

′′
f(θn) =︸︷︷︸

think!

2π

N

N−1∑
n=0

f(θn) . (1.87)

MATH3474 Prof. M A Kelmanson 38

From (1.86) and (1.87),

TN =
2π

N

N−1∑
n=0

∞∑
k=−∞

ck e
ik2πn/N

︸ ︷︷ ︸
=f(θn) by (1.86)

=
2π

N

∞∑
k=−∞

ck

N−1∑
n=0

(eik2π/N)n︸ ︷︷ ︸
≡G, say

.

Here, the order of summation can be interchanged due to the convergence of the infinite series

in (1.86). The geometric sum denoted by G is equal to
1− ei2πk

1− ei2πk/N
, which is zero for all k for

which k/N is not an integer. When k/N is an integer, j ∈ N say, G is equal to N . Thus, with
k = jN ,

TN =
2π

N

∞∑
j=−∞

cjN ×N = 2π
∞∑

j=−∞

cjN = 2π

[
c0 +

∞∑
j=1

(cjN + c−jN)

]
.

Since 2πc0 = I by (1.85) and (1.86), the trapezoidal-rule error is

TN − I = 2π(cN + c−N + c2N + c−2N + · · ·) . (1.88)

For k ≥ 1, (1.86) gives

ck + c−k =
1

2π

∫ π

−π
f(θ) (e−ikθ + eikθ) dθ =

1

π

∫ π

−π
f(θ) cos kθ dθ ≡ ak , (1.89)

which is the kth Fourier-cosine coefficient in the real Fourier expansion of f(θ),

f(θ) =
a0

2
+
∞∑
k=1

(ak cos θ + bk sin θ) .

Then by (1.88) and (1.89),

TN − I = 2π(aN + a2N + a3N + · · ·) . (1.90)

We now show that |ak| decreases rapidly with k; this rapid convergence has already been seen
in practice in Examples 1.14 and 1.18. Integration by parts on the expression for ak gives

πak =

∫ π

−π
f(θ) cos kθ dθ =

[
f ′(θ) cos kθ

]π
−π︸ ︷︷ ︸

=0 by periodicity

−1

k

∫ π

−π
f ′(θ) sin kθ dθ ,

and so, because | sin kθ| ≤ 1 for all k and θ, we have

|ak| ≤
1

πk

∫ π

−π
|f ′(θ)| dθ ,

and a further integration by parts gives, on using the 2π-periodicity of f ′′(θ),

|ak| ≤
1

πk2

∫ π

−π
|f ′′(θ)| dθ .

MATH3474 Prof. M A Kelmanson 39

Continuing this process and remembering that f has r 2π-periodic derivatives, we arrive at

|ak| ≤
1

πkr

∫ π

−π

∣∣f (r)(θ)
∣∣ dθ = O

(
k−r
)
. (1.91)

Combining (1.90) and (1.91), the trapezoidal-rule error (based upon N > 1 subdivisions) is
bounded according to

|TN − I| = O
(
N−r

)
. (1.92)

Thus when f(θ) is infinitely differentiable on [−π, π], i.e. r → ∞, the N -panel trapezoidal-
rule error converges to zero faster than any power of 1/N , and is referred to as spectrally
accurate. Recall that, in stark contrast, the trapezoidal-rule error converges merely as 1/N2 for
non-periodic integrands, irrespective of their differentiability.

Thus the N -division trapezoidal-rule computation of ck on [−π, π] in (1.62) can be performed
with spectral accuracy when u(x) is sufficiently differentiable on [−1, 1]. The same accuracy
is obtained by using only N/2 intervals on [0, π] in (1.59). If moreover u(x) is an even or odd
function, the same accuracy requires using only N/4 intervals on [0, π

2
] in (1.61).

2 Example 1.19 Spectrally accurate trapezoidal-rule integration
The following graphs show log-log plots for the 2π-periodic functions f(θ) = ecos θ (left panel)
and f(θ) = esin θ (middle panel) on [−π, π]. In both figures the large circles and small squares
respectively indicate the values of the computed trapezoidal-rule errors |TN − I| and 2π|aN |,
the latter of which is the modulus of the first term in the theoretical error expansion (1.90).

1e–18
1e–17
1e–16
1e–15
1e–14
1e–13
1e–12
1e–11
1e–10
1e–09
1e–08
1e–07
1e–06
1e–05
.1e–3
.1e–2
.1e–1

.1
1.

5. .1e2 .5e2
N

1e–19
1e–18
1e–17
1e–16
1e–15
1e–14
1e–13
1e–12
1e–11
1e–10
1e–09
1e–08
1e–07
1e–06
1e–05
.1e–3
.1e–2
.1e–1

.1
1.

5. .1e2 .5e2
N

.1e–1

.1

1.

.1e2

5. .1e2 .5e2
N

The figures above raise several noteworthy points.

[1] The accuracy of (1.90) and the rapid decay of |aN | predicted by (1.91) are both corroborated.

[2] The non-decrease and clustering of data for the higher values of N is a manifestation of the
calculations having reached the roundoff plateau of the machine, shown as a horizontal line;
here, 16-digit accuracy was used.

MATH3474 Prof. M A Kelmanson 40

[3] For f(θ) = ecos θ, all aN are non-zero, but for f(θ) = esin θ, aN = 0 when N is odd. This
explains the squares at the roundoff plateau for the low values of N in the right-hand figure.

[4] For non-periodic functions, the trapezoidal-rule error decreases as 1/N2. This rate of con-
vergence is indicated on both plots above by sloping straight lines.

[5] For comparison, the panel on the right shows the corresponding results for the non-periodic
function f(θ) = eθ. When f(θ) is not 2π-periodic, both |TN − I| and 2π|aN | clearly converge
as N−2. 2

MATH3474 Prof. M A Kelmanson 41

2 Numerical Differentiation

Examples 1.3 and 1.5 reveal that an approximate derivative of a function given at discrete data
points can be obtained by differentiating the data’s interpolating polynomial. Finding deriva-
tives on such discrete meshes of nodes is invaluable in solving both ODEs and PDEs.

2.1 Finite differences in 1-D

We assume that the mesh comprises regularly spaced nodes at {x0, ..., xn}, the constant node
separation being h = (xn − x0)/n. We use the notation u(xi) = ui, u′(xi) = u′i, u

′′(xi) = u′′i ,
etc., i = 0(1)n. By Taylor’s theorem (0.4) expanded about the base point xi,

ui+1 ≡ u(xi+1) ≡ u(xi + h) = ui + hu′i +
h2

2
u′′i +

h3

6
u′′′i +O(h4), (2.1)

where O(h4) (read “big-oh of h to the 4”) denotes terms containing fourth and higher powers
of h; this is referred to as a fourth-order error. From (2.1) we have the forward-difference (FD)
approximation to u′i,

ui+1 − ui
h

= u′i +
h

2
u′′i +O(h2) , (2.2)

which is first-order because the leading error term is O(h). We denote by FD′1 a first-order FD
formula for u′i. Analogous to (2.1) there is

ui−1 ≡ u(xi−1) ≡ u(xi − h) = ui − hu′i +
h2

2
u′′i −

h3

6
u′′′i +O(h4), (2.3)

which yields the first-order backward-difference (BD′1) approximation to u′i,

ui − ui−1

h
= u′i −

h

2
u′′i +O(h2) . (2.4)

Note that (2.2) and (2.4) are identical to (1.11) and (1.24), obtained by Lagrangian and divided-
difference interpolation respectively.

Subtracting (2.3) from (2.1) and rearranging yields the more accurate second-order central-
difference (CD′2) approximation to u′i,

ui+1 − ui−1

2h
= u′i +

h2

6
u′′′i +O(h4) , (2.5)

which we did not compute by interpolation.

To derive an approximation for the second derivatives u′′i , we take the sum of (2.1) and (2.3).
Rearrangement of terms then yields the CD′′2 approximation to u′′i ,

ui+1 − 2ui + ui−1

h2
= u′′i +

h2

12
uiv
i +O(h4) , (2.6)

where uiv
i is the fourth derivative of u at xi (try to derive the coefficient h2/12 yourself). In order

to obtain both higher-order derivatives and error terms, we simply use more terms in the Taylor

MATH3474 Prof. M A Kelmanson 42

series, thereby increasing the number of nodes required. Note that first-order formulae for first
derivatives are exact for linear functions, second-order formulae exact for quadratic functions,
etc., so that nth-order schemes give the exact derivative for a polynomial of degree n.

2 Example 2.1 Geometric interpretation of finite-difference formulae
The geometric interpretation of the superior accuracy of the CD′2 formula (2.5) over the FD′1
and BD′1 formulae (2.2) and (2.4) is given in the following figure.

- x

6

u(x)

u
xi−1

Au

e
xi−1/2

Be

u
xi

base point

Cu

e
xi+1/2

De

u
xi+1

EuBD′1 at xi or
CD′2 at xi−1/2

FD′1 at xi or
CD′2 at xi+1/2

CD′2 at xi

exact tangent at (xi, ui)

�
�
�
�
�
�
�
��

 PP
PP

PP
PP

P

• The CD′2, FD′1 and BD′1 formulae (2.5), (2.2) and (2.4) respectively approximate the slopes
of the chords AE , CE and AC, the first of these most closely approximating u′i, the slope
of the tangent at C. This is consistent with (2.5) being O(h2) and (2.2) and (2.4) being
merely O(h).

• The slope of the chord CE most closely approximates u′i+1/2, the slope of the tangent at
D. This is because the FD′1 formula (2.2) for u′i is in fact a CD′2 formula for u′i+1/2, but on
a mesh with spacing h/2. Hence replacing h by h/2 and moving the required derivative
point from xi to xi+1/2 in (2.5), we have

ui+1 − ui
h

= u′i+1/2 +
h2

24
u′′′i+1/2 +O(h4) . (2.7)

• Similarly, by (2.5) we have

ui − ui−1

h
= u′i−1/2 +

h2

24
u′′′i−1/2 +O(h4) . (2.8)

Hence, the slope of the chord AC most closely approximates u′i−1/2, the slope of the
tangent at B. 2

MATH3474 Prof. M A Kelmanson 43

2.1.1 Higher-order accuracy and/or derivatives

Order the nodes x0 < x1 < . . . < xn. At the LH-end node x0 the FD′1 (2.2) computes u′0 to
O(h) accuracy and, at the RH-end node xn, the BD′1 (2.4) computes u′n to O(h) accuracy. At
either end node, the O(h2) CD′2 (2.5) cannot be used.

We shall construct a BD′2 formula for u′n. The BD′1 (2.4) applied at the base point xn,

un − un−1

h
= u′n −

h

2
u′′n +O(h2) ,

uses two data (i.e. function values) un and un−1: reducing the error from O(h) to O(h2) clearly
requires the additional datum un−2. So the first step is to postulate the BD′2 formula for u′n as

wn−2un−2 + wn−1un−1 + wnun
h

= u′n + Ch2 +O(h3) (2.9)

in which the weights wn−2, wn−1 and wn and the constant C are to be determined. Note that
(i) three data points are involved, (ii) it is h1 in the denominator on the left since we seek
approximation to a first derivative and (iii) we require the error to be proportional to O(h2),
hence the term Ch2 on the right. Here we can state that the neglected terms are O(h3) because
the three data are asymmetric with respect to the base point, and so the series commencing with
Ch2 increases in single powers of h. If, however, we change the base point from xn to xn−1,
the three data are symmetric with respect to the base point, and so the series commencing with
Ch2 will increase in double powers of h, whence the CD′2 formula for u′n−1 would be

wn−2un−2 + wn−1un−1 + wnun
h

= u′n−1 + Ch2 +O(h4) .

Back to (2.9), the next step is to express un−1 and un−2 in terms of quantities at xn: un, u′n, etc
and then match the terms on both sides of (2.9). Taylor expansions about the base-point xn give

un−1 = un − hu′n +
h2

2
u′′n −

h3

6
u′′′n +O(h4) ,

un−2 = un − 2hu′n + 2h2u′′n −
4h3

3
u′′′n +O(h4) .

Since we want the error of our approximation to be O(h2), see (2.9), we keep terms up to
(Ch2)h ∼ h3 in the Taylor expansions above. Thus, multiplying (2.9) by h,

hu′n + Ch3 +O(h4) = wn−2un−2 + wn−1un−1 + wnun

= (wn−2 + wn−1 + wn)un − h(2wn−2 + wn−1)u′n

+
h2

2
(4wn−2 + wn−1)u′′n −

h3

6
(8wn−2 + wn−1)u′′′n +O(h4) , (2.10)

in which we note that the unspecified error is, by construction, consistentlyO(h4) on both sides.
Comparing coefficients of un, hu′n and h2

2
u′′n in (2.10) provides three equations for the weights,

wn−2 + wn−1 + wn = 0, 2wn−2 + wn−1 = −1 and 4wn−2 + wn−1 = 0,

MATH3474 Prof. M A Kelmanson 44

with solution wn−2 = 1
2
, wn−1 = −2 and wn = 3

2
. Comparing the coefficient of h3 in (2.10)

now yields C = −1
6
(8wn−2 + wn−1)u′′′n = −1

3
u′′′n , so that the BD′2 formula for u′n is

un−2 − 4un−1 + 3un
2h

= u′n −
h2

3
u′′′n +O(h3). (2.11)

By a similar argument, we obtain the FD′2 formula for u′0 as

−3u0 + 4u1 − u2

2h
= u′0 −

h2

3
u′′′0 +O(h3). (2.12)

This approach can be used to obtain higher-order derivatives by postulating, e.g., the BD′′1

wn−2un−2 + wn−1un−1 + wnun
h2

= u′′n + Ch+O(h2) , (2.13)

whose RH side should be compared with that in (2.9) and note the h2 on the LH side.

2 Example 2.2 Irregularly spaced mesh points
It occasionally occurs in practice that the mesh points are not regularly spaced, e.g. near a
boundary. Suppose we seek an approximation to the derivative u′′i = u′′(xi) in the following
figure. xi+α is the RH boundary value of x where, because 0 < α < 1, the mesh is irregular.

e
xi−2

e
xi−1

u
xi

e
xi+α

Since ui+1 does not exist, the symmetric CD′′2 formula (2.6) cannot be applied. Additionally, a
mixture of FD and BD terms either side of xi will be required. We therefore introduce the term
asymmetric difference (AD) formula.

It is easy to show, using Taylor’s theorem (0.4), that

ui+α − (1 + α)ui + αui−1

1
2
α(α + 1)h2

= u′′i −
1− α

3
hu′′′i +

1− α + α2

12
h2uiv

i +O(h3) . (2.14)

Since α < 1, the three values ui+α, ui and ui−1 provide an AD′′1 for u′′i . An AD′′2 approximation
therefore requires the introduction of the value ui−2, whence the above method of weights gives

1

h2

[
−1− α

2 + α
ui−2 +

2(2− α)

1 + α
ui−1 −

3− α
α

ui +
6

α(1 + α)(2 + α)
ui+α

]
= u′′i +

3α− 2

12
h2uiv

i +O(h3),

from which we make the unexpected discovery that the unique value α ≡ 2
3

provides an AD′′3
approximation. 2

2.1.2 Operator methods for 1-D finite-difference formulae

The use of Taylor expansions and weights is cumbersome, needing recalculation each time
a different accuracy or order of differentiation is required. A more systematic and efficient

MATH3474 Prof. M A Kelmanson 45

approach requires abstraction of ideas using the concept of difference operators. In abstract
terms, an operator acting on an object transforms it into another object. In our case, the objects
are the ui, u′i, etc. The following table defines the operators that we shall encounter.

Name Symbol Effect

Forward-shift operator E Eui = ui+1

Forward-difference operator δ+ δ+ui = ui+1 − ui

Backward-difference operator δ− δ−ui = ui − ui−1

Central-difference operator I δ0 δ0ui = ui+1/2 − ui−1/2

Central-difference operator II δ δui = 1
2
(ui+1 − ui−1)

Averaging operator µ0 µ0ui = 1
2
(ui+1/2 + ui−1/2)

Differential operator D Dui = u′i ≡ du
dx

at xi

Identity operator I Iui = ui

First note that the above operators are all linear; that is for any ui, they satisfy

L(αui + βũi) = αLui + βLũi

for any constants α and β. We also have for any two of them, say L and L̃,

(αL+ βL̃)ui = αLui + βL̃ui .

We say that two operators commute if

L(L̃ui) = L̃(Lui) .

Two operators are equivalent, L = L̃, if

Lui = L̃ui .

For example,
(E − I)ui = Eui − Iui = ui+1 − ui = δ+ui,

via the definition of δ+, we have the operator equivalence (OE)

δ+ = E − I. (2.15)

It is obvious that a forward shift is cancelled by a backward shift, so that the backward-shift
operator is the inverse of E; we therefore denote it by E−1. Then

E−1ui = ui−1,

which leads to the following two OEs

δ− = I − E−1 , (2.16)

δ− = E−1δ+ .

MATH3474 Prof. M A Kelmanson 46

Repeated application of an operator L is denoted by L2. It can be deduced that

δ+δ− = δ−δ+ = δ+ − δ− = δ2
0.

If m is either a positive or negative integer, we have

Emui = ui+m.

If m is not restricted to being an integer, we further have the following OEs:

µ0 =
1

2
(E1/2 + E−1/2) , (2.17)

δ0 = E1/2 − E−1/2 , (2.18)

δ = 1
2
(E − E−1) , (2.19)

in which the half-shift operator, E1/2, can be thought of as the square root of E in the sense that

(E1/2)2ui = E1/2(E1/2ui) = E1/2ui+1/2 = ui+1/2+1/2 = ui+1 = Eui.

Further OEs arising through repeated actions of operators are

δ2
+ = E2 − 2E + I,

δ3
+ = E3 − 3E2 + 3E − I,

both of which are a direct consequence of (2.15).

Note thatEm+n = EmEn = EnEm since the order in which shifts are performed is immaterial.
So, Em and En commute. Therefore, the operators δ+, δ−, δ0, δ and µ0, which can all be
expressed in terms of Em, commute with each other. On this note, observe that if n = −m we
have E0 = EmE−m = I . So any operator raised to the power of zero is I , the identity.

2.1.3 Finite-difference formulae for first derivatives

Formal proof of the following is given in A First Course in the Numerical Analysis of Dif-
ferential Equations, A. Iserles, Chapter 8. We remark that operator convergence is justified
throughout because h→ 0 as the mesh is refined. Equation (2.1) (Taylor’s theorem),

ui+1 = ui + hu′i +
h2

2
u′′i +

h3

6
u′′′i +O(h4) ,

can be re-expressed in terms of operators as

Eui = Iui + hDui +
h2

2
D2ui +

h3

6
D3ui +O(h4) .

Hence the OE statement is

E = I + hD +
(hD)2

2
+

(hD)3

6
+O(h4)

MATH3474 Prof. M A Kelmanson 47

which, by comparison with (0.2), gives

E = exp(hD). (2.20)

Now we can express differentiation in terms of shifting,

D =
1

h
lnE, (2.21)

which is the key point here. (2.21) will be used to derive an approximation to D (and, later,
Dm). Taylor’s theorem has now served its purpose and has been absorbed into a more general
approach.

2 Example 2.3 Forward differences for D
Rewriting the shifting operator E in (2.21) in terms of the forward-difference operator δ+ using
(2.15) and expanding using (0.3) yields

D =
1

h
lnE =

1

h
ln(I + δ+) =

1

h

{
δ+ −

δ2
+

2
+
δ3

+

3
−
δ4

+

4
+O(δ5

+)

}
. (2.22)

First note that, using operators, FD′1 (2.2) may be written in the form

δ+ui
h

= Dui +
h

2
D2ui +O(h2) ,

which implies the OE δ+ = hD+O(h2) = O(h); by raising both sides of this to the power ofm,
we have δm+ = O(hm), so that the unspecified errorO(δ5

+) in the approximation (2.22) yields the
truncation error 1

h
O(h5) = O(h4). Hence by retaining the first m terms in the braces in (2.22),

i.e. omitting O(δm+1
+) and higher terms, (2.22) becomes a FD′m formula. For example, the first

term givesD = 1
h
δ++O(h), i.e. u′i = 1

h
(ui+1−ui)+O(h), which is the FD′1 (2.2). The first two

terms give D = 1
h

{
δ+ − 1

2
δ2

+

}
+ O(h2), i.e. u′i = 1

h

{
(ui+1 − ui)− 1

2
(ui+2 − 2ui+1 + ui)

}
+

O(h2), i.e. the FD′2
u′i =

−3ui + 4ui+1 − ui+2

2h
,

which was derived (for i = 0) as (2.12) via considerably more effort. Note that the FD′∞ (2.22)
is a series in single powers of δ+, equivalently h, formally proving the point made immediately
after (2.9). 2

2 Example 2.4 Backward differences for D
Similar to the previous example, we introduce (2.16) into (2.21) and expand using (0.3),

D =
1

h
lnE = −1

h
ln(I − δ−) =

1

h

{
δ− +

δ2
−

2
+
δ3
−

3
+
δ4
−

4
+ · · ·

}
. (2.23)

The first term gives the BD′1 (2.4) and the first two terms give the BD′2 (see (2.11))

u′i =
ui−2 − 4ui−1 + 3ui

2h
. 2

2 Example 2.5 Type-I central differences for D
Substituting (2.20) into (2.18) yields

δ0 = (exp(hD)1/2 − exp(hD)−1/2) = (exp(hD/2)− exp(−hD/2)) = 2 sinh(hD/2)

⇒ D =
2

h
sinh−1

(
δ0

2

)
=

1

h

{
δ0 −

δ3
0

24
+

3δ5
0

640
− 5δ7

0

7168
+ · · ·

}
. (2.24)

MATH3474 Prof. M A Kelmanson 48

(Maple or Mathematica can be used to obtained the Taylor expansion above.) First note that
replacing h by h/2 in (2.5) gives

ui+1/2 − ui−1/2

h
= u′i +

h2

24
u′′′i +O(h4) , (2.25)

whose operator form implies δ0 = hD + O(h3) = O(h). Hence if m terms are retained in the
braces in (2.24), last term therein will be O(δ2m+1

0), yielding a CD truncation error of O(h2m).
In contrast to the one-sided formulae in the previous two examples, the addition of each extra
term here reduces the error by a factor of h2.

As we have seen, the first term gives the CD′2 (2.25) whereas the first two terms give the CD′4

−ui+3/2 + 27ui+1/2 − 27ui−1/2 + ui−3/2

24h
= u′i −

3h4

640
uv
i +O(h6). (2.26)

A CD′6 formula can be derived in similar way. 2

The previous example shows that increasingly accurate approximations to u′i can be obtained
by increasing the number of terms evaluated at half-integer mesh points. But recall that it is the
function values at the integer mesh points which are known to us, so that in order to apply the
half-integer formulae (2.25) and (2.26) we would first have to interpolate the original data onto
a staggered inter-node mesh. It is better to use the function values themselves, suggesting the
use of δ rather than δ0.

2 Example 2.6 Type-II central differences for D
Substituting (2.20) into (2.19) gives

δ =
1

2
(exp(hD)− exp(−hD)) = sinhhD,

which inverts to give hD = sinh−1 δ, yielding

D =
1

h

{
δ − δ3

6
+

3δ5

40
− 5δ7

112
+ · · ·

}
, (2.27)

which should be compared with (2.24). The first term gives the CD′2 (2.5) but the first two terms
give the CD′4

−ui+3 + 27ui+1 − 27ui−1 + ui−3

48h
= u′i −

3h4

40
uv
i +O(h6) , (2.28)

which can be obtained simply by doubling h in (2.26). But this is still undesirable since it uses
information at xi±3 rather than at the nearer xi±2: the 2h-jump (from xi+1 to xi−1) in the δ
operator propagates into the CD formulae at all orders of accuracy. 2

We infer that somehow the h-jump (from xi+1/2 to xi−1/2) of the δ0 operator must be employed,
but we have already rejected this on the basis of the half-integer location of the information
points. We conclude that the use of δ0 alone is insufficient, and the introduction of the as-yet-
unused µ0 is heralded.

MATH3474 Prof. M A Kelmanson 49

Restriction to integer mesh points

It is straightforward to show that

µ2
0 = I +

δ2
0

4
,

from which

I = µ0

{
I +

δ2
0

4

}−1/2

= µ0

{
I − δ2

0

8
+

3δ4
0

128
− 5δ6

0

1024
+ · · ·

}
. (2.29)

The nifty trick is now to act on the LHS of (2.24) with the LHS of (2.29), i.e. the identity
operator, and the RHS of (2.24) with the RHS of (2.29). There results

D =
µ0

h

{
δ0 −

δ3
0

6
+
δ5

0

30
− δ7

0

140
+ · · ·

}
=
δ

h

{
I − δ2

0

6
+
δ4

0

30
− δ6

0

140
+ · · ·

}
, (2.30)

since µ0δ0 = δ. We observe that (2.30) contains a single power of δ (one 2h-jump) and even
powers of δ0 (pairs of h

2
-jumps = h-jumps). Hence all the points arising through (2.30) lie at

integer grid points as required. The first term recovers the CD′2 (2.5) whereas the first two terms
yield the new CD′4

−ui+2 + 8ui+1 − 8ui−1 + ui−2

12h
= u′i −

h4

30
uv
i +O(h6) . (2.31)

Notice how the error coefficient in (2.31) is 2.25 times smaller than in (2.28), which used ui±3.
One would rarely in practice use more than three terms in (2.27) and (2.30).

2.1.4 Finite-difference formulae for higher derivatives

Recalling that δm± = O(hm) in (2.22) and (2.23), we have

D =
1

h

{
δ± ∓

δ2
±

2
+
δ3
±

3

}
±O(h3)

which, when both sides are raised to the power of m, gives

Dm =
1

hm

{
δm± ∓

m

2
δm+1
± +

m(3m+ 5)

24
δm+2
±

}
±O(h3) , (2.32)

wherein δm± = O(hm) has again been used. In computational terms, this means that the m + 3

grid values ui, ui±1, . . . , ui±m±2 implied by (2.32) make it a FD(m)
3 or BD(m)

3 formula when
the positive or negative signs are respectively taken.

To construct a CD(m) we raise (2.24) to the mth power,

Dm =
1

hm

{
δ0 −

δ3
0

24
+

3δ5
0

640
− 5δ7

0

7168
+ · · ·

}m
=
δm0
hm

{
I − mδ2

0

24
+
m(22 + 5m)δ4

0

5760
+ · · ·

}
(2.33)

MATH3474 Prof. M A Kelmanson 50

which, for the reasons given in §2.1.3, uses function values at integer mesh points when m is
even and half-integer mesh points when m is odd. On the other hand, acting I in (2.29) onto
Dm in (2.33), we have

IDm =
µ0

hm

{
I +

δ2
0

4

}−1/2{
δ0 −

δ3
0

24
+

3δ5
0

640
− 5δ7

0

7168
+ · · ·

}m
,

i.e.

Dm =
µ0δ

m
0

hm

{
I − (m+ 3)δ2

0

24
+

(5m2 + 52m+ 135)δ4
0

5760
+ · · ·

}
, (2.34)

which uses function values at integer mesh points when m is odd and half-integer mesh points
when m is even.

2 Example 2.7 Central-difference formulae for second derivatives
When m = 2, the first term of (2.34) gives the CD′′2

ui+3/2 − ui+1/2 − ui−1/2 + ui−3/2

2h2
= u′′i +

5h2

24
uiv
i +O(h4) ,

and the first two terms give the (6-term) CD′′4

−5ui+5/2 + 39ui+3/2 − 34ui+1/2 − 34ui−1/2 + 39ui−3/2 − 5ui−5/2

48h2
= u′′i −

259h4

5760
uvi
i +O(h6) .

When m = 2, the first term of (2.33) recovers the CD′′2 (2.6), and the first two terms give a more
efficient 5-term CD′′4

−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12h2
= u′′i −

h4

90
uvi
i +O(h6) (2.35)

which uses function values at integer mesh points. 2

2.1.5 A summary

Our derivation of finite-difference formulas relies on (i) the relation between D and E: D =
1
h

lnE, (ii) relations between E and the finite-difference operators δ+, δ−, δ, . . . etc. and the
Taylor’s theorem. The following summarise various formulas from previous sections.

For first derivative D,

1. Forward-difference

D =
1

h

{
δ+ −

δ2
+

2
+
δ3

+

3
−
δ4

+

4
+ · · ·

}
2. Backward-difference

D =
1

h

{
δ− +

δ2
−

2
+
δ3
−

3
+
δ4
−

4
+ · · ·

}
3. Central-difference

D =
δ

h

{
I − δ2

0

6
+
δ4

0

30
− δ6

0

140
+ · · ·

}

MATH3474 Prof. M A Kelmanson 51

Forward- and backward-difference formulas for higher derivatives Dm can be obtained easily
by raising the corresponding series above to the mth power. Central-difference for Dm is more
tricky:

1. Central-difference for odd m

Dm =
µ0δ

m
0

hm

{
I − (m+ 3)δ2

0

24
+

(5m2 + 52m+ 135)δ4
0

5760
+ · · ·

}
2. Central-difference for even m

Dm =
δm0
hm

{
I − mδ2

0

24
+
m(22 + 5m)δ4

0

5760
+ · · ·

}

2.1.6 Implicit finite-difference formulae

The formulae derived in §§2.1.3 and 2.1.4 are all explicit: in every case, the derivative u(m)
i =

dmu(xi)/dx
m at the single mesh point xi is given directly in terms of neighbouring mesh points.

Implicit formulae are defined as those where derivatives at more than one mesh point appear si-
multaneously. Their advantage comes from the high order of accuracy generated when deriva-
tives at different mesh points are related to each other. The price to paid is that the interwoven
values of the derivatives must be solved en bloc via the solution of a set of simultaneous alge-
braic equations.

2 Example 2.8 Reduction of truncation error via implicit formulae
Setting m = 2 in (2.33) we have

D2 =
1

h2

{
δ2

0 −
δ4

0

12
+
δ6

0

90
+ · · ·

}
which, recalling that δm0 = O(hm), gives both

(a) D2 =
δ2

0

h2

{
I − δ2

0

12

}
+O(h4) and (b) D2 =

δ2
0

h2
+O(h2). (2.36)

Recalling that all operators commute with each other, (2.36)(a) gives{
I − δ2

0

12

}−1

D2 =
δ2

0

h2
+O(h4), (2.37)

wherein the inverse can be expanded then truncated as{
I − δ2

0

12

}−1

= I +
δ2

0

12
+

δ4
0

144
+

δ6
0

1728
+ · · · = I +

δ2
0

12
+O(h4),

so that (2.37) gives {
I +

δ2
0

12

}
D2 =

δ2
0

h2
+O(h4). (2.38)

MATH3474 Prof. M A Kelmanson 52

Thus, from (2.36)(b), δ2
0/h

2 is a second-order approximation to D2 whereas, from (2.38), it is
a fourth-order approximation to (I + δ2

0/12)D2, which must now be interpreted. Recall that
δ0 = E1/2 − E−1/2, so that δ2

0 = E − 2I + E−1 and the LHS of (2.38) is(
1

12
E +

5

6
I +

1

12
E−1

)
D2 =

1

12

(
ED2 + 10D2 + E−1D2

)
.

Since ED2ui = Eu′′i = u′′i+1 and E−1D2ui = E−1u′′i = u′′i−1, (2.38) yields

u′′i+1 + 10u′′i + u′′i−1

12
=
ui+1 − 2ui + ui−1

h2
+O(h4), (2.39)

which is an implicit, three-point fourth-order formula, to be compared with the explicit, five-
point fourth-order formula (2.35). Moreover, the error of the implicit three-point formula (2.39),
can be calculated more precisely as

h4

240
uvi
i +O(h6),

which is approximately 2.7 times smaller than the error in the explicit five-point formula (2.35).
Finally, note that if the weights on the LHS of (2.39) are perturbed from { 1

12
, 5

6
, 1

12
} to {0, 1, 0},

we recover the explicit three-point formula (2.6), which is accurate only to second order;
{ 1

12
, 5

6
, 1

12
} is the unique set of weights giving fourth-order accuracy. 2

Assembly of the implicit equations (2.39)

The above example illustrates the twofold advantages of the implicit approach—the reduction
in both the truncation error and the number of mesh points required. The disadvantage is that
our fourth-order formula for the second-derivative has not actually provided us with the value
of u′′i for any value of i, so that we have to solve (2.39) via the following tridiagonal system of
simultaneous algebraic equations, in which the RHS vector comprises known function values.

.
...

...
...

...
· · · 10 1 0 0 0 · · ·
· · · 1 10 1 0 0 · · ·
· · · 0 1 10 1 0 · · ·
· · · 0 0 1 10 1 · · ·
· · · 0 0 0 1 10 · · ·

...
...

...
...

... . . .





...

...
u′′i−1

u′′i
u′′i+1

...

...


=

12

h2



...

...
ui − 2ui−1 + ui−2

ui+1 − 2ui + ui−1

ui+2 − 2ui+1 + ui
...
...


(2.40)

Note that the tridiagonal pattern may “break” at the boundary points x0 and xn, where one-sided
formulae are used. The effect of this in the above matrix is that the first row will not necessarily
commence with (10, 1, · · ·) and the last row will not necessarily terminate with (· · · , 1, 10).
Note also that the bandwidth of the system is 3: in general, the smaller the bandwidth, the easier
the system is to solve. In particular, tridiagonal systems can be solved very efficiently indeed,
as we shall see later. We infer that implicit formulae should be constructed so as to minimise

MATH3474 Prof. M A Kelmanson 53

the bandwidth, and we see that this is achieved by relating derivatives at mesh points which are
as close as possible.

All results so far obtained are for a function u of one variable x. We now turn to their extension
into higher dimensions, i.e. for use in the solution of PDEs, rather than ODEs.

2.2 Finite-difference formulae in 2-D

Now u = u(x, y) and the mesh points lie on a rectangular mesh with increments h and k in
the x- and y-directions respectively, so that xi±m = xi ±mh and yj±n = yj ± nk. The value
of u(xi, yj) is denoted by uij or ui,j . All of the operators in §2.1.2 can be applied to either
direction, acting separately on the i and j subscripts.

2 Example 2.9 Finite-difference formulae for partial derivatives ux and uyy
Single ± shifts in the x-direction are represented by

Exuij = ui+1,j and E−1
x uij = ui−1,j,

and double ± shifts in the y-direction by

E2
yuij = ui,j+2 and E−2

y uij = ui,j−2,

so that FDx
1 , the first-order forward difference for ux (in which j is unaltered), is

(Dxu)ij '
1

h
δ+,xuij ⇒

(
∂u

∂x

)
ij

=
ui+1,j − ui,j

h
+O(h) ,

and CDyy
2 , the second-order central difference for uyy (in which i is unaltered),

(D2
yu)ij '

1

k2
δ2

0,yuij ⇒
(
∂2u

∂y2

)
ij

=
ui,j+1 − 2ui,j + ui,j−1

k2
+O(k2).

The above results were obtained using (0.5) with u(x, y) = uij . Any required multi-dimensional
derivative can be constructed by applying the newly defined operators in this way. 2

The most common derivative which is ubiquitous in the study of elliptic, parabolic and hyper-
bolic PDEs is the Laplace/Laplacian operator, which in 2-D cartesian coordinates is

∆ = ∇2 ≡ ∂2

∂x2
+

∂2

∂y2
. (2.41)

2 Example 2.10 The Laplace operator
The CD2 form of the Laplacian operator ∆ is, from (2.41),

∆
(5,+)
0 =

δ2
0,x

h2
+
δ2

0,y

k2
, (2.42)

which, on a regular 2-D mesh with h = k, (hereafter, a square mesh), gives the so-called
five-point CD2 approximation to the Laplacian,

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j
h2

= (∆u)ij +
h2

12
(uxxxx + uyyyy)ij +O(h4), (2.43)

MATH3474 Prof. M A Kelmanson 54

which is possibly the most-used formula in the numerical analysis of 2-D physically-motivated
problems. Since both i and j jump by ±1, (2.43) leads to a system whose bandwith is 3.
Equation (2.43) can be pictured in terms of the molecule, or stencil

∆
(5,+)
0 uij ≡

1

h2 uij = ∆uij +
h2

12
(uxxxx + uyyyy)ij +O(h4).

��
��

1

��
��
−4

��
��

1

��
��

1 ��
��

1

As finite-difference formulae become more complicated, the molecular representation is the
only practical one. Other CD2 molecules can be obtained using a mixture of operators, as per
(2.30). The most common mixed approximation of the Laplacian operator is

∆
(5,×)
0 ≡ (µ0,yδ0,x)

2

h2
+

(µ0,xδ0,y)
2

k2
, (2.44)

which, on a square mesh, leads to a different five-point CD2 molecule,

∆
(5,×)
0 uij ≡

1

2h2 uij = ∆uij +
h2

12
(uxxxx + 6uxxyy + uyyyy)ij +O(h4).

��
��

1

��
��
−4

��
��

1

��
��

1 ��
��

1

�
�
�
�

@
@
@
@

@
@
@
@

�
�
�
�

However, ∆
(5,×)
0 is not to be recommended for practical purposes, since the odd-numbered

points are detached from the even-numbered ones, so that two sets of decoupled equations
result. Although ∆

(5,×)
0 is not recommended per se, it can be linked with ∆

(5,+)
0 to reduce the

truncation error provided that u satisfies certain conditions. 2

2 Example 2.11 Combining molecules to reduce the truncation error
We require the preliminary observation that ∆u = uxx + uyy ⇒ ∆(∆u) ≡ ∆2u = uxxxx +

2uxxyy + uyyyy. ∆2 is known as the biharmonic operator. When h = k, we can combine
∆

(5,+)
0 uij and ∆

(5,×)
0 uij to make the h2 term proportional to ∆2uij ,

2

3
∆

(5,+)
0 uij +

1

3
∆

(5,×)
0 uij ≡ ∆

(9)
0 = ∆uij +

h2

12
∆2uij +O(h4). (2.45)

MATH3474 Prof. M A Kelmanson 55

Algebraic operations such as addition and multiplication can be formally applied to the molecules,
thus leading to the nine-point square-mesh molecule

∆
(9)
0 uij ≡

1

6h2 uij = ∆uij +
h2

12

(
∆2u

)
ij

+O(h4).

��
��

1

��
��

4

��
��

1

��
��

4

��
��
−20

��
��

4

��
��

1

��
��

4

��
��

1

We have seen the reason for not using ∆
(5,×)
0 on practical grounds, but why should ∆

(9)
0 be

preferred to the simpler ∆
(5,+)
0 ; both are second-order, having O(h2) errors! The answer lies

in the actual coefficient of the h2 term. In the many physical problems for which u is either
harmonic (∆u = 0) or biharmonic (∆2u = 0), the coefficient of the O(h2) truncation error of
the nine-point operator vanishes so that, for that class of functions, the nine-point formula auto-
matically improves—with no extra effort—to a fourth-order scheme. An extremely impressive
by-product of this example, known as Mehrstellenverfahren, is given in the next section. 2

2.2.1 Higher-order approximations to the Laplacian

Equation (2.42), being a second-order central-difference approximation to a second derivative,
can be compared to (2.33) with m = 2,

D2 =
1

h2

{
δ2

0 −
δ4

0

12
+
δ6

0

90
+ · · ·

}
,

which is valid at 1-D integer mesh points. On the square mesh, we may similarly derive

∆ =
1

h2

{
δ2

0,x + δ2
0,y −

1

12

(
δ4

0,x + δ4
0,y

)}
+O(h4), (2.46)

the first two terms of which is identifiable with (2.42).

2 Example 2.12 A general fourth-order molecule for the Laplacian
The first and third terms in (2.46) are essentially the first two terms in (2.33) for D2 applied
to the x-direction. Similarly for the second and fourth terms in (2.46) for the y-direction. We
see that the first two terms in (2.33) give us CD′′4 in (2.35). Here, (2.46) gives us the nine-point

MATH3474 Prof. M A Kelmanson 56

fourth-order formula whose square-mesh molecule is

∆
(9,+)
0 uij ≡

1

12h2
uij = ∆uij +O(h4)��

��
−1 ��
��

16 ��
��
−60 ��
��

16 ��
��
−1

��
��
−1

��
��

16

��
��

16

��
��
−1

and should be compared to to its 1-D counterpart (2.35). Whilst this molecule is genuinely
fourth-order for all functions u(x, y), it too is unsatisfactory from a practical point of view
since it leads to a system of equations with bandwidth 5; a pentadiagonal system, which is
much more expensive to solve than a tridiagonal one. 2

2.2.2 “Mehrstellenverfahren” for the Poisson equation

Quite literally, “more-places process”, i.e a combination of molecules. Although attributed to
Collatz (1966), it is curious that this extremely effective procedure is rarely presented in the
modern literature. The idea is to obtain a more accurate solution for the Poisson equation

∆u(x, y) = f(x, y) or ∇2u(x, y) = f(x, y) (2.47)

than is at first sight possible from the nine-point formula of Example 2.11, which we observed
was second-order in general and fourth-order if u was biharmonic. By adjusting that formula in
a very subtle way, fourth-order accuracy can be obtained for any u!

Now

∆u = f ⇒ h2

12
∆2u =

h2

12
∆f ⇒ ∆u+

h2

12
∆2u = f +

h2

12
∆f =

(
I +

h2

12
∆

)
f ≡ f̄ , say.

By the nine-point molecule in Example 2.11,

∆u+
h2

12
∆2u = ∆

(9)
0 u+O(h4),

and therefore

∆
(9)
0 uij = f̄ij +O(h4). (2.48)

But the nine-point formula in Example 2.11 applied to the Poisson equation (2.47) can be stated
as

∆
(9)
0 uij = fij +O(h2). (2.49)

MATH3474 Prof. M A Kelmanson 57

In other words, the near-trivial act of multiplying the known RHS of (2.47), f , by the operator
I + h2

12
∆ improves the scheme from second order to fourth order for any function u: this is a

most impressive result. Finally, we note from (2.42) and (2.43) that

h2∆ = h2∆
(5,+)
0 +O(h4) = δ2

0,x + δ2
0,y +O(h4),

and so (2.48) gives

∆
(9)
0 uij =

(
I +

1

12

(
δ2

0,x + δ2
0,y

))
fij +O(h4)

or, in molecular form,

1

6h2

��
��

1

��
��

4

��
��

1

��
��

4

��
��
−20

��
��

4

��
��

1

��
��

4

��
��

1

uij =
1

12
fij +O(h4)��

��
1

��
��

1

��
��

8

��
��

1

��
��

1

We reiterate that the new RHS is extremely cheap to compute since f is a known function of x
and y. Hence the gain in accuracy is remarkable for the effort involved. This technique should
be used in preference to any other if the finite-difference method is selected. 2

2 Example 2.13 An application of Mehrstellenverfahren
In this example, the Poisson equation ∆u = sinx exp(y2)(1 + 4y2) is solved via various finite-
difference approximations.

The exact solution, u(x, y) = sinx exp(y2), is used to derive boundary conditions on a 2h× 2h

square centred at the point (x, y) = (1/2, 1/2). The initial value of h is 1/2, and h is repeatedly
halved (M times) so that the (initially-unit) square shrinks around (1/2, 1/2), at which lies the
only unknown value of u, say uh. The exact value of u(1/2, 1/2) is denoted by ue.

Care must be taken here to accommodate the atypical situation that the domain halves as the
mesh is halved: normally, it would remain unchanged while the mesh within it was halved.
This, however, would yield an increasingly large set of unknowns, which we wish to defer until
§§3 and 4. The domain scalings x→ x/2 and y → y/2 between successive meshes gives (in an
obvious notation) ∆uh → 4∆uh/2, i.e. the difference equations on the finer mesh—including
their error—carry a scaling factor of 1/4 over those on the coarser mesh. Hence the error on the
smaller mesh must be amplified by a factor of 4 if a comparison is to be effected with the error
on the coarser mesh. We recall that the 5-point (+), 5-point (×) and 9-point molecules all give
an O(h2) error in approximating the PDE ∆u = f , and the 9-point-modified formula gives an
O(h4) error. So, defining the (numerical) error attenuation ratio by

α(h) ≡ error on mesh h

4× error on mesh h/2
=

uh − ue
4(uh/2 − ue)

,

MATH3474 Prof. M A Kelmanson 58

we expect α(h) → 22 for the first three schemes and α(h) → 24 for the modified scheme. In
the following tables, we denote the theoretical limiting value of the attenuation ration by

α0 = lim
h→0

α(h).

Working to 10-digit accuracy, we obtain the following attenuation ratios.

Scheme α(1/2) α(1/4) α(1/8) α(1/16) α(1/32) α0

5-pt. + 4.342142730 4.080821295 4.019930735 4.004085480 3.957711443 4
5-pt. × 3.967184823 3.998139058 4.000351360 3.997318693 3.979674798 4
9-pt. 4.293311293 4.069838315 4.017056085 4.007839128 3.922459893 4
9-pt. mod. 18.42840734 16.57285924 16.39156627 8.300000000 -0.4166666668 16

The non-convergence (as h → 0) to α0 is a result of the decreasing differences in both the
numerator and denominator of α(h) being swamped by rounding errors; evidently, 10-digit ac-
curacy is insufficient. Performing all calculations to 20-digit accuracy, we obtain the following
ratios, which are presented to 10 digits for reasons of space.

Scheme α(1/2) α(1/4) α(1/8) α(1/16) α(1/32) α0

5-pt. + 4.342142548 4.080814465 4.019923734 4.004963667 4.001239841 4
5-pt. × 3.967186298 3.998130405 3.999885786 3.999992902 3.999999557 4
9-pt. 4.293311893 4.069853329 4.017255838 4.004301136 4.001074484 4
9-pt. mod. 18.42838975 16.56658767 16.13926389 16.03466924 16.00865839 16

Now, as h→ 0, we observe convergence to α0. Thus it can be seen that h cannot be made arbi-
trarily small, the round-off error of the machine imposing a restriction. Note that the factor of
4 should not be included in the definition of α(h) when the domain size is maintained and the
mesh only is halved, as in Question 6 on Examples Sheet 5. 2

2.2.3 Higher-order multidimensional derivatives

These can be approximated using either operator or Mehrstellenverfahren techniques. In prac-
tical terms, the most common such PDEs usually involve the biharmonic operator, ∆2, in the
form

∆2u = f.

The case f = 0 arises physically when u is the 2-D streamfunction of viscous fluid mechanics;
when u is a constant u is the deflection shown by a clamped rectangular plate.

MATH3474 Prof. M A Kelmanson 59

2 Example 2.14 Molecule for the biharmonic operator
The most common molecular representation of ∆2u = f is the second-order

1

h4
uij = fij +O(h2)��

��
1

��
��

2

��
��
−8

��
��

2

��
��

1

��
��
−8

��
��

20

��
��
−8

��
��

1

��
��

2

��
��
−8

��
��

2

��
��

1

Note that the bandwidth is 5 even though the scheme is only second-order. The higher order of
differentiation requires the increased bandwidth if an explicit formula is used. 2

Concluding remarks

The power of the theory of finite-difference operators lies in its generality. With it, one can
construct one-sided, central and asymmetric approximations toDm, for anym and to any order:
the application will determine which formulae are required and/or possible. A notable omission
from the theory is the consideration of finite-difference formulae on irregular meshes, e.g. near
curved boundaries, where special formulae are required. In such cases, it is arguable that other
approaches, e.g. the finite-element method or boundary-integral method, are best employed.

MATH3474 Prof. M A Kelmanson 60

3 Numerical Linear Algebra

3.1 Fundamentals

3.1.1 Matrix and vector norms; spectral radius

We often need some measure of the “size” of a vector or a matrix. This is provided by the norm
of the vector or matrix. In the following, we introduce different kinds of norm.

The p-norm of the n-vector x = (x1, x2, . . . , xn)T is defined to be

||x||p ≡

{
n∑
i=1

xpi

} 1
p

.

From this definition, we have the following norms of a vector:

||x||1 =
n∑
i=1

|xi| , sum of moduli;

||x||2 =

{
n∑
i=1

x2
i

} 1
2

, Euclidean;

||x||∞ = max
1≤i≤n

|xi| , maximum.

The Euclidean norm (2-norm) has the geometric interpretation of an n-dimensional Pythagoras’
theorem, and the maximum norm is simply the largest modulus of any element.

The real (n×n) matrixA (with elements aij) admits several norm definitions, the most common
of which are:

||A||F =

{
n∑
i=1

n∑
j=1

a2
ij

} 1
2

, Frobenius;

||A||1 = max
j

n∑
i=1

|aij| , maximum column sum;

||A||2 = max |eigenvalue of ATA|
1
2 , spectral;

||A||∞ = max
i

n∑
j=1

|aij| , maximum row sum.

It transpires that ||A||2 is the minimum of all the norms; it is the tightest measure of the “size”
of A. It is appropriate to introduce the spectral radius of A,

ρ(A) = max
i
|λi|,

where λi, i = 1(1)n, are the eigenvalues ofA. Thus, the spectral radius ofA is simply the largest
of the moduli of the eigenvalues of A. Hence the spectral-norm definition can be formally
phrased as

||A||2 =
{
ρ
(
ATA

)} 1
2 .

MATH3474 Prof. M A Kelmanson 61

Three important properties (of any norm) we shall exploit are

||Ax|| ≤ ||A|| ||x|| , ||AB|| ≤ ||A|| ||B|| , and ||Am|| ≤ ||A||m , (3.1)

where m is a positive integer.

3.1.2 Diagonal dominance and eigenvalue theorems

The matrix A is said to be strictly (row) diagonally dominant if

|aii| >
n∑
j=1

j 6=i

|aij|, i = 1(1)n, (3.2)

i.e. if the modulus of the diagonal term is greater than or equal to the sum of the moduli of
the off-diagonal terms in any row. In some texts, the weaker condition “ ≥” is used to replace
“>”, and the word “strictly” is removed from the description. Also “row” can be changed
to “column” in the description by changing aij to aji in (3.2). We shall return to diagonal
dominance in §3.2.3.

Closely related to the above is Gerschgorin’s (first) theorem, which asserts that the spectral
radius of A cannot exceed the largest sum of the moduli of the elements in any column or any
row. This is equivalent to ρ(A) ≤ ||A||1 and ρ(A) ≤ ||A||∞. In fact, an important result of linear
algebra is that, for any norm,

ρ(A) ≤ ||A|| . (3.3)

Gerschgorin’s (first) theorem leads directly to Gerschgorin’s circle theorem, or Brauer’s theo-
rem. Define

Pi ≡
n∑
j=1

j 6=i

|aij|, i = 1(1)n, (3.4)

(cf. (3.2)) to be the sum of the moduli of the off-diagonal elements in the ith row of A. Then
there is always an (i, j) pair, with 1 ≤ i, j ≤ n, such that |λj − aii| ≤ Pi , i.e. every eigenvalue
of A lies inside or on the boundary of at least one of the circles of radius Pi centred on aii on
the complex plane. The formula for Pi in (3.4) yields row discs: by changing aij to aji, we can
similarly construct column discs.

2 Example 3.1 Illustration of Brauer’s theorem
If

A =

 −4 3 3

1 −2 1

0 1 −5

 ,

we find ||A||∞ = 10 > ||A||1 = 9 > ||A||F ' 8.124 > ||A||2 ' 6.536, i.e. ||A||2 is indeed the
smallest, as predicted.

The eigenvalues of A are λ1 ≈ −0.6631, λ2 ≈ −5.168 + 0.6579i and λ3 ≈ −5.168− 0.6579i.

MATH3474 Prof. M A Kelmanson 62

The figures below show the Gerschgorin row discs (left) and column discs (right) of A.

Row disks

–6

–4

–2

0

2

4

6

–10 –8 –6 –4 –2 2

Column disks

–6

–4

–2

0

2

4

6

–10 –8 –6 –4 –2 2

In the left figure, the row discs are:
◦ from row 1 of A, centre a11 = −4 and radius |a12|+ |a13| = 6;
◦ from row 2 of A, centre a22 = −2 and radius |a21|+ |a23| = 2;
◦ from row 3 of A, centre a33 = −5 and radius |a31|+ |a32| = 1.

In the right figure, the column discs are:
◦ from column 1 of A, centre a11 = −4 and radius |a21|+ |a31| = 1;
◦ from column 2 of A, centre a22 = −2 and radius |a12|+ |a32| = 4;
◦ from column 3 of A, centre a33 = −5 and radius |a13|+ |a23| = 4.

In both figures, the eigenvalues (black dots, •) ofA are contained within the union of the circles,
in accordance with Brauer’s theorem. Similar figures for any 3×3 matrix can be generated using
the Python script 3474 3.1.py. 2

3.1.3 Sparse systems of equations

We consider methods for solving sparse systems of n simultaneous algebraic equations, such
as (2.40), written in the form

Ax = b. (3.5)

HereA is a known n×n square sparse matrix. A sparse matrix is one in which most coefficients
are zero. x and b are respectively unknown and known n× 1 vectors. Direct solution methods,
such as Gaussian elimination, are methods that gives the exact answer (ignoring rounding er-
rors) in a finite number of steps. They are generally not suited to solving (3.5) when n is large.
In the special case that A is tridiagonal, as in (2.40), the direct method of §3.2.1 is used.

In general, iterative methods are used in which trial components of the unknown x are initially
chosen asx(0), say, which is improved by a sequence of iterative corrections {x(1), x(2), x(3), . . .}.
The iteration converges when there is some measure of agreement (quantified in §3.2.3) between
successive iterates, i.e. when the modulus of the correction drops below some tolerance. The
type of correction technique distinguishes the method, and the most common ones will be dis-
cussed in §3.2.2. Iterative methods may be further divided into stationary and gradient methods,
of which only the former are considered here.

MATH3474 Prof. M A Kelmanson 63

We begin by splitting the n× n matrix A into its “DLU decomposition”

A = D − L− U, (3.6)

in which

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
an1 an2 an3 · · · ann

 and D =


a11 0 0 · · · 0

0 a22 0 · · · 0

0 0 a33 · · · 0
...

...
...

0 0 0 · · · ann


are the matrix A and its diagonal component D (N.B. all aii 6= 0), and

L =


0 0 · · · 0 0

−a21 0 · · · 0 0

−a31 −a32 · · · 0 0
...

...
...

−an1 −an2 · · · −an,n−1 0

 and U =



0 −a12 −a13 · · · −a1n

0 0 −a23 · · · −a2n

...
...

...
...

...

0 0 0
. . . −an−1,n

0 0 0 · · · 0


are the lower- and upper-triangular components of A. Assuming that all aii 6= 0 (achieved
by changing the order of the equations in (3.5), if necesarry), we divide the ith row of the n
simultaneous equations (3.5) by aii. Then the non-zero elements in D are all 1, whence D is
the n × n identity matrix, I . We shall henceforth assume that this scaling has taken place, so
that (3.6) is replaced by its “ILU decomposition”

A = I − L− U. (3.7)

3.2 Solution of sparse systems

3.2.1 Direct method: LU-factorisation for tridiagonal systems

In the event that A is tridiagonal,

A =


b1 c1 0 0 · · · 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0
...

...
...

...
0 0 0 0 · · · bn

 ,

we write it as the product of a lower-triangular matrix L∗ and upper-triangular matrix U∗ (N.B.
the notation reflects that these have no connection with L and U in (3.7)), where

L∗ =


1 0 0 0 · · · 0

l2 1 0 0 · · · 0

0 l3 1 0 · · · 0
...

...
...

...
0 0 0 0 · · · 1

 and U∗ =


v1 w1 0 0 · · · 0

0 v2 w2 0 · · · 0

0 0 v3 w3 · · · 0
...

...
...

...
0 0 0 0 · · · vn

 .

MATH3474 Prof. M A Kelmanson 64

so that

A = L∗U∗ =


v1 w1 0 0 · · · 0

v1l2 v2 + l2w1 w2 0 · · · 0

0 v2l3 v3 + l3w2 w3 · · · 0
...

...
...

...
0 0 0 0 · · · vn

 .

Comparing elements in A and L∗U∗ gives v1 = b1 and w1 = c1 from row 1, then (after a little
algebra),

li =
ai
vi−1

, vi = bi − liwi−1 and wi = ci, i = 2(1)n.

This determines all of the entries in L∗ and U∗. Let xi and βi be the ith components of x and b
respectively, both of which vectors are now used in a two-step solution process.

We first solve L∗y = b for y. Comparing elements row by row now gives y1 = β1 from row 1,
then

yi = βi − liyi−1, i = 2(1)n;

y is found by forward substitution.

Next, we solve U∗x = y for the required vector x, since we have

U∗x = y ⇒ L∗U∗x = L∗y ⇒ Ax = b.

This time, the nth row yields xn = yn/vn, then

xi =
yi − wixi+1

vi
, i = n− 1(−1)1;

x is found by backward substitution. The method is fast and efficient for tridiagonal systems,
requiring the storage of only the 4n − 2 values of a2 to an, b1 to bn, c1 to cn−1 and β1 to βn.
The number of arithmetic operations is proportional to n, whereas it would be n2 in Gaussian
elimination.

Note finally that matrices arising through FD approximations often have

a2 = · · · = an, b1 = · · · = bn, and c1 = · · · = cn−1,

in which case A is said to be a Toeplitz matrix (c.f. (2.40)). Note that Toeplitz matrices do not
necessarily have to be tridiagonal.

3.2.2 Iterative stationary methods: Jacobi, Gauss-Seidel and SOR

These are used in the event that A is not tridiagonal. Equation (3.7) gives

Ax = b ⇒ (I − L− U)x = b ⇒ x = (L+ U)x+ b, (3.8)

so that the simplest iterative scheme possible has

x(m+1) = (L+ U)x(m) + b, (3.9)

MATH3474 Prof. M A Kelmanson 65

in which x(m+1) =
(
x

(m+1)
1 , x

(m+1)
2 , . . . , x

(m+1)
n

)T
and x(m) =

(
x

(m)
1 , x

(m)
2 , . . . , x

(m)
n

)T
.

Equation (3.9) is called the Jacobi (J) scheme, which is a simultaneous correction method since
the ith row of (3.9) gives x(m+1)

i in terms of all of x(m)
1 to x(m)

n from the previous iterate.

The Jacobi scheme is easy but inefficient: after x(m+1)
1 is found from row 1 in (3.9), this “fresh”

value should be used to update x(m)
1 in the remaining rows 2 to n. Similarly, the fresh value of

x
(m+1)
2 should similarly be used to replace x(m)

2 in rows 3 to n, etc. We therefore have

x(m+1) = Lx(m+1) + Ux(m) + b , (3.10)

and hence

x(m+1) = (I − L)−1Ux(m) + (I − L)−1b. (3.11)

Equation (3.11) is the Gauss-Seidel (GS) method, which we expect to converge faster than (3.9)
since it is a successive-correction method that uses the most up-to-date information available.

Note that adding and subtracting x(m) to the RHS of (3.10) yields GS in the form

x(m+1)︸ ︷︷ ︸
new

= x(m)︸︷︷︸
old

+Lx(m+1) + (U − I)x(m) + b︸ ︷︷ ︸
correction

. (3.12)

We postulate that the iteration may converge more quickly if the correction term in (3.12) is
scaled by a so-called relaxation parameter ω:

x(m+1) = x(m) + ω
[
Lx(m+1) + (U − I)x(m) + b

]
. (3.13)

Equation (3.13) can also be written as

x(m+1) = (1− ω)x(m) + ω
[
Lx(m+1) + Ux(m) + b

]
(3.14)

where the right-hand side is a mixture of x(m) and GS of (3.10) with the proportion of each
determined by ω. Comparison of (3.10) and (3.14) reveals that ω ≡ 1 for GS. On the basis
that the correction in (3.12) does not change sign (which, for elliptic problems, it does not), we
expect to improve the convergence rate of GS by taking ω > 1. Then (3.13) gives

(I − ωL)x(m+1) = [(1− ω)I + ωU]x(m) + ωb,

so that

x(m+1) = (I − ωL)−1 [(1− ω)I + ωU]x(m) + ω(I − ωL)−1b. (3.15)

Equation (3.15) defines the successive over-relaxation (SOR) method, the term “over” referring
to the fact that ω is greater than 1. In certain cases, we can theoretically determine the value of
ω that yields the fastest rate of convergence of x(m) to x.

3.2.3 Convergence of iterative schemes

By convergence of an iterative scheme we mean that, given a pre-specified tolerance, ε, say,
there exists an iteration number k such that (most commonly)∣∣∣∣x(k+1) − x(k)

∣∣∣∣
∞ ≤ ε,

MATH3474 Prof. M A Kelmanson 66

although any other norm could be used. It is to be noted that the Jacobi (3.9), Gauss-Seidel
(3.11) and SOR (3.15) iterative schemes are all of the form

x(m+1) = Hx(m) + v, (3.16)

where H is referred to as the iteration matrix, with

HJ = L+ U, HGS = (I − L)−1U ; and HSOR = (I − ωL)−1 [(1− ω)I + ωU] .

Suppose now that x is the exact solution of (3.5) (or (3.16)), i.e.

x = Hx+ v.

If the error in the mth iterate is
e(m) = x(m) − x,

then, using (3.16), we find

e(m+1) = He(m) = H2e(m−1) = · · · = Hm+1e(0), i.e. e(m) = Hme(0). (3.17)

It can be shown (see Problem Set 5) that the necessary condition which ensures e(m) → 0 is
simply

ρ(H) < 1.

On the other hand, using the properties (3.1) of matrix norms,∣∣∣∣e(m)
∣∣∣∣ =

∣∣∣∣Hme(0)
∣∣∣∣ ≤ ||Hm||

∣∣∣∣e(0)
∣∣∣∣ ≤ ||H||m ∣∣∣∣e(0)

∣∣∣∣ .
Since e(0) is an arbitrary initial error, a sufficient condition for convergence is therefore

||H|| < 1.

Then, since we recall ρ(H) ≤ ||H|| for all norms and for allH , we may have: (i) ρ(H) ≤ ||H|| <
1 (convergence); (ii) ρ(H) ≤ 1 ≤ ||H|| (convergence or divergence), or; (iii) 1 < ρ(H) ≤ ||H||
(divergence).

Two useful results are: (i) if the matrix A is diagonally dominant, both Jacobi and Gauss-Seidel
converge, and; (ii) ||HJ ||∞ < 1⇐⇒ A is strictly row-diagonally dominant.

2 Example 3.2 Convergence affected by re-ordering equations
If

A =

 3 1 2

−1 3 −2

−2 2 3

 ,

then (after scaling by the diagonal terms), we find

ρ(HJ) = 1 and ||HJ ||2 = 1,

and
ρ(HGS) ' 0.6083 and ||HGS||2 ' 1.1234,

thus Gauss-Seidel converges (the necessary condition ρ(HGS) < 1 satisfied) and Jacobi marginally
diverges. Note that if the 3’s on the diagonal are replaced by 3+εwe have ρ(HJ) = 3/(3+ε) <

MATH3474 Prof. M A Kelmanson 67

1, i.e. Jacobi converges for any ε > 0. If the second and third rows, and then the second and
third columns, are swapped, we have

A =

 3 2 1

−2 3 2

−1 −2 3

 .

After scaling, once again we find

ρ(HJ) = 1 and ||HJ ||2 = 1,

but now
ρ(HGS) ' 1.2652 and ||HGS||2 ' 1.4715,

so that Jacobi’s convergence is unchanged whereas Gauss-Seidel diverges rapidly. This exam-
ple demonstrates that Jacobi is not automatically to be considered as being inferior to Gauss-
Seidel. 2

3.2.4 The optimum relaxation parameter for SOR

Recall that the SOR iteration matrix in (3.15) depends upon the (over-)relaxation (or accelera-
tion) parameter ω according to

Hω ≡ HSOR = (I − ωL)−1 [(1− ω)I + ωU] , (3.18)

and hence so does the spectral radius ρ(Hω) of Hω. In many applications, one find that∣∣∣∣e(m+1)
∣∣∣∣
∞ /
∣∣∣∣e(m)

∣∣∣∣
∞ . ρ(Hω). Therefore, we seek the optimum relaxation parameter ω∗

that minimises ρ(Hω), i.e. that maximises the rate of SOR convergence. When the matrix A has
a general structure, ω∗ can be found only numerically. However, when A has certain properties,
ω∗ (and other related results) can be found theoretically.

Specifically, when the (diagonally scaled) matrix A can be partitioned (possibly after permuta-
tion of rows and/or columns) into the form (cf. (3.7))

A =

(
In −U
−L Im

)
, (3.19)

in which In ∈ Rn × Rn and Im ∈ Rm × Rm are identity matrices, and U ∈ Rn × Rm and
L ∈ Rm × Rn, it is said to be 2-cyclic. Note that U and L in (3.19) are rectangular, whereas
they are triangular in (3.7). Also, (3.19) reflects the fact that, in the system Ax = b, the
unknown vector x can be split into two subvectors xa and xb in such a way that the equations
link every component of xa to only those in xb, and vice-versa.

WhenA is 2-cyclic, and when the eigenvalues of the Jacobi iteration matrixHJ = L+U satisfy
certain properties (see §3.2.5), it can be proved that ρ(Hω) < 1 provided that ω ∈ (0, 2); it can
also be shown that ω∗ ∈ (1, 2). Moreover, the value of ω∗ is given by

ω∗ =
2

1 +
√

1− ρ(HJ)2
(3.20)

MATH3474 Prof. M A Kelmanson 68

(N.B. spectral radius is that of Jacobi matrix), whence

ρ(Hω∗) = ω∗ − 1. (3.21)

Also, Gauss-Seidel converges (or diverges) precisely twice as fast as Jacobi, i.e.

ρ(HGS) = {ρ(HJ)}2 . (3.22)

For 2-cyclic matrices with marginally-convergent Jacobi (i.e ρ(HJ) just below 1), the relative
iteration efficiency of SOR over Jacobi and Gauss-Seidel can be impressive. Specifically, If
0 < ε� 1, then (3.21)–(3.22) yield

ρ(HJ) = 1− ε , ρ(HGS) ' 1− 2ε , ρ(Hω∗) ' 1− 2
√

2ε , (3.23)

so that the relative efficiency of the optimal SOR over Jacobi is

ln ρ(Hω∗)

ln ρ(HJ)
' ln(1− 2

√
2ε)

ln(1− ε)
' 2

√
2

ε
+ 4 +O(

√
ε),

i.e. approximately 13, 32, 93 and 287 when ρ(HJ) = 0.9, 0.99, 0.999 and 0.9999 respectively.

2 Example 3.3 Theoretically determined ω∗

Consider the 2-cyclic, symmetric matrix

A =


−4 0 1 1

0 −4 1 1

1 1 −4 0

1 1 0 −4

 .

Using the Python script 3474 3.3.py, we find, after scaling the diagonal to 1,

L =


0 0 0 0

0 0 0 0

1/4 1/4 0 0

1/4 1/4 0 0

 , U =


0 0 1/4 1/4

0 0 1/4 1/4

0 0 0 0

0 0 0 0

 ,

and hence,

HJ =


0 0 1/4 1/4

0 0 1/4 1/4

1/4 1/4 0 0

1/4 1/4 0 0

 , HGS =


0 0 1/4 1/4

0 0 1/4 1/4

0 0 1/8 1/8

0 0 1/8 1/8

 ,

from which we obtain
ρ(HJ) = 0.5 and ρ(HGS) = 0.25.

We calculate ω∗ using (3.20) and construct Hω∗ to obtain

ω∗ = 1.071796770 and ρ(Hω∗) = 0.071796770.

The above results are in complete accordance with (3.21)–(3.22). 2

MATH3474 Prof. M A Kelmanson 69

2 Example 3.4 Experiments with numerically determined ω∗

We now consider the following 4× 4 Toeplitz matrix

A =


−4 1 1 1

1 −4 1 1

1 1 −4 1

1 1 1 −4


which is not 2-cyclic and therefore ω∗ cannot be obtained theoretically. Instead, using the
Python script 3474 3.4.py, we construct HSOR for different ω ∈ [1, 2] to obtain the fol-
lowing plot of ρ(HSOR) as a function of ω.

1.0 1.2 1.4 1.6 1.8 2.0

0.4

0.6

0.8

1.0

(H
SO

R
)

An increasingly refined search reveals ω∗ ' 1.216218, whence ρ(HSOR) ' 0.293707. Note in
particular that ρ(Hω∗) 6= ω∗ − 1 since (3.21) does not hold for non-2-cyclic matrices.

Also, for this system, ρ(HJ) = 0.75 and ρ(HGS) ' 0.569945, (i.e. (3.20) does not hold) so that

ln ρ(HSOR)

ln ρ(HGS)
' 2.179 and

ln ρ(HSOR)

ln ρ(HJ)
' 4.259.

Thus the (optimised) SOR should converge about twice as quickly as Gauss-Seidel, which in
turn should converge about twice as quickly as Jacobi. Using a FORTRAN 77 implementation
of the three schemes, one finds via experiments that fastest convergence for SOR occurs at
ω ' 1.23, close to the value of ω∗. With a convergence tolerance of

∣∣∣∣e(k)
∣∣∣∣
∞ < 10−11, the

number of iterations are found to be 20 (SOR), 43 (GS) and 79 (J), in broad agreement with
the theoretical predictions; the agreement is not perfect since the actual number of iterations is
dependent upon the initial vector x(0). 2

3.2.5 The optimum SOR parameter for 2-cyclic matrices

Let λ be an eigenvalue of HJ = L + U with eigenvector q. Following (3.19), HJq = λq is
written in the partitioned form(

0 U

L 0

)(
qa

qb

)
= λ

(
qa

qb

)
, (3.24)

MATH3474 Prof. M A Kelmanson 70

from which (
0 U

L 0

)(
qa

−qb

)
= −λ

(
qa

−qb

)
,

i.e. the (non-zero) eigenvalues of HJ occur in pairs of the form ±λ.

Now let µ be an eigenvalue of Hω with eigenvector p, so that Hωp = µp. Then (3.18) gives

(I − ωL)−1 {(1− ω)I + ωU}p = µp ⇒ (µL+ U)p =
µ+ ω − 1

ω
p,

which can be written in partitioned form as(
0 U

µL 0

)(
pa

pb

)
=
µ+ ω − 1

ω

(
pa

pb

)
,

from which (
0 U

L 0

)(√
µpa

pb

)
=
µ+ ω − 1

ω
√
µ

(√
µpa

pb

)
. (3.25)

Via (3.24) and (3.25), the eigenvalues of the SOR and Jacobi matrices are related by

λ =
µ+ ω − 1

ω
√
µ

,

which is a quadratic equation in
√
µ with solutions

√
µ =

ωλ

2
±
√
ω2λ2

4
− ω + 1 ⇒ µ =

1

4

[
ωλ±

√
ω2λ2 − 4ω + 4

]2

(3.26)

in which µ may be complex.

We now assume that λ ∈ R, which is guaranteed when L is the conjugate transpose of U ,
Lij = Uji, as it is in the common event that A is real and symmetric. [Counterexamples
can easily be found that violate (3.20) and (3.21) when λ ∈ C.] Since we are comparing
the performances of convergent SOR and convergent Jacobi, we also require ρ(Hω) < 1 and
ρ(HJ) < 1, respectively giving |µ| < 1 and λ ∈ (−1, 1). We also note that ω ∈ R.

We first consider the case ω ≡ 1, when SOR is equivalent to Gauss-Seidel. Then, irrespective
of λ ∈ R, (3.26) gives (ignoring the zero eigenvalues after the first step)

µ =

{
λ

2
±
√
λ2

4

}2

= 0 or λ2 ⇒ |µ| = |λ2| = |λ|2 ⇒ ρ(HGS) = {ρ(HJ)}2 ,

so that Gauss-Seidel converges precisely twice as quickly as Jacobi, as asserted in (3.22).

Our goal now is to calculate ρ(Hω) as a function of ω. We consider only ω ∈ (0, 2) and shall
come back to justify this later. The first step is to recognise that µ switches from being real to
complex when the discriminant in (3.26) becomes negative. Specifically, for a given λ, µ is real
when 0 < ω ≤ ω̃(λ) where ω̃(λ) satisfies

λ2ω̃2 − 4ω̃ + 4 = 0

=⇒ ω̃(λ) =
2

1 +
√

1− λ2
< 2 (3.27)

MATH3474 Prof. M A Kelmanson 71

(the other root that leads to ω̃ ≥ 2 is rejected). As our concern is the spectral radius, we are
only interested in the larger root in (3.26)

µ+ =
1

4

[
ωλ+

√
ω2λ2 − 4ω + 4

]2

, (3.28)

which decreases strictly monotonically with ω ∈ (0, ω̃) for |λ| < 1 (prove this by considering
the function f(ω) = ωλ +

√
ω2λ2 − 4ω + 4 and show that f ′(ω) < 0). Next we consider

ω̃(λ) < ω < 2 where µ is complex. From (3.26),

|µ| = 1

4

∣∣∣ωλ± i√−ω2λ2 + 4ω − 4
∣∣∣2

=⇒ |µ+| = |µ−| = ω − 1. (3.29)

Thus |µ+| is independent of λ and increases strictly monotonically with ω ∈ (ω̃, 2). (3.28) and
(3.29) together gives |µ+| in the full range of ω ∈ (0, 2) at a fixed λ. The following figure plots
|µ+| as a function of ω for three different λ where we have assumed λ1 > λ2 > λ3 > 0. Since
eigenvalues of HJ occur in pair ±λ and from (3.26), both ±λ lead to the same |µ+|, we focus
only on λ > 0.

We note two important features in the above figure, both follow from (3.28). First, at a fixed
ω ∈ (0, ω̃), µ+ ∈ R increases monotonically with λ ∈ [0, 1) and second, µ+(ω) in (3.28) ends
at ω = ω̃ onto the straight line |µ+| = ω − 1. As a consequence, |µ+(ω;λ1)| ≥ |µ+(ω;λ2)| if
λ1 > λ2 for ω ∈ (0, 2). It thus follows from the definition of spectral radius that

ρ(Hω) =


1

4

[
ωρ(HJ) +

√
ω2ρ(HJ)2 − 4ω + 4

]2

, ω ∈ (0, ω∗)

ω − 1, ω ∈ [ω∗, 2),
(3.30)

with the minimum of ρ(Hω) occurs at ω∗ ≡ ω̃(ρ(HJ)). Hence, we arrive at the results (3.20)
and (3.21) that for a 2-cyclic matrix,

ω∗ =
2

1 +
√

1− ρ(HJ)2
,

ρ(Hω∗) = ω∗ − 1 .

MATH3474 Prof. M A Kelmanson 72

Since 0 < ρ(HJ) < 1 for convergent Jocabi scheme, it immediately follows from the above
expression for ω∗, or (3.20), that ω∗ ∈ (1, 2).

We now explain our reason for focusing on the range ω ∈ (0, 2). For ω ≤ ω̃, µ+ in (3.28)
increases monotonically with λ ∈ (−1, 1), the requirement µ+ < 1, and hence ρ(Hω) < 1 for
all |λ| < 1 implies

µ+(ω;λ = 1) =
1

4

[
ω +
√
ω2 − 4ω + 4

]
= (ω − 1)2 < 1

=⇒ ω(ω − 2) < 0 =⇒ 0 < ω < 2.

For ω > ω̃, |µ+| = ω − 1 < 1 gives ω < 2 again. Therefore, given ρ(HJ) < 1, the necessary
condition of ρ(Hω) < 1 for the SOR scheme to converge implies ω ∈ (0, 2).

