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Chapter 1

Introduction

“All models are wrong... but some are useful!”1

Contents
1.1 Differential equations: the basics . . . . . . . . . . . . . . . . . . 1

1.2 Initial conditions and boundary conditions . . . . . . . . . . . . . 6

1.3 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Differential equations: the basics

1.1.1 The derivative

The derivative of a function y(x) at a particular value of x is the slope of the tangent
to the curve at the point P , or (x, y(x)). Referring to Fig. 1.1, suppose y(x) is a
function; then the derivative dy/dx at a particular value of x is given by:

dy

dx
= tan Ψ

Let Q is a neighbouring point on the curve, then we can take the limit as Q tends to
P :

dy

dx
= lim

Q→P

QR

PR
= lim

δx→0

y(x + δx)− y(x)

δx

assuming that the limit exists.

1.1.2 Dependent and independent variables

When considering differential equations, it is important to distinguish between the
dependent variable(s) and the independent variable. For example, time t might be

1George Box, a mathematical modeller.
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Figure 1.1: Definition of the derivative dy/dx .

the independent variable, and the population N(t) of bacteria on a plate could be
the dependent variable: the population depends on time, time does not depend on
the population! Thus we would naturally consider dN/dt, rather than dt/dN. Both
derivatives make sense mathematically, but dN/dt makes more sense in the context
of this problem.

There can be more than one dependent variable, but there can only be one in-
dependent variable in an ordinary differential equation (ODE). In situations where
there is more than one independent variable, we obtain a partial differential equation
(PDE).

Throughout this course, when we write:

dy

dx
,

we are thinking of y as the dependent variable and x as the independent variable,
but the names x and y are not important. We could equally well think of

dy

dt
or

dx

dt

(and indeed we will do this later on in the course). Then t is the independent variable
while y and x are the dependent variables.
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1.1.3 Ordinary differential equations

An ordinary differential equation (ODE) is an equation that involves the derivatives
of a dependent variable y(x) with respect to a single independent variable x , e.g.
y ′ = dy/dx , y ′′ = d2y/dx2. The equation may also involve y itself and some given
functions of x . Sometimes, there may also be more than one dependent variable.

Examples of ODEs:

(a) y ′ = 4x7

(b) y ′′ − 7y ′ + 12y = 5 cos x

(c) y ′′ + 2(y ′)2 = 75x3

(d) yy ′′′ + 1 = 0

(e) (y ′)2 + y = 7x

(f) (y ′′)2 +
√
y = 4

The aim is to solve the differential equation, that is, to obtain a relationship be-
tween y and x that doesn’t involve any derivatives. In some cases, it is possible
to work out an explicit solution, i.e. y = f (x). In other cases, we may find a
relationship between x and y that cannot be solved explicitly for y . For example,
x − y − y 3 = C is enough to calculate y for any given value of x . This is called an
implicit solution.

The majority of the course will mainly be concerned with situations where it is
possible to calculate explicit or implicit solutions of ODEs. However, in many cases
it is impossible to write down an explicit or implicit solution. Even in these cases, we
can get useful information about qualitative features of solutions via phase plane
analysis – this will come at the end of the course 2.

1.1.4 Classification

In order to know whether or not we are in a case where an explicit solution is possi-
ble, we need to be able to classify the ODE.

Order: The order of an ODE is the largest number of times that the dependent
variable is differentiated in the ODE. So the orders of (a)–(f) above are respectively:
1, 2, 2, 3, 1, 2.

Linear: An ODE is linear if it contains no products or powers (other than one) of
the dependent variable or its derivatives. A linear ODE cannot contain terms like
y 2, yy ′,

√
y , cos y etc. Powers of the independent variable are allowed. So the

examples (a) and (b) are linear and the others are nonlinear.
2The second year course MATH2391 ‘Nonlinear differential equations’ takes this further.
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Autonomous: An ODE is autonomous if there is no explicit mention of the inde-
pendent variable. So (d) and (f) are autonomous and the others are non-autonomous.

1.1.5 General solutions and particular solutions

We now show that an ODE may, and in general will, have many solutions.

Example 1.1. Show that the function

y(x) = C1e
3x + C2e

4x +
11

34
cos x −

7

34
sin x

is an explicit solution of (b) in section 1.1.3, where C1 and C2 are arbitrary constants.
This is an example of how to verify a proposed solution to a known ODE.

Solution: Compute first and second derivatives of the function y(x):

y ′ = 3C1e
3x + 4C2e

4x −
11

34
sin x −

7

34
cos x,

y ′′ = 9C1e
3x + 16C2e

4x −
11

34
cos x +

7

34
sin x,

and then substitute into the LHS of (b):

y ′′ − 7y ′ + 12y = (9− 21 + 12)C1e
3x + (16− 28 + 12)C2e

4x

+

(
−

11

34
+

49

34
+

132

34

)
cos x +

(
7

34
+

77

34
−

84

34

)
sin x

= 5 cos x.

So LHS = RHS, and we have verified the proposed solution to a known ODE.

Note that we can assign any values to C1 and C2, and y(x) will still be a solution of
(b). Therefore y(x) represents a family of infinitely many solutions to (b). In general,
in order to solve an nth order ODE, we will have to integrate n times, introducing
n arbitrary constants C1, C2, . . . , Cn, so the explicit solution y(x) will depend on n
arbitrary constants. We will write the solution as y(x, C1, C2, . . . , Cn) and call it the
general solution of the nth order ODE. If we assign some definite values to C1, C2,
. . . , Cn, then we obtain a particular solution of the ODE. For example, a particular
solution of (b) is

y(x) = 1.5e3x + 2.4e4x +
11

34
cos x −

7

34
sin x.

Going in the other direction, given y(x, C1, C2, . . . , Cn), we can obtain an nth order
ODE that does not contain the constants, as the following examples show.

Example 1.2. Suppose that n = 2, and y(x, C1, C2) is given by y = C1e
x + C2e

2x .
Find an ODE satisfied by y that does not contain the constants C1 and C2.
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Solution: We can use the fact that the derivative of a constant is zero as the basis
of a method (“isolate and eliminate”) to find the ODE. First, multiply the expression
for y(x) through by e−x to isolate C1:

e−xy = C1 + C2e
x .

Now, we differentiate with respect to x , which will eliminate C1:
d

dx

(
e−xy

)
=

d

dx
(C1 + C2e

x)

−e−xy + e−xy ′ = C2e
x .

Now, we repeat the cycle with C2. First, isolate:

−e−2xy + e−2xy ′ = C2.

Then, eliminate:

d

dx

(
−e−2xy + e−2xy ′

)
= 0

2e−2xy − e−2xy ′ − 2e−2xy ′ + e−2xy ′′ = 0.

Finally, we re-arrange this expression to obtain the simplest form of the ODE:

e−2x (y ′′ − 3y ′ + 2y) = 0

y ′′ − 3y ′ + 2y = 0.

Example 1.3. Suppose that n = 1, and y(x, C) is:

y =
√
x2 + C

Find an ODE satisfied by y that does not contain the constant C.

Solution: First, isolate the arbitrary constant C by squaring both sides:

y 2 = x2 + C.

Then, eliminate by taking the derivative with respect to x :

2yy ′ = 2x =⇒ y ′ =
x

y
.

If we have some ideas about how the required ODE may look like, a second
method to obtain the ODE is by assuming it takes a certain form that contains some
unknown coefficients. We then determine these coefficients by substituting the given
general solution into the assumed ODE. For example, if we expect the ODE to be
second-order and linear, we can assume: y ′′+F (x)y ′+G(x)y = H(x). More details
on this method are given in the lectures and Example Sheet 1.

In general, if we are given sufficient additional information about y and its deriva-
tives, we can (usually) find the values of the constants, C1, C2, . . . , Cn. This additional
information can be given in two common ways: initial conditions and boundary con-
ditions.
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1.2 Initial conditions and boundary conditions

Initial value problem (IVP): The general solution y(x, C1, C2, . . . , Cn) comprises
the multiple solutions of an nth order ODE. Suppose now we are given the values
of y , y ′, y ′′, . . . , y (n−1) at one specific value of x = x0. These n conditions, called
the initial conditions (at x = x0), allow us to uniquely determine the values of the n
constants. In other words, we pick out the particular solution that satisfies both the
ODE and the initial conditions. This is called an initial value problem.

Boundary value problem (BVP): For an ODE of order n, the n arbitrary constants
in the general solution can also be fixed if we are given the boundary conditions, i.e.,
if we are given n values of y or its derivatives at, at least, two values of x . Finding
the particular solution that satisfies both the ODE and the boundary conditions is
called the boundary value problem.

Example 1.4. Solve
y ′′ − 3y ′ + 2y = 0

with boundary conditions y(0) = 0 and y(1) = e − e2.

Solution: Here n = 2 (a second-order ODE) and we are given the value of y at
two different values of x , so this is a boundary value problem. We already have a
general solution with two arbitrary constants from Example 1.2:

y(x) = C1e
x + C2e

2x .

Figure 1.2 plots y(x) for several different values of C1 and C2. Substitute x = 0 and
x = 1 into this explicit solution, we obtain two simultaneous equations for C1 and C2:

y(0) = C1 + C2 = 0

y(1) = C1e + C2e
2 = e − e2

The first equation gives us C2 = −C1, and the second equation gives us C1 = 1, so
the solution to our boundary value problem is:

y(x) = ex − e2x .

This is shown as the black curve in Fig. 1.2. It is the only particular solution satisfying
the given boundary conditions (indicated by the black circles).

Verification: In many of the examples we will examine, it is possible to verify
that we have the correct solution by checking that our answer indeed satisfies the
differential equation and has the right initial or boundary values.
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Figure 1.2: Some particular solutions of the ODE in Example 1.4. Only the black
curve satisfies the boundary conditions indicated by the black circles.

Check the ODE:

y ′ = ex − 2e2x

y ′′ = ex − 4e2x

LHS = y ′′ − 3y ′ + 2y = (1− 3 + 2)ex + (−4 + 6− 2)e2x = 0

RHS = 0

LHS = RHS, so the ODE is satisfied X

Check the value of y at the “boundary” x = 0 and x = 1:

y(0) = e0 − e0 = 0 X

y(1) = e − e2 X

so our solution is correct.

1.3 Mathematical modelling

1.3.1 What is a model?

Mathematical modelling of a system in an application area of interest (e.g., physics,
biology, engineering, economics, ...) is the translation of our knowledge or beliefs of
that system into the language of mathematics. It typically involves writing down an
equation (or set of equations) that describes the behaviour of the system.
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The majority of real-world problems are far too complex to model in their entirety.
The process of developing a mathematical model therefore involves making a num-
ber of simplifications along the way. We accept that all models are limited and, to
some extent, wrong; but if the modelling process is conducted with intelligence and
care, models are still undeniably useful. They enable us to understand complex
phenomena, make predictions about the future and test the impact of changes to a
system.

1.3.2 Why differential equations?

Typically, mathematical models can be classified in a number of ways, e.g., empirical
vs. mechanistic. Empirical models are often data-driven and use statistical methods
to infer relations between different variables in a system; mechanistic models use
prior knowledge and understanding of the mechanism that causes change in a sys-
tem.

In many applications, we are given the value of a quantity at the present time (for
example, the temperature of coffee in a cup, the number of people infected with a
virus, the concentration of carbon dioxide in the atmosphere) and we wish to predict
its value in the future. To do this, we must know how quickly the quantity is changing.
Mathematically, the rate of change of this quantity is its derivative. If we can write
down an equation relating this derivative to some knowledge of the mechanism that
causes the change, we can calculate how the temperature changes, how the number
of infected people changes, how the concentration of carbon dioxide changes. This
gives rise to a differential equation—which is a mechanistic model of the quantity
of interest.

1.3.3 An example: bacteria growth

Solving a problem using mathematical models often involves three steps: (1) build-
ing the model, (2) solving the equations and (3) interpreting the solutions. We illus-
trate these steps using an example of bacteria growth.

Let N(t) denote the number of bacteria growing on a plate of nutrients at time t.
Suppose that we know the initial value of N at time t = t0. At this time, the value of
N is N0, or:

N(t0) = N0. (1.1)

We want to know at what time the number of bacteria becomes 10N0.
To build a mathematical model for this problem, let us first describe how the num-

ber of bacteria changes with time using mathematics. Suppose over the time inter-
val (t, t + δt), the number of bacteria increases by an amount δN which we write as
δN = k(N, t)δt. Then

N(t + δt) = N(t) + k(N, t)δt.
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Rearranging:
N(t + δt)− N(t)

δt
= k(N, t)

In the limit of δt → 0, we get the differential equation:

dN

dt
= k(p, t).

To make progress, we need some information on the function k(N, t). Suppose by
doing experiments, we observe that the rate of change of N is proportional to N.
This means that if there are, say, twice as many bacteria, then N will grow twice as
rapidly. Mathematically,

k(N, t) = σN

where σ is a constant we can measure from experiments. Therefore, the mathemat-
ical model for our bacteria growth problem is,

dN

dt
= σN. (1.2)

To predict the value of N(t) at any time t, we must now solve the differential
equation (1.2) with the initial condition (1.1). We shall learn how to solve (1.2) in the
next chapter. For now we claim the solution to this initial value problem is

N(t) = N0e
σt . (1.3)

We can easily verify this. First we show that

N(0) = N0e
0 = N0.

Next, calculate dN/dt and verify that it satisfies the differential equation:

LHS =
dN

dt
= N0σe

σt ,

RHS = σN = σ
(
N0e

σt
)
.

So LHS = RHS as required.
Finally from the solution (1.3), we extract the answer to the question we ask at

the beginning of this section. Let t1 be the time N = 10N0. Then

N(t1) = N0e
σt1 = 10N0,

which gives

t1 =
1

σ
log 10.

So we see that t1 increases when σ decreases. Does this make sense?
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Chapter 2

Solution of first-order ODEs

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Separable first-order ODEs . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Exact first-order ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Integrating Factor (IF) . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Linear first-order ODEs . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Introduction

A first-order ODE involves the dependent variable y and its first derivative y ′ =

dy/dx . There will be a single initial value: y = y0 when x = x0 (often x0 = 0, but not
always). Then the general problem takes the form:

y ′ = f (y , x) with y(x0) = y0, (2.1)

where f (y , x) is a given function of y and x .
Some ODEs are easy to solve, for example, if the function f (x, y) depends only

on x :
y ′ = f (x),

which is solved by y =
∫
f (x) dx +C, where C is an arbitrary constant of integration.

However, just integrating like this is, in general, not possible.
We will consider three important special cases of first-order ODEs: separable,

exact and linear, and show in each case how to find explicit solutions. Note that
these three cases are not mutually exclusive, e.g. a linear ODE can be separable.
We will also consider some examples that are not separable, exact or linear, but that
can be transformed into one of these forms.

11
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2.2 Separable first-order ODEs

A first-order ODE is separable if it can be written in the form:

dy

dx
= a(x)b(y), (2.2)

where a(x) and b(y) are functions of x and y respectively. To solve this equation,
we follow these steps:
1. Bring the b(y) over to the other side:

1

b(y)

dy

dx
= a(x)

2. Now integrate with respect to x , not forgetting the constant of integration:∫
1

b(y)

dy

dx
dx =

∫
a(x) dx + C

3. Next, change variables in the integral for y :∫
1

b(y)
dy =

∫
a(x) dx + C

4. If we can evaluate these indefinite integrals (depends on the functions a and b),
and then re-arrange the answer, we can write down the general solution y(x) ex-
plicitly.
5. Finally, if we are given the initial condition y(x0) = y0, we can evaluate the
constant of integration C, and so find the particular solution. (If you don’t need
the general solution, it is sometimes easier to do step 5 after doing the integrals but
before solving for the explicit solution.)
6. And last of all, we can verify that the answer satisfies the ODE and the initial
value, by working out the LHS and RHS of the original ODE.

Example 2.1. Consider

dy

dx
=

sin x

2y
with y

(π
2

)
= −2.

Find the explicit solution, and verify that the answer is correct.

Solution: Here,

a(x) = sin x and b(y) =
1

2y

Proceed as above:
1. Bring the b(y) over to the other side:

2y
dy

dx
= sin x
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2. and 3. Now integrate with respect to x , not forgetting the constant of integration,
and change variables in the integral for y :∫

2y
dy

dx
dx =

∫
2y dy =

∫
sin x dx + C

4. We can evaluate these indefinite integrals:

y 2 = − cos x + C

and we can re-arrange to find y explicitly by taking the square root of both sides:

y = ±
√
C − cos x.

This is the general solution.
5. We use y(π

2
) = −2 to evaluate C and determine whether we take the ‘+’ or ‘−’

square root:
−2 = ±

√
C so C = 4,

and we take the negative square root. We therefore can write the particular solution:

y = −
√

4− cos x.

6. Finally, we verify that this is correct. First, check the initial condition

y
(π

2

)
= −

√
4− cos

π

2
= −2;

then check the ODE by differentiating y with respect to x :

y ′ = −
1

2
(4− cos x)−

1
2 (sin x) =

1

2

sin x

(−
√

4− cos x)
=

sin x

2y
.

Thus, we have verified that our solution solves the initial value problem.

Example 2.2. Find (and verify) the solution of

dy

dx
+ 4 = y 2 with y(0) = 4.

Solution: Separate and integrate (using partial fractions):∫
1

y 2 − 4
dy =

∫
dx

1

4

∫
1

y − 2
dy −

1

4

∫
1

y + 2
dy =

∫
dx

1

4
log |y − 2| −

1

4
log |y + 2| = x + C

log

∣∣∣∣y − 2

y + 2

∣∣∣∣ = 4x + 4C

y − 2

y + 2
= Ae4x (define a new constant A = e4C).
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We can apply the initial condition y(0) = 4 at this stage:

4− 2

4 + 2
= Ae0 =⇒ A =

2

6
=

1

3
.

Finally, rearrange for y:

y(x) = 2

(
3 + e4x

3− e4x

)
Example 2.3. We can also solve an initial value problem by directly finding the par-
ticular solution that satisfies the initial condition without first solving for the general
solution. Let’s solve Example 2.1 again using this approach.

Instead of indefinite integrals, we use definite integrals whose lower limits are de-
termined by the given initial condition. The initial condition in Example 2.1 is that
y = −2 when x = π

2
, so ∫ y

−2
(2ŷ)dŷ =

∫ x

π/2

sin x̂ d x̂ .

The upper limits are the dependent variable y and the independent variable x of
the ODE. Pay attention not to use the same symbol to denote both the dummy
integration variable and the upper limit. Integrating,[

ŷ 2
]y
−2 = [− cos x̂ ]xπ/2

y 2 − 4 = − cos x + cos(
π

2
)

y 2 = 4− cos x

Picking the negative square root gives us the same answer as before:

y = −
√

4− cos x

2.2.1 ODEs of homogeneous degree—reduction to separable form

Equations of homogeneous degree (sometimes referred to as ‘homogeneous ODEs’)
are ODEs that can be arranged into the form:

dy

dx
= g

(y
x

)
(2.3)

that is, the RHS is a function of the combination y
x
. We can tell whether we can write

f (x, y) = g( y
x

) either by explicitly re-arranging or by showing that f (tx, ty) = f (x, y)

for any t.
The differential equation can then be solved by writing

v(x) =
y(x)

x
,



Chapter 2 – Solution of first-order ODEs 15

where v(x) is a new, unknown dependent variable. By the product rule,

dy

dx
=

d

dx
(xv) = v + x

dv

dx

Therefore equation (2.3) becomes

v + x
dv

dx
= g(v)

dv

dx
=
g(v)− v

x
.

This is a separable equation for v and can be solved by the method of Section 2.2.
Remember to return to the original dependent variable y(x) at the end of the calcu-
lation.

Example 2.4. Consider

x
dy

dx
= x + 3y with y(1) = 2.

Find the explicit solution, and verify that the answer is correct.

Solution: Divide the equation by x , we get

y ′ = 1 +
3y

x
= g

(y
x

)
.

The RHS is clearly of the form g( y
x

). If we were less easily able to tell, we could also
check by writing f (x, y) = 1 + 3y

x
, and then

f (tx, ty) = 1 +
3ty

tx

= 1 +
3y

x
= f (x, y).

Hence, the equation is homogeneous.
Either way, we find that we can write y = xv , and g(v) = 1 + 3v . By the product

rule, we obtain y ′ = v + xv ′, therfore

v + xv ′ = g(v) = 1 + 3v

or
v ′ =

1 + 2v

x

This is separable, so we use the method of section 2.2:
1. Bring the function of the dependent variable to the LHS:

1

1 + 2v

dv

dx
=

1

x
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2. and 3. Now integrate with respect to x , not forgetting the constant of integration,
and change variables in the integral for v :∫

1

1 + 2v

dv

dx
dx =

∫
1

1 + 2v
dv =

∫
1

x
dx + C

4. We can evaluate these indefinite integrals:

1

2
log |1 + 2v | = log |x |+ C

and we can re-arrange to find v explicitly by multiplying by 2 and taking exponentials
of both sides:

exp(log |1 + 2v |) = exp (2 log |x |+ 2C)

⇒ |1 + 2v | = x2e2C.

Remove the absolute value signs:

1 + 2v = ±e2C x2

If we define K = ±e2C (a new constant), we can solve for v :

v =
1

2

(
Kx2 − 1

)
Recall that v = y/x , so we multiply both sides by x to get the general solution:

y =
x

2

(
Kx2 − 1

)
5. We use y(1) = 2 to evaluate K:

2 =
1

2
(K − 1) so K = 5

and so we write the particular solution:

y =
x

2

(
5x2 − 1

)
6. We verify that this is correct. First we check y(1) = 1

2
(5 − 1) = 2, which is OK,

and then we differentiate and substitute into the ODE:

LHS = xy ′ = x
d

dx

1

2
(5x3 − x) =

x

2

(
15x2 − 1

)
RHS = x + 3y =

x

2

(
15x2 − 1

)
= xy ′

so LHS = RHS and hence this is OK too.



Chapter 2 – Solution of first-order ODEs 17

Example 2.5. Find (and verify) the general solution of

x2
dy

dx
= y 2 + 3xy + x2

Solution: First, divide through by x2 to confirm that this is a first-order homogeneous
ODE:

dy

dx
=
(y
x

)2
+ 3

y

x
+ 1 = g(

y

x
).

Then we can write y = xv , and g(v) = v 2 + 3v + 1. Since y ′ = v + xv ′, we get

xv ′ = v 2 + 2v + 1.

This is a separable ODE for v(x). Separate and integrate:

dv

dx
=

(v + 1)2

x∫
dv

(v + 1)2
=

∫
dx

x

−(v + 1)−1 = log |x |+ C

v = −1−
1

log |x |+ C
.

Finally, transform back to the original dependent variable y = xv :

y(x) = −x
(

1 +
1

C + log |x |

)
.

2.3 Exact first-order ODEs

Suppose the general solution of some first-order ODE can be written in the form

H(x, y) = C,

where H is a function of two variables whose partial derivatives with respect to x
and y are themselves differentiable, and C is a constant. For each value of C, this
equation defines a curve in the (x, y) plane. If we think of y as a function of x along
these curves, we can write:

H(x, y(x)) = C

in which H(x, y(x)) is considered as a function x . Differentiate the above equation
with respect to x using the chain rule, we obtain:

d

dx
H(x, y(x)) =

∂

∂x
H(x, y) +

∂

∂y
H(x, y)

dy

dx
= 0. (2.4)
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Also recall that if ∂H
∂x

and ∂H
∂y

are differentiable, then

∂2H

∂x∂y
=

∂2H

∂y∂x
. (2.5)

Now, suppose that we have an ODE of the form:

M(x, y) + N(x, y)
dy

dx
= 0, (2.6)

and the partial derivatives of M and N exist. We ask two questions. First, under
what circumstances can we find a function H(x, y) that satisfies

∂H

∂x
= M(x, y) and

∂H

∂y
= N(x, y) (2.7)

so that (2.6) becomes

M(x, y) + N(x, y)
dy

dx
=
∂H

∂x
+
∂H

∂y

dy

dx
=
dH

dx
.

If such an H exists, it immediately follows that (2.6) reduces to dH/dx = 0 and the
general solution is H(x, y) = C.

From (2.5), we see that the condition on M and N for (2.7) to be true is:

∂M

∂y
=
∂N

∂x
.

If this condition is satisfied, the ODE (2.6) is called exact. (This is because dH =
∂H
∂x
dx + ∂H

∂y
dy is called the total or exact differential of H.)

The second question is, given that the ODE is exact (∂M
∂y

= ∂N
∂x

), how can the
function H be found? From the first equation in (2.7), we integrate with respect to x ,

H(x, y) =

∫
M(x, y) dx + C1(y)

where C1(y) is a function of y only. To determine C1(y), we use the above expression
in the second equation of (2.7):

N(x, y) =
∂H

∂y
=

∂

∂y

∫
M(x, y) dx +

dC1
dy

or
dC1
dy

= N(x, y)−
∂

∂y

∫
M(x, y) dx.

This is an ODE with y as the independent variable which we need to solve to obtain
C1(y). (It is clearly also possible to start from the second equation in (2.7) to get∫
N(x, y) dy + C2(x) and so obtain an ODE with the independent variable x .)

Example 2.6. Find (and verify) the solution of

2xy
dy

dx
− 2x + y 2 = 0 with y(1) = 2.
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Solution: Here M(x, y) = −2x + y 2 and N(x, y) = 2xy . We can verify that:

∂M

∂y
= 2y and

∂N

∂x
= 2y ,

so the ODE is exact. Therefore there is a function H(x, y) that satisfies ∂H/∂x = M

and ∂H/∂y = N. First integrate ∂H/∂y = N with respect to y ,

H(x, y) =

∫
N(x, y) dy + C1(x)

= xy 2 + C1(x).

Then take the derivative with respect to x and use ∂H/∂x = M

y 2 +
dC1
dx

= −2x + y 2

dC1
dx

= −2x

C1(x) = −x2 + c

for some constant c . Since H(x, y) = xy 2 + C1(x), the general solution is

H(x, y) = xy 2 − x2 = C.

Putting in the initial value y(1) = 2 gives C = 3, so the particular solution is

xy 2 − x2 = 3.

In this case, this can be written explicitly as

y =

√
x2 + 3

x
,

where we have chosen the positive square root to satisfy y(1) = 2. To verify that
this is correct, we check y(1) =

√
4 = 2, then we differentiate

y ′ =
1

2

(
x2 + 3

x

)− 1
2 (2x)x − (x2 + 3)

x2
=

1

2y

(
x2 − 3

x2

)
and substitute into the ODE:

2xy y ′ =
x2 − 3

x

y 2 − 2x =
x2 + 3

x
− 2x =

3− x2

x

so 2xy y ′ − 2x + y 2 = 0 and the ODE is satisfied.
Exercise: attempt the anti-partial differentiation starting from

∫
M(x, y) dx .

Note that a separable ODE y ′ = a(x)b(y) (cf. section 2.2) written in the form

1

b(y)

dy

dx
= a(x)

is exact, since M = −a(x) is not a function of y and N = 1
b(y)

is not a function of x .



20 2.4 Integrating Factor (IF)

2.4 Integrating Factor (IF)

If an ODE is not exact, sometimes multiplying it by a function of x or y (or of both)
can make it exact. Such functions are called integrating factors.

Example 2.7. Find an integrating factor to solve

sin y + cos y
dy

dx
= 0.

Solution: The given ODE is not exact because

∂

∂y
sin y = cos y is not equal to

∂

∂x
cos y = 0.

An integrating factor to this ODE is ex . Multiply by ex to get

ex sin y + ex cos y
dy

dx
= 0.

Let M(x, y) = ex sin y and N(x, y) = ex cos y . We now see that

∂M

∂y
= ex cos y is equal to

∂N

∂x
= ex cos y

so the new equation is exact and there is a function H(x, y) that satisfies ∂H/∂x = M

and ∂H/∂y = N. Obviously the new equation has the same solution as the original
equation. We now determine H as follows. From ∂H

∂x
= M, we get

H(x, y) =

∫
M(x, y)dx +K(y) = ex sin y +K(y)

∂H

∂y
= ex cos y +

dK(y)

dy

But we know that ∂H
∂y

= N, so

dK(y)

dy
= 0 =⇒ K(y) = −C where C is an arbitrary constant.

Therefore the general solution is H(x, y) = 0 or

ex sin y = C.

There can more than one integrating factor for a given ODE. And in general there
is no systematic way to find the integrating factors of an ODE. However for a linear
first-order ODE, we shall see in the next section that an integrating factor can be
systematically determined.
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2.5 Linear first-order ODEs

Linear first-order ODEs are an important class of ODEs of the form:

y ′ + P (x)y = Q(x) with y(x0) = y0, (2.8)

where P (x) and Q(x) are given functions of x . This equation can be solved as
follows. Multiplying the ODE (2.8) by R(x) yields:

R(x)y ′ + P (x)R(x)y = Q(x)R(x). (2.9)

Suppose that we could choose R(x) so that the left-hand side of this was the deriva-
tive of R(x)y(x). Then

R(x)y ′ + P (x)R(x)y =
d

dx
(R(x)y(x)) (2.10)

or R(x)y ′ + P (x)R(x)y = R(x)y ′ + R′(x)y

We see that this can be achieved if

dR

dx
= RP (x).

Recall that P (x) is given to us, so this equation is separable, and can be solved:

1

R

dR

dx
= P∫

1

R
dR =

∫
P (x) dx

log |R| =

∫
P (x) dx + C

R = ±eC exp

(∫
P (x) dx

)
.

Since multiplying R by a constant won’t change its ability to convert y ′ + P (x)y into
(Ry)′, we can choose the + sign and set eC to 1, resulting in an expression for R:

R(x) = exp

(∫
P (x) dx

)
. (2.11)

R(x) is an integrating factor of the first-order linear ODE (2.8) with the property
(2.10). We now have a method for solving first-order linear ODEs:
1. Arrange the ODE into the form of (2.8):

y ′ + P (x)y = Q(x)

and calculate the integrating factor R(x):

R(x) = exp

(∫
P (x) dx

)
.
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2. Multiply both sides of the ODE by R(x) and use R′ = RP to write the LHS as a
perfect derivative:

Ry ′ + RPy = Ry ′ + R′y =
d

dx
(Ry) = RQ

3. Integrate both sides with respect to x , not forgetting the constant of integration:∫
d

dx
(Ry) dx = Ry =

∫
RQdx + C

In principle, we can evaluate the integral on the RHS.
4. Divide by R(x) to get the general solution:

y(x) =
1

R(x)

∫
R(x ′)Q(x ′) dx ′ +

C

R(x)
.

Note that we have changed the dummy variable in the integral to x ′ so that we don’t
confused it with the independent variable x .
5. Finally, we can use the initial condition y(x0) = y0 to evaluate the constant of
integration C, and so find the particular solution.
6. Last of all, we can verify that the answer satisfies the ODE and the initial value.

Example 2.8. Consider

dy

dx
− xy = x with y(0) = 5.

Find the explicit solution, and verify that the answer is correct.

Solution: Here,
P (x) = −x and Q(x) = x

Proceed as above:
1. Calculate the integrating factor R(x):

R(x) = exp

(∫
(−x) dx

)
= exp

(
−
x2

2

)
= e−

x2

2

2. and 3. Multiply both sides by R(x) and integrate:∫
d

dx
(R(x)y) dx = R(x)y =

∫
xe−

x2

2 dx + C = −e−
x2

2 + C

using the substitution u = − x2

2
.

4. Divide by R(x) to get y :

y = −1 + Ce
x2

2
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This is the general solution.
5. Use the initial condition to evaluate C:

y(0) = 5 = −1 + Ce0 = −1 + C, ⇒ C = 6

so the particular solution is

y = 6e
x2

2 − 1

6. Verify the initial condition: y(0) is indeed 5, and verify that the ODE is satisfied:

y ′ = 6xe
x2

2

LHS = y ′ − xy = 6xe
x2

2 − (−x + 6xe−
x2

2 ) = x = RHS OK

Example 2.9. Find (and verify) the general solution of

(x + 1)y ′ + y = x(x + 1)

Solution: Divide by (x + 1), so the ODE

y ′ +
y

x + 1
= x

is first-order linear with P (x) = 1
x+1

and Q(x) = x . The integrating factor is:

R(x) = exp

(∫
P (x) dx

)
= exp

(∫
1

x + 1
dx

)
= exp (log |x + 1|) = x + 1.

Multiply by R and integrate:

d

dx
((x + 1)y) = x(x + 1)

(x + 1)y =

∫
(x2 + x) dx + C

(x + 1)y =
1

3
x3 +

1

2
x2 + C.

Therefore:

y(x) =
1
3
x3 + 1

2
x2 + C

x + 1
.

2.5.1 Bernoulli’s equation

Jacob Bernoulli (1654–1705) was one of the many prominent mathematicians in the
Bernoulli family. Bernoulli’s equation is an equation of the form:

dy

dx
+ P (x)y = Q(x)y n (2.12)

http://en.wikipedia.org/wiki/Jacob_Bernoulli
http://en.wikipedia.org/wiki/Bernoulli_differential_equation
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where n 6= 0, 1. If n = 0 the equation is first-order linear and if n = 1, we can simply
write (P (x)−Q(x))y , and we get a first-order linear ODE.

This can be solved by writing

z(x) = y 1−n,

where z(x) is a new dependent variable. Then

dz

dx
= (1− n)y−n

dy

dx
(2.13)

Now divide (2.12) by y n to get

y−n
dy

dx
+ P (x)y 1−n = Q(x)

1

1− n
dz

dx
+ P (x)z = Q(x)

dz

dx
+ (1− n)P (x)z = (1− n)Q(x)

This is a first-order linear ODE for z and can be solved by the method of section 2.5.
Remember to return to the original dependent variable y(x) at the end of the calcu-
lation.

Example 2.10. Consider
dy

dx
+ 4y = exy 3

Find the general solution, and verify that the answer is correct.

Solution: Here n = 3, P (x) = 4 and Q(x) = ex . Write z(x) = y 1−n = y−2 and
differentiate,

dz

dx
= −2y−3

dy

dx

Divide the ODE by y 3 to get

y−3
dy

dx
+ 4y−2 = ex

−
1

2

dz

dx
+ 4z = ex

dz

dx
− 8z = −2ex

This is a first-order linear ODE for z , so we use the method of section 2.5.
1. We calculate the integrating factor R(x):

R(x) = exp

(∫
(−8) dx

)
= e−8x
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2. and 3. Multiply both sides by R(x) and integrate:

e−8x
dz

dx
− e−8x8z = −2exe−8x

d

dx
(ze−8x) = −2e−7x

ze−8x =

∫
(−2e−7x)dx + C =

2

7
e−7x + C

4. Divide by R(x) to get z :

z =
2

7
ex + Ce8x

Remember that z = y−2, so y = ±z−1/2:

y(x) =
±1√

2
7
ex + Ce8x

This is the general solution.
6. Verify that the ODE is satisfied (we’ll only do the + case here):

y ′ = −
2
7
ex + 8Ce8x

2
(
2
7
ex + Ce8x

)3/2
Then

LHS = y ′ + 4y = −
2
7
ex + 8Ce8x

2
(
2
7
ex + Ce8x

)3/2 +
4(

2
7
ex + Ce8x

)1/2
=
−1
7
ex − 4Ce8x + 8

7
ex + 4Ce8x(

2
7
ex + Ce8x

)3/2
=

ex(
2
7
ex + Ce8x

)3/2 = exy 3 = RHS OK

Example 2.11. For x > 0, find the general solution of

dy

dx
+
y

x
= 2x3y 4

Solution: Let z = y−3, hence z ′ = −3y−4y ′. Then multiply the ODE by y−4 and
change variables:

y−4
dy

dx
+

1

x
y−3 = 2x3

dz

dx
− 3x−1z = −6x3
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The integrating factor for this new ODE is R(x) = exp(
∫

(−3x−1)dx), we take R =

x−3. Multiplying by R then gives,

x−3
dz

dx
− 3x−4z = −6

d

dx

(
x−3z

)
= −6

x−3z = −6x + C

Reverting back to y and rearranging, we get:

y(x) =
(
−6x4 + Cx3

)−1/3
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Applications of first-order ODEs
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In this chapter, we apply the theory and solution methods of first-order ODEs from
chapter 2 to a number of application areas. For each modelling problem, the goal is
to formulate the ODE that must be solved, along with its initial condition, and use an
appropriate method to find the particular solution. The ‘maths’ in this chapter is no
more difficult than what we have already seen in chapter 2. However, before getting
to the maths, we have to learn how to formulate the problem from a description (in
words) of a certain situation. So, while the maths might be no more difficult, the
tricky part here is coming up with the correct ODE in the first place. Throughout this
chapter, we consider the situation carefully and translate the words describing this
situation into an ODE—this is a key part of the process of mathematical modelling.

3.1 Radioactivity and Carbon dating

3.1.1 Decay and half-life

Atoms of a given radioactive isotope have a fixed percentage chance of decaying
in any given time period. Provided a sufficiently large number of atoms are consid-
ered as a mass, the number of decays that occur in a fixed time period is simply
proportional to the number of atoms and the length of time.

Let N(t) be the number of atoms at time t and consider this number a (short)
time later N(t + δt). Assume we know that there are N0 atoms at a particular time

27
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t0. In the time interval between t and t + δt, the number of atoms decreases by an
amount proportional to (i) the number itself at that time (i.e., N(t)) and (ii) the length
of the time interval (i.e., δt). Mathematically, this translates to:

N(t + δt) = N(t)− kN(t)δt

where k is a positive constant and we take the negative sign since the number is
decreasing. Rearranging:

N(t + δt)− N(t)

δt
= −kN

and taking the limit of small δt (see chapter 1):

dN

dt
= −kN with initial condition N(t0) = N0. (3.1)

This is a separable ODE. We can solve this by separating and integrating:

∫
1

N

dN

dt
dt =

∫
1

N
dx = −

∫
k dt + C

log |N| = −kt + C

|N| = eCe−kt

Use the fact that N > 0 and set A = eC:
N = Ae−kt

We can now use the initial condition N(t0) = N0 to find A:

N0 = Ae−kt0 =⇒ A = N0e
kt0

which results in the particular solution for N(t):

N = N0e
−k(t−t0). (3.2)

Note that the symbol N for the dependent variable is our choice; we could also
choose to denote the number of atoms by, for example, x and the problem we must
solve is the same. For this problem (and many others), the independent variable
is time. For modelling problems, we try to keep a sensible naming convention, so
if we are discussing rates of change with respect to time, we almost always name
the independent variable as t. However, there is nothing wrong mathematically with
choosing another symbol for time!
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t

N

N(t)

t0 t0 + Th

N0

N0
2

What does this solution (3.2) look like? The blue line in this figure plots N(t) for a
general initial condition N(t0) = N0; it is an example of exponential decay where k
is the rate of decay.

Half-life is the time required for a quantity to reduce to half of its initial value. In
radioactivity, the half-life, which we will denote Th, is the time after which half of the
isotope has decayed. Initially, at time t0, there are N0 atoms. So, we are interested
in the time Th in the future at which there are 1

2
N0 atoms. Mathematically, this means

N(t0 + Th) = 1
2
N0. Using the solution (3.2) at time t0 + Th:

N(t0 + Th) =
1

2
N0 =⇒ N0e

−k(t0+Th−t0) = N0e
−kTh =

1

2
N0.

Rearranging, we find an expression for the half-life in terms of the rate of decay k :

Th =
1

k
log 2.

3.1.2 Carbon dating

There are three isotopes of Carbon: 12C, 13C and 14C. Almost all Carbon is made
up of the first two (12C and 13C) because 14C is radioactive: it decays with a half-life
of 5730 years to form 14N, a Nitrogen isotope. Although it decays quite quickly, it is
constantly being produced in the upper atmosphere by the action of cosmic rays.
The equilibrium level of 14C is about 1 part per trillion (1012).
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When an organism dies, it ceases to absorb Carbon from the environment, so the
amount of 14C it contains will decrease as this decays radioactively. The time since
the death of the organism can be estimated by measuring how much 14C remains.

For 14C, the half-life is Th = 5730 years, so k = 1
Th

log 2 = 0.000121/year.

Example 3.1. A fossilised bone is found to contain 0.1% of its original 14C. Find the
age of the fossil.

Solution: Let t be today’s date, and suppose the fossil is T years old, so it was
fossilised at time t0 = t − T . At this time it had x0 14C, and now it has 0.001x0. So
the number of atoms x at time t is

x(t) = 0.001x0 = x0e
−k(t−t0) = x0e

−kT ,

which we can solve for T :

T = −
1

k
log 0.001 =

1

k
log 1000 ≈ 57100.

Therefore the fossil is approximately 57100 years old.

3.2 Newton’s law of cooling

Sir Isaac Newton FRS: 1643–1727, English physicist, mathematician, astronomer,
natural philosopher, alchemist and theologian.

Newton’s law of cooling states that if an object is hotter than the ambient tem-
perature, then the rate of change of the object’s temperature is proportional to the
temperature difference between the object and its surrounding. Mathematically, we
write:

dΘ

dt
= −k(Θ− A), with Θ(t0) = Θ0 (3.3)

where Θ(t) is the object’s temperature, A is the ambient temperature (a constant1),
t is time and k is a positive constant. This is a first-order linear (separable) ODE:

dΘ

dt
+ kΘ = kA

so the integrating factor is R(t) = exp
(∫
k dt

)
= exp (kt). If we multiply (3.3) by this

integrating factor, we get:
d

dt

(
Θekt

)
= kAekt

Integrating this, using the initial condition and rearranging results in:

Θ(t) = A+ (Θ0 − A)e−k(t−t0)

1Note that, in more complicated examples, the ambient temperature may be time-dependent A =

A(t).

http://en.wikipedia.org/wiki/Isaac_Newton
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Exercise: Verify that this expression is correct.
Note that as t → ∞, we have Θ(t) → A, i.e., the temperature decays exponen-

tially to the ambient temperature.

Example 3.2. A horse shoe is heated to 100◦C and then placed in a room to cool.
The temperature of the room is 10◦C. After 20 minutes, the temperature of the bar
is 50◦C. It is safe to handle at 30◦C; how long must we wait to handle it?

Solution: We consider time in minutes with t0 = 0 the time at which the metal bar
is placed in the room. We use the particular solution to the cooling problem with
Θ(t0 = 0) = Θ0 = 100, A = 10:

Θ(t) = 10 + 90e−kt ,

where k is the (unknown) decay constant. Next we “translate” the remainder of the
question into equation form:

• “After 20 minutes, the temperature of the bar is 50◦C” translates to Θ(20) = 50.

• “It is safe to handle at 30◦C; how long must we wait to handle it?” This is the
crux of the problem: find T such that Θ(T ) = 30.

We use the first point to determine k :

Θ(20) = 10 + 90e−20k = 50 =⇒ e−20k =
40

90
=⇒ −20k = log

4

9
=⇒ k = 0.0405...

Given this k , we can find T such that Θ(T ) = 30:

Θ(T ) = 10 + 90e−kT = 30 =⇒ e−kT =
20

90
=⇒ −kT = log

2

9
=⇒ T ≈ 37mins.

So, we must wait approximately 37 minutes to handle the metal bar.

3.3 Population growth models

Let p(t) be the population of a country at time t. The rate of change of population
in a country is equal to the rate at which people enter the country (e.g., births, immi-
gration) minus the rate at which people leave the country (e.g, deaths, emigration).
Hence we can write:

dp

dt
= B(p, t)−D(p, t) +M(p, t),

where
B(p, t) represents births,
D(p, t) represents deaths,
M(p, t) represents net migration into the country (hence the plus sign).
The processes B, D and M may depend on the population p itself and the time t.
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3.3.1 The Malthusian model

Thomas Robert Malthus FRS: 1766–1834, English clergyman, political economist
and demographer.

Malthus (1798) suggested a simple model that has no migration, so M = 0. For
the birth and death rates, he assumed they are proportional to the population p:

B(p, t) = bp(t), and D(p, t) = dp(t),

where b and d are positive constants, so

dp

dt
= (b − d)p = γp (3.4)

where γ = b − d is a constant called the growth rate. Note that depending on the
values of b and d , γ can be positive, zero or negative. (3.4) is a separable ODE
which we can solve with the initial condition p(t0) = p0:

p(t) = p(t0)e
γ(t−t0).

What does this solution look like? It clearly depends on γ: the plot below shows three
possible solutions p(t) depending on the sign of γ. Its sign determines whether the
population will increase (more births than deaths) or decrease (more deaths than
births). If the birth and death rate are the same (so γ = 0), then the population is
steady, i.e., it does not change in time. As a model it is quite limited: it predicts that
the population will increase without bound if γ > 0 and the population will die out if
γ < 0.

t

p

γ > 0

γ = 0

γ < 0

t0

p(t0)

http://en.wikipedia.org/wiki/Thomas_Malthus
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Example 3.3. In 1770, the population of Great Britain was estimated to be 6.4 mil-
lion. By 1790, the population had grown to 8 million. Estimate γ, and predict the
population in the year 2012.

Solution: Take t0 = 1770, and p(t0) = 6.4×106. We know that p(1790) = 8×106.
So

p(1790) = 8× 106 = p(t0)e
(1790−t0)γ = 6.4× 106 × e20γ.

Therefore

γ =
1

20
log

(
8× 106

6.4× 106

)
= 0.0112 year−1

Now we can get p(2012):

p(2012) = p(t0)e
(2012−t0)γ = 6.4× 106 × e242×0.0112 = 96× 106

In fact, the current population of Great Britain is about 61 × 106 so the estimate is
approximately 50% too large. This is not surprising, since we have not included
effects like immigration, birth and death rates that change with time, changes in
agriculture that allow more food production etc.

t (years)

p (millions)
Model

1770
1790

1851

1921

2008

1800 1850 1900 1950 2000

20

40

60

80
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3.3.2 The Logistic model

Pierre François Verhulst: 1804–1849, Belgian mathematician.
One problem with the Malthusian model is that it predicts either the population

grows without bound (γ > 0) or that it decays to extinction (γ < 0), which is fairly
unrealistic. Of course, populations cannot grow without bound. As the population
becomes too large, there can be competition for food, resources or space which
prevent the population from growing further. Such self-limiting processes can be
modelled by letting the growth rate γ depend on p.

Suppose that there is a limiting population p∞ > 0 such that

the population p grows (γ > 0) when p < p∞,

the population p decays (γ < 0) when p > p∞,

the population p stops changing (γ = 0) when p = p∞.

The simplest model of this would have γ depending linearly on p:

γ = µ

(
1−

p

p∞

)
where the positive constant µ is the growth rate in the limit of very small population
(p → 0). Using this growth rate in dp

dt
= γp results in the logistic equation:

dp

dt
= µp

(
1−

p

p∞

)
with p(t0) = p0. (3.5)

Comparing to (3.4), there is now an extra quadratic (p2) term on the right which limits
the growth of p. This population model was first written down by Verhulst (1838) and
is a successful model of yeast, bacteria or fruit flies (in a controlled environment),
but still too simple for more realistic situations.

Nonetheless, we can solve the nonlinear separable ODE (3.5) (it is also a Bernoulli
equation): ∫

1

p
(

1− p
p∞

) dp =

∫
µdt + C

∫
p∞

p(p∞ − p)
dp =

∫
µdt + C∫ (

1

p
+

1

p∞ − p

)
dp = µt + C

log |p| − log |p∞ − p| = µt + C
p

p∞ − p
= Aeµt

where A = ±eC and we have used partial fractions to do the integral. We can now
use the initial condition p(t0) = p0 to find A:

A =
p0

p∞ − p0
e−µt0 so

p

p∞ − p
=

p0
p∞ − p0

eµ(t−t0)

http://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
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Now rearrange to find p(t):

p =
p0

p∞ − p0
(p∞ − p)eµ(t−t0)

(p∞ − p0)p + p0pe
µ(t−t0) = p0p∞e

µ(t−t0)

p[(p∞ − p0) + p0e
µ(t−t0)] = p0p∞e

µ(t−t0)

p(t) =
p∞p0e

µ(t−t0)

(p∞ − p0) + p0eµ(t−t0)

p(t) =
p∞p0

(p∞ − p0)e−µ(t−t0) + p0

Exercise: Verify that this expression has p(t0) = p0 and that it satisfies the logistic
equation (3.5). Verify also that as t →∞, we have p(t)→ p∞.

t

p

p∞

t0

p0 = p(t0)

The graph above illustrates that if 0 < p0 < p∞, the population grows, and sat-
urates at p∞, but if p0 > p∞, the population decays down to p∞ (assuming that
p∞ > 0). What happens if p0 = 0?

3.4 Mixing problems

In mixing problems, we typically consider a substance that is dissolved in a fluid, and
that the fluid is entering and leaving some enclosed volume V which may or may not
be constant. Here, fluid can mean a liquid or a gas, so we could be dealing with salt
(substance) dissolved in water (fluid) in a container or tank (enclosed volume), or a
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pollutant (substance) mixed in air (fluid) of a room (enclosed volume). Furthermore,
the rates of entering and leaving may be different.

We are interested in how the amount x(t), or the concentration C(t), of the sub-
stance in the volume of fluid changes over time. By definition, concentration is the
amount of substance per unit volume:

C(t) =
x(t)

V (t)
.

It follows that the amount x(t) (or mass) of substance at time t equals the concen-
tration C(t) multiplied by the volume V (t): x(t) = C(t)V (t).

Our goal is to find an ODE for x(t) (or C(t)). To do so, we use conservation
of mass and make some simplifying modelling assumptions. The conservation of
mass, in this context, means that the rate of change of x(t) is equal to the rate of
inflow of x(t) minus the rate of outflow of x(t):(

Rate of change
of x(t)

)
=

(
Rate of inflow

of x(t)

)
−
(

Rate of outflow
of x(t)

)
.

This is a similar idea to the population models: rate of input minus rate of output
gives that net rate of change of a quantity. The key modelling assumption is that
mixing is infinitely fast so that the concentration is uniform in the fluid. This is seldom
the case in real life, but making this assumption allows us to make some progress2.

Suppose we have a container full of a salt solution of a certain concentration C(t)

and x(t) is the amount (in kg) of salt dissolved in the liquid in the container at any
time t. Let’s say we pump in a solution with a different concentration Cin at a certain
rate rin, mix well and extract the mixture at a different rate rout . The flow rate rin and
rout are, respectively, the volume of liquid entering and leaving the container per unit
time. We want to know the amount x(t), or concentration C(t), in the container at
any time t.

To solve this, we consider the law of conservation of mass:(
Rate of change

of x(t)

)
=

(
Rate at which x(t)

enters the container

)
−
(

Rate at which x(t)

leaves the container

)
where

• rate of change of x(t) is
dx

dt
;

• rate at which x(t) enters the container is equal to (flow rate of liquid entering,
rin) × (concentration of substance in liquid entering, Cin);

• rate at which x(t) leaves the container is equal to (flow rate of liquid leaving,
rout) × (concentration of substance in liquid leaving, Cout).

2If we allowed concentration to vary with location, the problem becomes much more difficult and
requires partial differential equations.
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This gives the basic ODE of the mixing problem:

dx

dt
= Cinrin − Coutrout .

Three of the four quantities on the right of the above equation, namely rin, Cin and rout
are given while Cout is unknown. But Cout is just the concentration in the container,
so we set Cout = C(t) and use x(t) = C(t)V (assuming volume is fixed) to obtain:

dx

dt
= Cinrin −

(rout
V

)
x(t).

If we want to solve for concentration C(t), we divide the above equation by V to get:

dC

dt
=
Cinrin
V
−
(rout
V

)
C(t). (3.6)

Example 3.4. A 1000 ` tank of water initially contains 10 kg of dissolved salt. A pipe
brings a salt solution (concentration 0.005 kg `−1) into the tank at a rate of 2 ` s−1,
and a second pipe carries away the excess solution at the same rate.

(a) Calculate C(t), the concentration of salt in the tank, assuming that the tank is
well mixed3.

(b) After how many minutes has the concentration of salt decreased 25% of its
initial value?

(c) What happens as t tends to infinity?

Solution (a): Let V = 1000 ` be the volume of water in the tank (this is constant)
and let x(t) be the mass of salt dissolved in the water, so x(0) = 10 kg. Let C(t) =

x/V be the concentration of salt in the tank, assuming that the salt is well mixed, so
the initial concentration is C(0) = 0.01 kg `−1.

The rate of inflow of salt (in kg s−1) is Cinrin, where Cin = 0.005 kg `−1 is the con-
centration of salt in the inflow, and rin = 2 ` s−1 is the rate of inflow.

The rate of outflow of salt (in kg/s) is Coutrout , where Cout is the concentration of
salt in the outflow which is the same as the concentration of salt in the tank in this
case, so Cout = C(t). We also know the rate of outflow equals the rate of inflow, so
rout = rin = 2 ` s−1.

From the law of conservation of mass, or (3.6), we get the equation for C(t)

dC

dt
+
rin
V
C =

Cinrin
V

This is a first-order linear ODE; its integrating factor is exp
(
rin
V
t
)

and the solution in
this case is

C(t) = Cin +K exp

(
−rin
V
t

)
,

3What does well-mixed mean? This is a modelling assumption. It just means that mixing happens
so quickly that the concentration is always uniform over the whole fluid.
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where K is a constant. Putting in the initial condition and the numbers results in:

C(t) = Cin + (C(0)− Cin) exp

(
−rin
V
t

)
= 0.005 + 0.005e−0.002t

where C is in kg `−1 and t is in seconds. (Exercise: work through the details and
verify this yourself.)

Solution (b): We want the the time T such that C(T ) = (1−0.25)C(0) = 0.75C(0) =

0.0075, and use the solution from (a):

0.0075 = 0.005 + 0.005e−0.002T

=⇒
1

2
= e−0.002T .

So log(2) = 0.002T and T = 346.57...s. Therefore it takes approximately 5mins
47secs for the concentration to decrease by 25% of its original value.

Solution (c): What happens as t tends to infinity? Since exp
(−rin
V
t
)
→ 0 as t →∞,

we see from the solution in (a) that

C → Cin = 0.005kg `−1.

So, for large time t, the concentration of the solution in the container is close to the
concentration of the inflowing solution Cin = 0.005kg `−1. For example, after an hour
(t = 3600s), the concentration is 0.0050037...kg `−1.

Remark: the volume was constant in this example; it is possible to incorporate a
time-dependent volume V = V (t) in the ODE for C(t):

dC

dt
+

rin
V (t)

C =
Cinrin
V (t)

If the expression V (t) is known (or can be worked out from the problem), then we
can solve this ODE with integrating factor:

R(t) = exp

(∫
rin
V (t)

dt

)
.

Exercise (variable volume): A water tank of volume 1000 ` is initially half-full of
fresh water. A pipe brings a salt solution of concentration 0.005 kg `−1 into the tank
at a rate of 5 ` s−1, and a second pipe carries away the overflow at the same rate.
Calculate C(t), the concentration of salt in the tank, assuming that the liquid is well
mixed.
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Answer: C(t) =


0.025t

500 + 5t
0 ≤ t < 100

0.005− 0.0025 exp[−0.005(t − 100)] t ≥ 100.

3.5 Economics and Finance

3.5.1 First-order model of supply and demand

Let P (t) be the price of a product, and let QS and QD be the quantity supplied and
quantity demanded for the product. Suppose that

1. the demand for a product decreases as the price goes up,

2. the supply of a product increases as the price goes up, and

3. the rate of change of price of the product is positive (the price goes up) when
demand exceeds supply.

If we model these processes by some linear functions, the variation of the product
price with time can be described by a linear first-order differential equation.

Example 3.5. Let us model QD and QS by linear functions in P as follow:

QD = a − bP and QS = f + gP,

where a, b, e and f are positive constants. Suppose also that
dP

dt
= h(QD −QS), with P (0) = P0

and h is a positive constant. Set up, solve and interpret the ODE for P (t).

Solution: We firstly substitute the quantity equations into the ODE:
dP

dt
= h(a − bP − f − gP )

= h [(a − f )− (b + g)P ]

= −h(b + g)P + h(a − f )

dP

dt
+ h(b + g)P = h(a − f ).

This is a linear differential equation in P , so we can find R(t) = exp [
∫
h(b + g) dt] =

exp [h(b + g)t]. Multiplying through by this R, we thus have

d

dt

[
eh(b+g)tP

]
= h(a − f )eh(b+g)t

eh(b+g)tP =

∫
h(a − f )eh(b+g)t dt + k

= h(a − f )
1

h(b + g)
eh(b+g)t + k,
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where k is a constant. Then we see that

P (t) =
a − f
b + g

+ ke−h(b+g)t

= P∞ + ke−γt ,

where P∞ = a−f
b+g

and γ = h(b + g) > 0. To fix k , observe that P (0) = P0, so that

P0 = P∞ + k

k = P0 − P∞
P (t) = P∞ + (P0 − P∞) e−γt .

This solution tells us that (i) the price has a constant solution P (t) = P∞, that is,
if we start with P0 = P∞, the price stays at P∞ and (ii) if the initial price is different
from P∞, P (t) tends exponentially towards P∞ in all other cases.

3.5.2 Continuously compounded interest

Bank accounts sometimes pay interest on a “continuously-compounded” basis, where
the interest due to you is calculated daily. Over the years, this looks more or less like
interest being continually added to the account. If you withdraw money on a “con-
tinual” basis as well, then we can model this situation with a first-order differential
equation:(

Rate of change of
money in the account

)
=

(
Rate of accrual of

interest on the account

)
−
(

Rate of withdrawal of
money from the account

)
.

Example 3.6. After a working life of careful saving and investing, your pension fund
now totals £400,000. Your plan is to take out an investment that pays 2.0% interest
annually, continuously compounded, and to withdraw £25,000 per year at a constant
rate through the year. Assuming the interest rate does not change, how long do you
expect the money to last?4

Solution: We can set up a differential equation to model this situation. Let M(t)

be the amount of money (in units of £10,000) in the account, with t measured in
years. Then the initial condition is M(0) = M0 = 40, and the equation is

dM

dt
= rM − I,

where r is the interest rate, and I is the income derived. Re-arranging this equation,
we get

dM

dt
− rM = −I.

4This question does not constitute financial advice. Seek professional assistance before making
financial plans for your future. Past performance is no guide to future performance. May contain nuts.
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This is a linear equation, with integrating factor R(t) = exp (−
∫
r dt) = exp (−r t).

Multiplying through, we find that

d

dt
(e−r tM) = −Ie−r t

e−r tM = −I
∫
e−r t dt

=
I

r
e−r t + C

M =
I

r
+ Cer t .

We can fix C by considering the initial condition M(0) = M0:

M0 =
I

r
+ C =⇒ C = M0 −

I

r

∴ M(t) =
I

r
+

(
M0 −

I

r

)
er t .

The money will run out at time t = T when M(T ) = 0, which is to say,

0 =
I

r
+

(
M0 −

I

r

)
erT

I

r
=
I − rM0

r
erT

I

I − rM0
= erT

log
I

I − rM0
= rT

T =
1

r
log

I

I − rM0
.

Now, in this case, M0 = 40, r = 0.02 yr−1 and I = 2.5, so we find

T =
1

0.02
log

2.5

2.5− 0.02× 40

≈ 19.3 years.

Note that the above calculation only makes sense when I − rM0 > 0 so that we are
taking the logarithm of a positive number. So what happens for the case I−rM0 < 0?
(Hint: consider the sign of the second term in the particular solution.)
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Chapter 4

Second-order linear ODEs
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In this chapter, we develop some basic theory and solution methods for second-
order linear ODEs. We start by introducing the general form of these ODEs and
define some basic concepts. We will see that the general solution of second-order
linear ODEs comprises a linear combination of two linearly independent functions;
there are some subtle connections to linear algebra here which we briefly touch on.
The first method for finding a general solution, called reduction of order, relies
on us already knowing one of these functions and is a robust method for dealing
with non-constant coefficients. We then move on to second-order linear ODEs
with constant coefficients, which may be familiar to some of you from school or
college. Finally, we show that second-order ODEs can be written as a system of
two-dimensional ODEs, and solve the problem using phase plane analysis. This is
a powerful technique that gives a graphical interpretation of the solution, and can be
further developed for solving nonlinear ODEs. This final part requires some basic
knowledge from linear algebra, namely finding eigenvalues and eigenvectors of 2×2
matrices. Completion of this chapter allows us to move on to applications involving
second-order ODEs.

4.1 Introduction

Second-order linear ODEs are of the form:

d2y

dx2
+ f (x)

dy

dx
+ g(x)y = h(x), (4.1)

43
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where f (x), g(x) and h(x) are given functions of x . The equation is second-order
because the highest derivative is d2y

dx2
, and it is linear because there are no products

of y with itself or its derivatives. There are two important classifications:

• The equation is homogeneous if h(x) ≡ 0, otherwise it is inhomogeneous.
Note that the word “homogeneous” is used in a sense different from that of sec-
tion 2.2.1. Here it refers to the fact that all terms contain either y or its derivatives.

• The equation is constant coefficient if f and g are constants (rather than func-
tions of x), otherwise it is non-constant coefficient.

The homogeneous equation corresponding to (4.1) is:

d2y

dx2
+ f (x)

dy

dx
+ g(x)y = 0 (4.2)

Note that y = 0 is always a solution of this homogeneous equation.
The general solution of (4.1) will contain two arbitrary constants (since the equa-

tion is second-order). The particular solution can be specified in two ways:

• Initial value problem (IVP): We are given the values of y and y ′ at a single value
of x .

• Boundary value problem (BVP): We are given the values of αiy + βiy
′ for some

constants αi , βi at two different values of x = xi (i = 1, 2). Note that some of the
αi and βi may be zero.

In the case of initial value problems, there is a useful theorem that tells us there is a
unique solution of the ODE (4.1).

Theorem (for IVPs): Let f (x), g(x) and h(x) be continuous on an interval I of
the x-axis. If the initial condition is specified at a point in I, then the solution of
equation (4.1) exists and is unique.

Example 4.1. Show that
y = C1 sin x + C2 cos x,

where C1 and C2 are arbitrary constants, satisfies the ODE

y ′′ + y = 0.

Hence solve the IVP:

y ′′ + y = 0, with y(0) = 0 and y ′(0) = 1,

and the BVP:
y ′′ + y = 0, with y(0) = 0 and y(π) = 1.
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Solution: Note that f = 0 and g = 1 are continuous functions of x , so the existence
theorem for IVPs applies. To show that the given function satisfies the ODE, we need
some derivatives:

y ′ = C1 cos x − C2 sin x, y ′′ = −C1 sin x − C2 cos x = −y ,

so y ′′ + y = 0. For both the IVP and the BVP, we have y(0) = 0. Substitute x = 0

into the expression for y(x), we find that:

y(0) = C1 sin 0 + C2 cos 0 = C2 = 0

For the IVP, we have y ′(0) = C1, so C1 = 1 and y(x) = sin x : the solution exists and
is unique, as expected.
For the BVP, we have y(π) = C1 sinπ = 0 6= 1, so we cannot have y(π) = 1: there
is no solution. This is an example of an ill-posed problem, and is one reason why
the existence theorem is only for IVPs. (See also Example (1.4))

4.1.1 Some special cases

Second-order ODEs, linear or not, are generally difficult to solve. There are some
special cases when a second-order ODE can be transformed into a first-order ODE.

• When the dependent variable y does not appear in the equation, the substitution
u = y ′ leads to a first-oder ODE with u(x) as the dependent variable. For example,
the equation xy ′′+ y ′ = (y ′)2 becomes the separable equation xu′+ u = u2 which
we can solve for u(x). We then obtain y(x) by solving y ′ = u. The solution is
y = 1

C1
log |C1x + 1|+ C2.

• For an autonomous equation, the independent variable x does not appear explic-
itly. If we let u = y ′(x) and consider u as a function of y , we can use the chain
rule to write y ′′(x) = u(y)u′(y) and obtain a first-order equation in which u is
the dependent variable and y is the independent variable. For example, we can
transform y d

2y
dx2

= 2(dy
dx

)2 into y du
dy

= 2u. Solving this equation for u and then the
equation y ′(x) = u for y gives y = (C1 + C2x)−1.

4.2 Superposition principle and general solution

4.2.1 Superposition principle for linear ODEs

Theorem: Suppose that y1(x) and y2(x) are two solutions of the homogeneous
linear ODE (4.2). Then C1y1 + C2y2 is also a solution of (4.2), where C1 and C2
are any constants. This combination C1y1 + C2y2 is called a linear superposition (or
linear combination) of the two functions y1(x) and y2(x).
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Proof. First we calculate the derivatives of the linear combination:

y = C1y1 + C2y2

y ′ = C1y
′
1 + C2y

′
2

y ′′ = C1y
′′
1 + C2y

′′
2

Then, LHS of (4.2) = y ′′ + f y ′ + gy

= (C1y
′′
1 + C2y

′′
2 ) + f (C1y

′
1 + C2y

′
2) + g (C1y1 + C2y2)

= C1 (y ′′1 + f y ′1 + gy1) + C2 (y ′′2 + f y ′2 + gy2)

= 0 = RHS of (4.2)

So y satisfies (4.2).

Note that this theorem does not hold for the inhomogeneous linear ODE (4.1) or
a nonlinear ODE. For example, if y0 is a solution of (4.1), C0y0 is not a solution of
(4.1). Similarly, the sum of two solutions of (4.1) is not a solution of (4.1). We do
have the following theorem for an inhomogeneous linear ODE:

Theorem: Suppose that y0(x) is a solution of the inhomogeneous linear ODE
(4.1), and that y1(x) is a solution of the homogeneous linear ODE (4.2). Then
y0(x) + C1y1(x) is a solution of (4.1).

4.2.2 General solution of a homogeneous linear ODE

Two functions y1(x) and y2(x) are linearly independent (on some interval) if

a1y1(x) + a2y2(x) = 0 implies a1 = 0 and a2 = 0.

When the above equation holds for some constants a1, a2 not both zero, we call
y1(x) and y2(x) linearly dependent. An intuitive way to understand this is that if y1(x)

and y2(x) are linearly dependent, then y1(x) and y2(x) are proportional to each other
in the sense that

y1(x) = k1y2(x) or y2(x) = k2y1(x)

for some constants k1, k2.
We now focus on the homogeneous linear ODE (4.2). Suppose f and g are

continuous. Then (4.2) has a general solution of the form

y(x) = c1y1(x) + c2y2(x) (4.3)

where y1 and y2 are linearly independent and both are solutions of (4.2). c1 and c2
are arbitrary constants.
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Theorem: Every solution of the homogeneous linear ODE (4.2) can be obtained
by assigning suitable values to c1 and c2 in the general solution (4.3).

In other words, the general solution (4.3) contains all solutions of (4.2). So the
problem of finding all solutions of a second-order homogeneous linear ODE boils
down to finding two solutions y1 and y2 that are linearly independent.

The theorems we learn in this section suggest the following strategy for finding a
general solution of the inhomogeneous linear second-order ODE (4.1):

1. Find two linearly independent solutions y1, y2 of the corresponding homogeneous
equation (4.2). The function yc = C1y1 + C2y2 is thus a general solution of (4.2).

2. Find a solution yp of the inhomogeneous equation (4.1).

3. Then the function y = yc + yp = C1y1 + C2y2 + yp is a solution of (4.1) and it
contains two arbitrary constants. Therefore, it is a general solution of (4.1). It can
be proved that y contains all solutions of (4.1).

While in principle this strategy can be applied to (4.1) even when f (x) and g(x) are
functions of x , it is particularly useful for constant-coefficient equations because,
as we shall in later sections, there are methods to determine y1, y2 and yp when
the coefficients are constant. But before we discuss that, we first introduce in the
next section a technique called reduction of order which, when a certain condition is
satisfied, can be applied to linear equations whose coefficients are not constant.

4.3 Reduction of order for linear ODEs

In general, the inhomogeneous equation (4.1) can be hard to solve. However, sup-
pose we are given, or have managed to find, one solution of the homogeneous
ODE (4.2)—perhaps by a lucky (educated!) guess. We can use this solution to turn
the second-order linear ODE (4.1) into a first-order linear ODE, which we can then
solve using the method of section 2.5. This technique is called reduction of order.
We use the following procedure:

1. Let y1(x) be the solution of (4.2) that we know, so

y ′′1 + f y ′1 + gy1 = 0 (4.4)

Now let
y(x) = u(x)y1(x),

where u(x) is an unknown function of x . We will derive a first-order ODE for u′(x).
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2. Calculate derivatives up to order 2 (using product rule since u and y1 are both
functions of x):

y = uy1,

y ′ = u′y1 + uy ′1,

y ′′ = u′′y1 + 2u′y ′1 + uy ′′1 .

3. Substitute y , y ′, y ′′ into (4.1), noting that the u term should cancel exactly:

y ′′ + f y ′ + gy = (u′′y1 + 2u′y ′1 + uy ′′1 ) + f (u′y1 + uy ′1) + g (uy1)

= (y1) u
′′ + (2y ′1 + f y1) u

′ + (y ′′1 + f y ′1 + gy1) u

= (y1) u
′′ + (2y ′1 + f y1) u

′

= h(x).

4. Note that u itself disappears in the equation above because of (4.4). Therefore
from our discussion in section (4.1.1), we define a new dependent variable v = u′

and write an ODE for v :

y1v
′ + (2y ′1 + f y1) v = h.

5. This is a first-order linear ODE, which can be solved by the method of section 2.5
(using the Integrating Factor method). Verify that the solution v(x) is correct.

6. Once we have the general solution v(x) (with one arbitrary constant C1), we
integrate once more to find u(x) =

∫
v dx + C2, remembering to add the second

arbitrary constant C2. Now we have u(x).

7. Hence we can find the general solution y(x) of (4.1) by calculating y = uy1.

8. We can use the initial values or boundary values to calculate the values of the
two arbitrary constants C1 and C2, and hence find the particular solution.

9. Lastly, we can verify that the particular solution satisfies (4.1) and the initial or
boundary conditions.

Example 4.2. Solve the boundary value problem

xy ′′ + 2(x + 1)y ′ + (x + 2)y = x2e−x with y(1) = y(2) = 0,

given that y1 = e−x is a solution of the corresponding homogeneous problem.
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Solution:

1. First, verify that y1(x) = e−x is a solution of the corresponding homogeneous
problem. Computing the derivatives:

y1 = e−x , y ′1 = −e−x , y ′′1 = e−x ,

we have that:

xy ′′1 + 2(x + 1)y ′1 + (x + 2)y1 = xe−x − 2(x + 1)e−x + (x + 2)e−x

= 0 OK.

Now let y(x) = u(x)y1(x) = ue−x where u(x) is an unknown function of x .

2. Calculate higher-order derivatives:

y = ue−x ,

y ′ = u′e−x − ue−x ,
y ′′ = u′′e−x − 2u′e−x + ue−x .

3. Substitute y into the given ODE, noting that the u term should cancel exactly:

x
(
u′′e−x − 2u′e−x + ue−x

)
+ 2(x + 1)

(
u′e−x − ue−x

)
+ (x + 2)ue−x = x2e−x

xu′′e−x + (−2x + 2(x + 1)) u′e−x + (x − 2(x + 1) + (x + 2)) ue−x = x2e−x

xu′′e−x + 2u′e−x = x2e−x .

xu′′ + 2u′ = x2.

4. Note that u itself does not appear in this equation. We can therefore define a new
dependent variable v = u′ and write an ODE for v :

xv ′ + 2v = x2

or, dividing by x :

v ′ +
2

x
v = x.

5. This is a first-order linear ODE which can be solved using the Integrating Factor
method. The Integrating Factor is:

R(x) = exp

(∫
2

x
dx

)
= exp(2 log |x |) = x2

Multiply the ODE by R(x) and integrate:

x2v ′ + 2xv = (x2v)′ = x3

x2v =
x4

4
+ C2

v =
x2

4
+
C2
x2
.

Verify that the solution v(x) is correct (exercise).
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6. Since u′ = v , we integrate once more to find u(x):

u =

∫
vdx + C1 =

∫ (
x2

4
+
C2
x2

)
dx + C1 =

x3

12
−
C2
x

+ C1,

remembering to add the second arbitrary constant C1.

7. The general solution y(x) of the given ODE is:

y = uy1 =

(
x3

12
−
C2
x

+ C1

)
e−x .

8. We can use the given boundary values to determine C1 and C2, and hence find
the particular solution:

y(1) =

(
1

12
− C2 + C1

)
e−1 = 0;

y(2) =

(
8

12
−
C2
2

+ C1

)
e−2 = 0.

These lead to a set of simultaneous equations for C1 and C2:

1 + 12C1 − 12C2 = 0

8 + 12C1 − 6C2 = 0

∴ C1 = −
5

4
and C2 = −

7

6
.

The particular solution is therefore:

y(x) =

(
x3

12
+

7

6x
−

5

4

)
e−x .

9. We can verify that the answer satisfies the ODE and the boundary conditions:

y(1) =

(
1

12
+

7

6
−

5

4

)
e−1 = 0

y(2) =

(
8

12
+

7

12
−

5

4

)
e−2 = 0

y ′ =

(
−
x3

12
+
x2

4
−

7

6x
−

7

6x2
+

5

4

)
e−x

y ′′ =

(
x3

12
−
x2

2
+
x

2
−

7

6x
+

7

3x2
+

7

3x3
−

5

4

)
e−x

xy ′′ + 2(x + 1)y ′ + (x + 2)y = · · · = x2e−x (check!)
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Note that the general solution can be written as

y = C1e
−x − C2

e−x

x
+
x3e−x

12

which is of the form y = C1y1 + C2y2 + yp. Convince yourself that yp = x3e−x

12
satisfies

the given inhomogeneous equation while y1 = e−x and y2 = e−x

x
are linearly inde-

pendent and satisfy the corresponding homogeneous equation. This is consistent
with the discussion at the end of the previous section.

4.4 Second-order constant coefficient linear ODEs

Second-order linear ODEs with constant coefficients are of the form:

d2y

dx2
+ a

dy

dx
+ by = h(x), (4.5)

where a and b are constants (assumed to be real), and h(x) is a given function
of x . Note that the coefficient of y ′′ may be a real number not equal to 1, but we
can always divide through so that the coefficient of y ′′ is 1. If h = 0, the ODE is
homogeneous:

d2y

dx2
+ a

dy

dx
+ by = 0. (4.6)

4.4.1 The second-order homogeneous problem

We start with the homogeneous equation (4.6) in this section. Motivated by the fact
that when we differentiate eλx , a multiplicative constant λ is introduced in front of the
exponential:

(eλx)′ = λeλx (eλx)′′ = λ2eλx ,

we postulate that the solution to (4.6) is of the form

y = eλx .

Substitute the above function and its derivatives into (4.6), we get

λ2eλx + aλeλx + beλx =
(
λ2 + aλ+ b

)
eλx = 0.

Since eλx > 0, we must have
λ2 + aλ+ b = 0. (4.7)

Hence, y = eλx is a solution of (4.6) if λ is a solution of (4.7). This quadratic equation
is called the characteristic equation of the ODE (4.6). In general (4.7) has two
roots, λ1 and λ2. Using the quadratic formula, these roots are:

λ =
−a ±

√
a2 − 4b

2
=
−a ±

√
∆

2
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where ∆ is the discriminant
∆ = a2 − 4b.

Clearly the form of λ is determined by the sign ∆, and so we consider three possible
cases: (i) ∆ > 0, (ii) ∆ = 0, and (iii) ∆ < 0.

(i) Real distinct roots. If ∆ = a2 − 4b > 0, there are two real distinct roots:

λ1 =
−a +

√
a2 − 4b

2
and λ2 =

−a −
√
a2 − 4b

2
.

Therefore the two functions,

y1 = eλ1x , y2 = eλ2x

are solutions of (4.6). Furthermore, they are linearly independent. So we have the
following general solution for (4.6):

y = C1e
λ1x + C2e

λ2x .

(ii) Real repeated root. If ∆ = a2 − 4b = 0, there is one real (repeated) root:

λ =
−a
2
.

This gives us one solution y1 to (4.6),

y1 = eλx = e−
a
2
x .

We can now use the reduction of order method of section 4.3 to find a general
solution to (4.6). Write y = u(x)y1, where u is an unknown function. First, compute
derivatives of y up to order 2:

y = ueλx ,

y ′ = u′eλx + λueλx ,

y ′′ = u′′eλx + 2λu′eλx + λ2ueλx ,

and then substitute these expressions into (4.6):(
u′′ + 2λu′ + λ2u

)
eλx + (au′ + aλu) eλx + bueλx = 0u′′ + (2λ+ a)u′ + (λ2 + aλ+ b︸ ︷︷ ︸

=0 from (4.7)

)

 eλx = 0.

So we have a linear ODE for u:

u′′ + (2λ+ a)u′ = 0.
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Since λ = −a/2, it follows that 2λ + a = 0 and so the equation we have to solve is
simply

u′′ = 0

Integrating (twice) gives the solution u = C1+C2x , and therefore the general solution
is y = uy1 = (C1 + C2x)eλx or,

y = C1e
λx + C2xe

λx

with λ = −a/2. Note that y1 = eλx and y2 = xeλx are linearly independent.

(iii) Complex roots. If ∆ = a2 − 4b < 0, there are two distinct complex roots. In
this case, let

p =
−a
2

and q =

√
4b − a2

2
so

λ1 = p + iq, and λ2 = p − iq.

As in the case of real distinct roots, we can write:

y = Aeλ1x + Beλ2x = Ae(p+iq)x + Be(p−iq)x

In general, A and B will be complex numbers in this expression. If we want to be
sure of a real solution, we can tidy this up:

y = epx
(
Ae iqx + Be−iqx

)
= epx (A(cos(qx) + i sin(qx)) + B(cos(qx)− i sin(qx)))

= epx ((A+ B) cos(qx) + i(A− B) sin(qx))

= C1e
px cos(qx) + C2e

px sin(qx)

where C1 = A+B and C2 = i(A−B). For real initial or boundary conditions, C1 and
C2 will be real, in spite of appearances (because A and B are complex).

Summary: For the homogeneous second-order linear ODE with constant coeffi-
cients (4.6), the characteristic equation is

λ2 + aλ+ b = 0.

There are three possible cases:

(i) If there are two real roots, λ1 and λ2, then the general solution is

y = C1e
λ1x + C2e

λ2x .

(ii) If there is one repeated real root, λ, then the general solution is

y = (C1 + C2x)eλx .
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(iii) If there are two complex roots, p ± iq, then the general solution is

y = epx [C1 cos(qx) + C2 sin(qx)].

Example 4.3. Find a general solution of the ODE:

y ′′ + 3y ′ + 2y = 0.

Solution: We find the characteristic equation by substituting y = eλx into the ODE,
and dividing by eλx :

λ2eλx + 3λeλx + 2eλx = 0

λ2 + 3λ+ 2 = 0

Solve this equation for λ:

(λ+ 1)(λ+ 2) = 0, so λ = −1 or λ = −2.

Note that these are real and distinct, so the general solution is

y = C1e
−x + C2e

−2x

Example 4.4. Find a general solution of the ODE:

y ′′ + 4y ′ + 4y = 0.

Solution: We find the characteristic equation by substituting y = eλx into the ODE,
and dividing by eλx :

λ2eλx + 4λeλx + 4eλx = 0

λ2 + 4λ+ 4 = 0

Solve this equation for λ:

(λ+ 2)2 = 0, so λ = −2.

Note that this is a repeated real root, so the general solution is

y = (C1 + C2x)e−2x

Example 4.5. Find a solution of the ODE:

4y ′′ + 4y ′ + 17y = 0.
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Solution: We find the characteristic equation by substituting y = eλx into the ODE,
and dividing by eλx :

4λ2eλx + 4λeλx + 17eλx = 0

4λ2 + 4λ+ 17 = 0

Solve this equation for λ:

λ =
−4±

√
42 − 4× 4× 17

2× 4
=
−4±

√
−256

8
=
−4± 16i

8
= −

1

2
± 2i

Note that these are complex: the real part is −1
2

and the imaginary part is ±2. So
the general solution is

y = (C1 cos 2x + C2 sin 2x) e−x/2

4.4.2 The second-order inhomogeneous problem

We now turn to the inhomogeneous problem (4.5):

d2y

dx2
+ a

dy

dx
+ by = h(x).

From the theorems in section 4.2, we know that the general solution of an inhomo-
geneous equation has the form

y = yc + yp

where yc is a general solution of the corresponding homogeneous equation and yp
is any particular solution of the inhomogeneous equation. yc is sometimes called
the complementary function of (4.5). We have already learned how to obtain yc for
equations with constant coefficients. We now discuss how to determine yp.

If h(x) in (4.5) involves exponential functions, polynomials, sine or cosine (a com-
mon characteristics of these functions is their derivatives are of the same kind as the
functions themselves), the method of undetermined coefficients can be applied
to compute yp.1 The basic idea is to guess that yp has a similar form to h(x) but
with unknown coefficients. We then substitute this guess into (4.5) to determine the
coefficients. The detailed rules for choosing yp are:

1. If h(x) is an exponential function, a polynomial (including the constant x0), the
sine or cosine function, choose yp according to Table 4.1. If h(x) is a product
of two of these functions, form a product from the corresponding choices. Then
check Rule 2.

Note that whenever h(x) involves a sine or a cosine, both sine and cosine
should be included in the choice as indicated in Table 4.1, e.g. if h(x) = ekx sinωx ,
then yp = ekx(A sinωx + B cosωx).

1There is a general method called the variation of parameters that works for any h(x).
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functions in h(x) yp

ekx Aekx

cnx
n + cn−1x

n−1 + · · ·+ c0 Anx
n + An−1x

n−1 + · · ·+ A0

sinωx or cosωx A sinωx + B cosωx

Table 4.1: Method of undetermined coefficients

2. If h(x) is a solution of the corresponding homogeneous equation (4.6), multiply
the choice from Rule 1 by x . If the characteristic equation has repeated root,
multiply by x2 instead.

3. If h(x) is a sum of more than one function, add together the corresponding
choices obtained from Rule 1 and Rule 2.

So now we have a complete method for solving second-order linear constant-
coefficient ODEs:

1. Find the characteristic equation and then a general solution yc of the correspond-
ing homogeneous problem. yc contains two arbitrary constants.

2. Find a particular solution yp of the inhomogeneous equation using the method of
undetermined coefficients. This should contain no arbitrary constants.

3. The general solution is y = yc + yp.

4. Use the initial values or the boundary values to determine the two arbitrary con-
stants in the complete solution yc + yp.

5. Verify your solution is correct.

Example 4.6. Solve the initial value problems:

(a) y ′′ + 5y ′ + 4y = 4x2 + 10x + 2, with y(0) = 1 and y ′(0) = 2

(b) y ′′ + 5y ′ + 4y = sin x, with y(0) = 1 and y ′(0) = 2

(c) y ′′ + 5y ′ + 4y = e−x , with y(0) = 1 and y ′(0) = 2

Solution:
(a) We find the characteristic equation by substituting y = eλx into the homoge-
neous version of the given ODE, and dividing by eλx :

λ2eλx + 5λeλx + 4eλx = 0

λ2 + 5λ+ 4 = 0

Solve this equation for λ:

(λ+ 1)(λ+ 4) = 0, so λ = −1 or λ = −4
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Note that these are real and distinct, so the complementary function is

yc = C1e
−x + C2e

−4x

h(x) is a quadratic function of x , so we choose a general quadratic function for yp:

yp = Ax2 + Bx +D

We need some derivatives:

y ′p = 2Ax + B and y ′′p = 2A

Substitute these into the given ODE:

2A+ 5(2Ax + B) + 4(Ax2 + Bx +D) = 4x2 + 10x + 2

4Ax2 + (4B + 10A)x + (4D + 5B + 2A) = 4x2 + 10x + 2

This is an identity: it is supposed to be true for all values of x . The only way this
can happen is when the different terms on the LHS and the RHS have the same
coefficients. There are three terms: the constant term, the x term and the x2 term.
Matching the coefficients of these terms on the LHS and the RHS, we get:

constant term: 2A+ 5B + 4D = 2

x term: 10A+ 4B = 10

x2 term: 4A = 4

which we can solve:

A = 1, B =
1

4
(10− 10A) = 0, D =

1

4
(2− 2A− 5B) = 0

so a particular solution to the given ODE is

yp = x2

and the general solution is:

y = C1e
−x + C2e

−4x + x2

For dealing with the initial values, we need a derivative:

y ′ = −C1e−x − 4C2e
−4x + 2x

and the initial values give us:

y(0) = C1 + C2 = 1

y ′(0) = −C1 − 4C2 = 2

=⇒ C1 = 2 and C2 = −1
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So,
y(x) = 2e−x − e−4x + x2

(b) The complementary function yc is as in (a). Since now h(x) = sin x , we choose
a general combination of sines and cosines for yp:

yp = A cos x + B sin x

We need some derivatives:

y ′p = −A sin x + B cos x, and y ′′p = −A cos x − B sin x

Substitute these into the given ODE:

−A cos x − B sin x + 5(−A sin x + B cos x) + 4(A cos x + B sin x) = sin x

(3A+ 5B) cos x + (3B − 5A) sin x = sin x

This is an identity. Matching the coefficients of the sine term and the cosine term on
the two sides of the equation gives:

sine term: −5A+ 3B = 1

cosine term: 3A+ 5B = 0

which we can solve:
A = −

5

34
, B =

3

34
so

yp =
3 sin x − 5 cos x

34

and the general solution is:

y = C1e
−x + C2e

−4x +
3 sin x − 5 cos x

34

For dealing with the initial values, we need a derivative:

y ′ = −C1e−x − 4C2e
−4x +

3 cos x + 5 sin x

34

and the initial values give us:

y(0) = C1 + C2 −
5

34
= 1

y ′(0) = −C1 − 4C2 +
3

34
= 2

=⇒ C1 =
13

6
and C2 = −

52

51
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So,

y(x) =
13

6
e−x −

52

51
e−4x +

3 cos x + 5 sin x

34

(c) The complementary function yc is as in (a). Now h(x) = e−x is a solution of the
homogeneous version of the given ODE (as can be seen by assigning C1 = 1

and C2 = 0 to yc ), so according to Rule 2 we assume:

yp = Axe−x

(As an exercise, try yp = Ae−x and show that it does not work.) We need some
derivatives:

y ′p = Ae−x − Axe−x = A(1− x)e−x

y ′′p = −Ae−x − A(1− x)e−x = A(x − 2)e−x

Substitute these into the given ODE:

A(x − 2)e−x + 5A(1− x)e−x + 4Axe−x = e−x

3Ae−x = e−x

Matching coefficients of the e−x terms on both sides of the equation, we get:

3A = 1 =⇒ A =
1

3

so
yp =

1

3
xe−x

and the general solution is:

y = C1e
−x + C2e

−4x +
1

3
xe−x

For dealing with the initial values, we need a derivative:

y ′ = −C1e−x − 4C2e
−4x +

1

3
(1− x)e−x

and the initial values give us:

y(0) = C1 + C2 = 1

y ′(0) = −C1 − 4C2 +
1

3
= 2

=⇒ C1 =
17

9
and C2 = −

8

9

Therefore,

y(x) =
17

9
e−x −

8

9
e−4x +

1

3
xe−x
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Example 4.7. Find the general solution of

y ′′ + 6y ′ + 9y = 2e−3x + cos 3x

Solution: The characteristic equation is:

λ2 + 6λ+ 9 = 0

Solve this equation for λ:

(λ+ 3)2 = 0, so λ = −3

Note that this is a repeated real root, so the complementary function is

yc = (C1 + C2x)e−3x

Here h(x) is the sum of two functions 2e−3x and cos 3x . According to Rule 3, yp will
have two parts:

1. For 2e−3x , it is a solution of the homogeneous version of the given ODE (take
C1 = 2, C2 = 0 in yc ) and the characteristic equation has a repeated root, so
following Rule 2, we choose Ax2e−3x .

2. For cos 3x , it is not a solution of the homogeneous version of the given ODE, so
from Table 4.1, we choose B cos 3x + C sin 3x .

Putting everything together, we have

yp = Ax2e−3x + B cos 3x + C sin 3x

We need some derivatives:

y ′p = A(2x − 3x2)e−3x − 3B sin 3x + 3C cos 3x

y ′′p = A(2− 12x + 9x2)e−3x − 9B cos 3x − 9C sin 3x

Substitute these into the ODE and simplify:

2Ae−3x + 18C cos 3x − 18B sin 3x = 2e−3x + cos 3x

This is an identity that is true for all values of x . Therefore matching coefficients on
both sides gives

2A = 2

18C = 1

−18B = 0

=⇒ A = 1, B = 0, C =
1

18
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so
yp = x2e−3x +

1

18
sin 3x

and the general solution is:

y = (C1 + C2x + x2)e−3x +
1

18
sin 3x

Note that h(x) involves cos 3x but sin 3x appears in the general solution. This shows
the importance of including both sine and cosine in the choice of yp during the cal-
culation.

Example 4.8. Find the general solution of

y ′′ + 4y = 4ex sin 2x

Solution: The characteristic equation is

λ2 + 4 = 0

Solve this equation for λ:

λ2 = −4, so λ = ±2i .

Note that these are complex roots: the real part is 0 and the imaginary part is 2. So
the complementary function is

yc = C1 cos 2x + C2 sin 2x

Here h(x) involves the product of two functions: ex and sin 2x . Also note that h(x)

is not a solution of the homogeneous version of the given ODE. So we form a
combination of (i) the product of ex and cos 2x and (ii) the product of ex and sin 2x :

yp = ex(A cos 2x + B sin 2x)

We need some derivatives:

y ′p = ex [(A+ 2B) cos 2x + (B − 2A) sin 2x ]

y ′′p = ex [(4B − 3A) cos 2x − (4A+ 3B) sin 2x ]

Substitute these into the ODE and simplify:

(A+ 4B)ex cos 2x + (B − 4A)ex sin 2x = 4ex sin 2x

This is an identity that is true for all values of x . Therefore matching coefficients on
both sides give

A+ 4B = 0

B − 4A = 4



62 4.4 Second-order constant coefficient linear ODEs

Solving these equations, we get

A = −
16

17
and B =

4

17

so
yp =

4

17
ex(sin 2x − 4 cos 2x)

and the general solution is:

y = C1 cos 2x + C2 sin 2x +
4

17
ex(sin 2x − 4 cos 2x)
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Applications of second-order ODEs
and phase plane analysis
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In this chapter, we apply the theory and solution methods of second-order ODEs
from chapter 4 to two application areas. As in chapter 3, the goal here is not just to
solve an ODE but also to formulate the ODE that must be solved using appropriate
modelling assumptions. We cover harmonic oscillation in a spring-mass system
and in an LRC electric circuit. In the final section of the chapter, we discuss two-
dimensional systems of ODEs.

5.1 Spring–mass system

k
m

x

We consider the system in the above figure where a mass m resting on a hori-
zontal surface is connected to a spring. If, say, the mass is pulled to the right and
then released, it will move horizontally under the action of the spring. We want to
predict this motion.

The first thing we need to do is to set up a coordinate system for the problem.
Let x be the position of the mass. We put the origin x = 0 at the position where the
spring is at its natural length, i.e. the spring is not extended nor compressed. This
is called the equilibrium position. We take the rightward direction to be positive as

63
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shown in the figure. The velocity of the mass, which is the rate of change of position
(with time), is then

v(t) =
dx

dt
= ẋ(t).

It is common to use the dot notation to denote time derivatives. The acceleration,
which is the rate of change of velocity, is

a(t) = v̇(t) = ẍ(t) =
d2x

dt2
.

The motion of the mass is governed by Newton’s second law of motion, which
states that the time-dependent acceleration of an object is (i) directly proportional
the net force F acting upon the object and (ii) inversely proportional to the mass of
the object. Without loss of generality, we can take the proportionality constant to
be 1, then a = F/m. This means that: as the net force acting upon an object is
increased, the acceleration of the object is increased; and as the mass of an object
is increased, the acceleration of the object is decreased.

Newton’s second law of motion is most commonly written as

F = ma.

We assume the mass m is constant. Since a = ẍ , if we know how the force F (x, t)

changes as a function of position and time, we can formulate an ODE to solve for
the position x of an object.

5.1.1 Simple harmonic motion

So what forces are acting on the mass? We first consider the simple situation where
the horizontal surface is smooth, which means there is no friction between the mass
and the surface. Then there are three forces acting on the mass: (i) gravity, (ii)
the normal reaction from the horizontal surface and (iii) the force due to the spring,
which is called the tension. Because the surface is horizontal, forces (i) and (ii)
cancel each other. So there is no vertical motion and the mass moves horizontally
due to the tension from the spring.

Now we need a mathematical model for the tension T . Provided that the spring
is not deformed (extended or compressed) too much, Hooke’s law states that the
spring resists the deformation with a tension proportional to the amount of deforma-
tion. Since we put the equilibrium position at x = 0, the Hooke’s law for the spring
is

T = −kx
where the proportionality constant k > 0 is called the spring constant. The “−” sign
means the tension is always in the opposite direction of the deformation (check it!).

Putting the model for the tension into Newton’s second law of motion, we obtain
the ODE that governs the position of the mass:

mẍ + kx = 0.
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Because both k andm are positive, we can define a new constant, called the natural
frequency, ω0 =

√
k/m and rewrite the ODE as

ẍ + ω20x = 0. (5.1)

This is called the equation of motion and it is a homogeneous linear second-order
ODE with constant coefficients. We now solve (5.1) to find x(t). The characteristic
equation for (5.1) is:

λ2 + ω20 = 0

and its roots are
λ = ±iω0.

Therefore,
x(t) = C1 cosω0t + C2 sinω0t.

Differentiating with respect to t, we also obtain

ẋ(t) = −ω0C1 sinω0t + ω0C2 cosω0t.

Next we need two conditions to determine the arbitrary constants C1 and C2. For
example, if we assume at t = 0, the mass is displaced to x(0) = A, and then it is
released from rest, mathematically it means ẋ(0) = 0. These two conditions lead to

C1 = A and C2 = 0.

So we have
x(t) = A cosω0t.

We see that the mass oscillates sinusoidally about the equilibrium position. This is
known as simple harmonic oscillation. A is the amplitude and ω0 is the angular
frequency of the oscillation.

5.1.2 Damped harmonic oscillation

We now consider the situation when the surface is not smooth. We need a model for
the frictional force f between the mass and the surface. We note that friction always
opposes the instantaneous motion. And if the velocity is not too large, the frictional
force can be assumed to be proportional to the velocity. Therefore,

f = −bv = −bẋ

where b > 0 is the proportionality constant. The “−” sign means that if the mass is
moving to the right (ẋ > 0), the frictional force is pointing to the left (f < 0) and vice
versa. From Newton’s second law of motion,

T + f = ma,
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we obtain the equation of motion

mẍ + bẋ + kx = 0.

We define the damping coefficient µ = b
2m

and rewrite the equation of motion as:

ẍ + 2µẋ + ω20x = 0. (5.2)

Remember that ω0 is the angular frequency of the undamped oscillation in (5.1).
The characteristic equation for (5.2) is:

λ2 + 2µλ+ ω20 = 0,

which has roots:
λ = −µ±

√
µ2 − ω20.

We know from chapter 4 that the form of the solution x(t) depends on the sign of
the discriminant ∆ = µ2 − ω20. In other words, x(t) depends on the strength of the
damping µ compared to ω0. We consider three possible cases: (i) µ > ω0 (real
distinct roots), (ii) µ = ω0 (real repeated root) and (iii) µ < ω0 (complex roots).

(i) Real distinct roots: If the damping is so large that µ > ω0, then we have two
distinct real roots,

λ1 = −µ+

√
µ2 − ω20 and λ2 = −µ−

√
µ2 − ω20

with λ2 < λ1 < 0. Therefore, the general solution is:

x(t) = e−µt
(
C1e
√
µ2−ω20 t + C2e

−
√
µ2−ω20 t

)
.

This is called overdamped. The details of the motion depend on the initial conditions,
hence the values of C1 and C2. Generally, since both roots are negative, the solution
decays to zero with no oscillations. Although for some initial conditions, it is possible
for x(t) to cross the equilibrium position x = 0 once before approaching x = 0 at
long time.

(ii) Real repeated root: If µ = ω0, there is one repeated real root:

λ = −µ,

and the general solution is

x(t) = (C1 + C2t)e
−µt .

Similar to the overdamped case, x(t) decays to x = 0 (with the possibility of crossing
x = 0 once). For the same initial conditions, it does so in a more rapid manner than
the overdamped case. This is called critically damped. The damping is just large
enough to prevent oscillation without slowing down the decay excessively.
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Figure 5.1: Particular solutions of damped harmonic motion. The initial conditions
are x(0) = 4 and ẋ(0) = 0. We set ω0 = 2. The three different cases are (i) µ = 3.5

(overdamped), (ii) µ = ω0 (critically damped) and (iii) µ = 0.5 (underdamped).

(iii) Complex roots: If the damping is so small that 0 < µ < ω0, we have two
complex roots,

λ± = −µ± i
√
ω20 − µ2

and the general solution can be expressed in the following form:

x(t) = e−µt (C1 cosω∗t + C2 sinω∗t) ,

where ω∗ =
√
ω20 − µ2 < ω0. This is called underdamped. The solution oscillates

with an angular frequency less than that of the undamped simple harmonic motion
while its amplitude decreases exponentially.

Figure 5.1 illustrates the three different cases by plotting some particular solutions
of x(t). In all cases, the mass comes to a stop at long enough time.

5.1.3 Forced oscillation

Let us look at what happens if the mass is being driven by a time-varying external
force F . We assume F varies sinusoidally with time t and has amplitude F0 and
angular frequency ω:

F (t) = F0 cosωt.
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There are three forces acting on the mass. From Newton’s second law of motion,

F + T + f = ma,

we obtain the equation of motion for the mass,

mẍ + bẋ + kx = F0 cosωt. (5.3)

Defining F∗ = F0/m and dividing by m gives,

ẍ + 2µẋ + ω20x = F∗ cosωt. (5.4)

This is an inhomogeneous linear second-order ODE with constant coefficients. We
have learned that its solution consists of two parts:

x = xc + xp.

The first part xc is a general solution of (5.2) which we have already obtained in
section 5.1.2. Here we focus on how to find a particular solution xp of (5.4). As
cosωt is not a solution of (5.2), according to Table 4.1, we choose

xp = B cosωt + C sinωt. (5.5)

Differentiate with respect to t:

ẋp = −ωB sinωt + ωC cosωt and ẍp = −ω2B cosωt − ω2C sinωt.

Substitute xp, ẋp, ẍp into (5.4) and simplify:

(−ω2B + 2µωC + ω20B) cosωt + (−ω2C − 2µωB + ω20C) sinωt = F∗ cosωt.

Equate coefficients on both sides:

(ω20 − ω2)B + 2µωC = F∗,

−2µωB + (ω20 − ω2)C = 0.

Solving this set of simultaneous equations then gives,

B =
(ω20 − ω2)F∗

(ω20 − ω2)2 + 4µ2ω2
,

C =
2µωF∗

(ω20 − ω2)2 + 4µ2ω2
.

Therefore,

xp =
(ω20 − ω2)F∗

(ω20 − ω2)2 + 4µ2ω2
cosωt +

2µωF∗
(ω20 − ω2)2 + 4µ2ω2

sinωt.
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Figure 5.2: An example of forced harmonic oscillation. The initial conditions are
x(0) = 4 and ẋ(0) = 0. We set ω0 = 2, µ = 0.5, F∗ = 10, ω = 2ω0 in (5.4). The
dotted lines indicate the amplitude A in (5.7).

What does this solution tell us about the motion of the mass? We know from
section 5.1.2 that xc → 0 as t →∞. On the other hand, xp is oscillatory for all t. So
after sufficiently long time, the position of the mass x = xc + xp ≈ xp. Hence xc is
called the transient solution and xp is called the steady-state solution.

Next we ask: what are the amplitude and angular frequency of the steady-state
oscillation? To answer this question, we rewrite xp using the subsidiary angle formula
as follows. Let

B = A cosφ,

C = A sinφ,

so that xp in (5.5) can be written as

xp = A cos(ωt − φ). (5.6)

Solving for A and φ in terms of B and C gives,

A =
√
B2 + C2 =

F∗√
(ω20 − ω2)2 + 4µ2ω2

, (5.7a)

φ = tan−1
C

B
= tan−1

2µω

ω20 − ω2
. (5.7b)

So we see that xp oscillates at the same frequency ω as the external force F (t) but
with phase lag φ and amplitude A given by (5.7). Figure 5.2 shows an example of
the full solution x = xc + xp.
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Figure 5.3: Amplitude A of the steady-state solution in forced harmonic oscillation
given in (5.7) as a function of the driving frequency ω. In this plot, ω0 = 2 and
F∗ = 10. The different curves are for different damping coefficient µ.

If we consider F∗(= F0/m) and ω0(=
√
k/m) fixed, then the amplitude A depends

on the two parameters ω and µ. If µ is not too large, an interesting phenomenon
called resonance occurs as we varies ω. Figure 5.3 plots A as a function ω for
several values of µ. We see that for small values of µ, if we drive the system at the
“right” frequency, the amplitude of the steady-state oscillation becomes very large.
And A attains a maximum value at a particular frequency ωR called the resonance
frequency. Let us calculate ωR at a fixed µ by setting

dA

dω

∣∣∣∣
ω=ωR

= 0

=⇒
2ωR(ω20 − ω2R)− 4µ2ωR
[(ω20 − ω2R)2 + 4µ2ω2R]3/2

= 0.

Therefore the resonance frequency is

ωR =

√
ω20 − 2µ2.

The above relation shows that no resonance occurs if µ > ω0/
√

2 for then ωR be-
comes imaginary. In such case, the amplitude A does not have a peak (local maxi-
mum) as a function ω. It simply decreases monotonically with ω.
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5.2 Resonant electric circuits

E(t)

I(t) VL

VR

VC

A resonant electric circuit (or RLC circuit) consists of three circuit elements—a
resistor, an inductor and a capacitor—driven by an imposed voltage E(t). We
consider an AC voltage that varies sinusoidally with time t:

E(t) = E0 sinωt.

The voltage drop across the individual element is governed by the following laws.

Voltage drop across a resistor: VR = IR, (Ohm’s law)

Voltage drop across an inductor: VL = L
dI

dt
,

Voltage drop across a capacitor: VC =
Q

C
,

where I is the current passing through each element. In the above relations, the
resistance R, the inductance L and the capacitance C are constant. The charge Q
in the capacitor is related to the current by

I =
dQ

dt
,

so
dVC
dt

=
1

C
I.

By Kirchhoff’s voltage law, the sum of the voltages across each element is
equal to the imposed voltage E(t). Therefore,

VL + VR + VC = E(t).

And by Kirchhoff’s current law, the current I(t) is the same through each element.
Hence substituting the three laws on voltage drop into the above equation and dif-
ferentiating with respect to time t, we obtain:

L
d2I

dt2
+ R

dI

dt
+

1

C
I = ωE0 cosωt. (5.8)
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This is an inhomogeneous linear second-order constant-coefficient ODE for I(t).
Notice that it has the exact same form as the equation of motion (5.3) for forced
harmonic oscillation. Thus there is an analogy between the two systems: L corre-
sponds to m, R corresponds to b, 1/C corresponds to k , ωE0 corresponds to F0 and
finally the current I corresponds to the position x of the mass. All the results we
have developed for the spring–mass system, including the resonance phenomenon,
can be adapted to the RLC circuit. It is remarkable that an electrical system and a
mechanical system, which are so different in nature, share the same mathematical
model.

5.3 Two-dimensional ODEs: phase plane analysis

5.3.1 Systems of first-order ODEs

In this section, we discuss two-dimensional systems of first-order ODEs. Such
systems involve two dependent variables, x and y , both depend on a single inde-
pendent variable t. It has the following general form:

dx

dt
= F (x, y , t), (5.9a)

dy

dt
= G(x, y , t). (5.9b)

We first restrict ourselves to homogeneous linear systems with constant coefficients:

dx

dt
= a11x + a12y , (5.10a)

dy

dt
= a21x + a22y , (5.10b)

where ai j are constants. The goal is to determine the solutions x(t) and y(t), typi-
cally given some initial condition (x(t0), y(t0)) = (x0, y0). The difficulty with solving
these systems is that the equations for x and y are coupled, i.e., the solution of
the first equation for x(t) relies on knowing y(t), which is determined by the second
equation, which in turn relies on knowing x(t)!

The system (5.10) can be conveniently written in matrix notation:
dx

dt

dy

dt

 =

a11 a12

a21 a22

x
y

 ,
or ẋ = Ax, (5.11)

where

x =

(
x

y

)
and A =

(
a11 a12

a21 a22

)
.
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We illustrate how to solve this system with the following example.

Example 5.1. Find the general solution of

ẋ = 4x − 2y ,

ẏ = x + y .

Solution: We write the system using the matrix notation,

ẋ = Ax

where

x =

(
x

y

)
and A =

(
4 −2

1 1

)
.

From our experiences with one-dimensional ODEs, we guess the solution is of the
form

x = veλt where v =

(
v1

v2

)
for some constants v1, v2, λ. We determine v and λ by substituting the above as-
sumed form into the system,

λveλt = Aveλt

=⇒ Av = λv.

So we see that v is the eigenvector and λ is the eigenvalue of A. We find λ by
solving

|A− λI| = 0 (I is the identity matrix)∣∣∣∣∣4− λ −2

1 1− λ

∣∣∣∣∣ = 0

λ2 − 5λ+ 6 = 0

Hence the two eigenvalues are λ1 = 3 and λ2 = 2.
Let v(1) be the eigenvector corresponding to the first eigenvalue λ1 = 3, then

Av(1) = λ1v
(1) implies

v
(1)
1 − 2v

(1)
2 = 0

and a solution is v (1)1 = 2, v
(1)
2 = 1. So a eigenvector is v(1) =

(
2

1

)
.

Similarly, for the second eigenvalue λ2 = 2, we have

v
(2)
1 − v

(2)
2 = 0
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and a solution is v (2)1 = 1, v
(2)
2 = 1. So a eigenvector is v(2) =

(
1

1

)
.

Therefore we have found two solutions to the system:

v(1)eλ1t =

(
2

1

)
e3t and v(2)eλ2t =

(
1

1

)
e2t .

The general solution is a linear combination of these two solutions,

x = C1v
(1)eλ1t + C2v

(2)eλ2t

= C1

(
2

1

)
e3t + C2

(
1

1

)
e2t

or

x(t) = 2C1e
3t + C2e

2t ,

y(t) = C1e
3t + C2e

2t .

We do not consider the special cases when λ1 = λ2 or when one of the eigenvalues
is zero in this course.

5.3.2 Relation to second-order ODEs

A single (one-dimensional) second-order linear homogeneous ODE with constant
coefficients can be converted into a system of two-dimensional first-order ODEs.
Consider the second-order ODE

ẍ + f ẋ + gx = 0, (5.12)

where f and g are constants. Introduce a new dependent variable y(t) defined by:

y = ẋ .

Since ẍ = ẏ , (5.12) can be written as:

ẏ = −f y − gx.

Then we see that (5.12) is equivalent to the following two-dimensional system of
first-order ODEs with x and y as the two dependent variables:

ẋ = y ,

ẏ = −gx − f y .

In matrix notation, we have: (
ẋ

ẏ

)
=

(
0 1

−g −f

)(
x

y

)
(5.13)
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It is clear that this two-dimensional first-order system is a particular case of the
general form (5.11) with a11 = 0, a12 = 1, a21 = −g and a22 = −f .

The converse also holds in most cases1: a two-dimensional system (5.10) can be
converted into a single second-order linear ODE. Starting from (5.10), we differenti-
ate the first equation:

ẍ = a11ẋ + a12ẏ ,

substitute ẏ from the second equation:

ẍ = a11ẋ + a12(a21x + a22y),

and finally eliminate y by writing it in terms of x and ẋ using the first equation:

ẍ = a11ẋ + a12

(
a21x + a22

ẋ − a11x
a12

)
.

Rearranging gives:

ẍ + (−a11 − a22) ẋ + (a11a22 − a12a21) x = 0,

or equivalently:
ẍ + f ẋ + gx = 0

where f = −a11 − a22 and g = a11a22 − a12a21. Hence we have converted the first-
order system (5.10) into a single second-order ODE.

5.3.3 Phase plane

In Example 5.1, we find the solution x(t) and y(t) of a two-dimensional system.
This solution describes how x and y change with t. Here we show that we can
also examine the solutions of the autonomous two-dimensional system (5.10) on
the xy -plane. We call this plane of which the two axes represent the two dependent
variables the phase plane.

At some particular time t, (x(t), y(t)) is a point on the phase plane. As we vary t,
(x(t), y(t)) traces out a solution curve, or a trajectory. The sense of increasing t is
called the positive sense of the trajectory and is usually indicated by an arrow. This
defines an orientation for a trajectory. Different particular solutions of (5.10), which
correspond to different initial conditions, trace out different trajectories. A diagram
showing one or more trajectories is called a phase portrait of the system. The
phase portrait allows us to study not just one particular solution but the whole family
of solutions of (5.10). This is demonstrated in the next example.

Example 5.2. Sketch and interpret the phase portrait of the simple harmonic oscil-
lation governed by

ẍ + x = 0.

1In certain cases, such as a ‘star’ node, a two-dimensional first-order system can not be written
as a second-order ODE. This is beyond the scope of this course.
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Solution: To write the given second-order ODE as a two-dimensional first-order
system, we define v(t) = ẋ(t) (the velocity). Hence,

ẋ = v ,

v̇ = −x.

Or in matrix notation, (
ẋ

v̇

)
=

(
0 1

−1 0

)(
x

v

)
.

We can find x and v by solving the given second-order ODE directly as in Sec-
tion 5.1.1. Alternatively, we can solve the above two-dimensional system as in Ex-
ample 5.1. Either way, for the initial conditions (x(0), v(0)) = (x0, v0), the solution
is

x(t) = x0 cos t + v0 sin t,

v(t) = −x0 sin t + v0 cos t.

Following the convention in classical mechanics, we put x on the horizontal axis
and v on the vertical axis of our phase plane. To construct trajectories for different
initial conditions on this xv -plane, we need to find v(x) as a function of x . One way
to do so is to eliminate t from x(t) and v(t),

x2 + v 2 = (x0 cos t + v0 sin t)2 + (−x0 sin t + v0 cos t)2

= x20 + v 20 .

So for a given initial condition (x0, v0), the trajectory is a circle with centre at the
origin and radius

√
x20 + v 20 . We can also obtain v(x) directly from the (autonomous)

second-order governing ODE by writing ẍ = v dv
dx

(see Section 4.1.1). Then,

v
dv

dx
+ x = 0∫ v

v0

ṽ d ṽ = −
∫ x

x0

x̃ d x̃ (see Example 2.3)

[
ṽ 2

2

]v
v0

= −
[
x̃2

2

]x
x0

=⇒ x2 + v 2 = x20 + v 20

and we again see the trajectories are circles. But how about the orientation?
The right panel of Fig. 5.4 plots several trajectories on the phase plane. Let us

take a closer look at the red one which has the initial condition (x0, v0) = (0, 1). The
left panel of Fig. 5.4 shows x(t) and v(t) for this trajectory. For concreteness, we
discuss this solution in terms of the spring–mass system.
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0 t

x , v

1

v(t)

x(t)

x

v

(x(t), v(t))

(0, 1)

Figure 5.4: Phase portrait of the simple harmonic oscillator in Example 5.2.

1. In the upper half-plane, the velocity is positive v > 0. So x is increasing with t
as indicated by the arrow on the trajectory. This corresponds to the portion of
the oscillation when the mass is moving from the leftmost position x = −1 to the
rightmost position x = 1.

2. In the lower half-plane, the velocity is negative v < 0. So x is decreasing with t
and the mass is moving from x = 1 to x = −1.

3. The points (−1, 0) and (1, 0) are the turning points at which v = 0. At these
points the mass is momentarily at rest as the motion switches direction. Between
the two turning points, the magnitude of the velocity |v | increases from |v | = 0 to
the maximum |v | = 1 when the mass is at the equilibrium position x = 0 and then
decreases to |v | = 0 again.

So we see that the trajectories of the simple harmonic oscillation in this example
are circles on the xv -plane going in the clockwise direction. Generally, the trajecto-
ries of any periodic motion are closed curves on the phase plane.

5.3.4 Fixed points

The two-dimensional system (5.9) is autonomous if F and G do not depend on t
explicitly. For example, the homogeneous linear system (5.10) is autonomous. For
an autonomous system, a point at which both ẋ = 0 and ẏ = 0 is called a fixed
point2. A fixed point is therefore a pair of values (x∗, y∗) that solves F (x, y) = 0 and
G(x, y) = 0 simultaneously. By definition, fixed points are constant solutions. If
(x(0), y(0)) is a fixed point, (x(t), y(t)) stays at the fixed point for all t > 0. So a
fixed point is represented by a single point on the phase-plane.

2Fixed points are also sometimes known as critical points or equilibrium points.
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For the homogeneous system (5.10), there is only one fixed point at the origin
(0, 0). The following example considers an inhomogeneous system where the inho-
mogeneous term is constant.

Example 5.3. Determine the fixed points of the following inhomogeneous system:(
ẋ

ẏ

)
=

(
4 −2

1 1

)(
x

y

)
+

(
0

−3

)

Solution: To find the fixed point, we set ẋ = 0 and ẏ = 0 which leads to the
following pair of equations:

4x − 2y = 0,

x + y − 3 = 0.

So there is a single fixed point at (1, 2).
Let us consider the following inhomogeneous linear system with a constant inho-

mogeneous term:

ẋ = a11x + a12y + h1, (5.14a)
ẏ = a21x + a22y + h2, (5.14b)

where ai j and hi are constants. Apart from some exceptional cases, this system
has one fixed point. Once this fixed point is found, the system can be solved as
follows. Let (x∗, y∗) be the fixed point. Make the change of variables: x̃ = x − x∗ and
ỹ = y − y∗ and substitute into the system:

˙̃x = a11x̃ + a12ỹ + (a11x∗ + a12y∗ + h1),

˙̃y = a21x̃ + a22ỹ + (a21x∗ + a22y∗ + h2).

By the definition of fixed points, the expressions inside the brackets vanish and so
(x̃ , ỹ) satisfies ˙̃x = Ax̃ (in our standard matrix notation). This is the homogeneous
version of the original system and its general solution is

x̃ = C1v
(1)eλ1t + C2v

(2)eλ2t

where λi and v(i) are respectively the eigenvalues and eigenvectors of A. Reverting
back to the original variables, we thus have(

x

y

)
= C1

(
v
(1)
1

v
(1)
2

)
eλ1t + C2

(
v
(2)
1

v
(2)
2

)
eλ2t +

(
x∗

y∗

)

Example 5.4. Solve the inhomogeneous system in Example 5.3.

Solution: The corresponding homogeneous system has already been solved in
Example 5.1. And in Example 5.3, we see that the fixed point is at (1, 2). Therefore,
the general solution of the inhomogeneous system is(

x

y

)
= C1

(
2

1

)
e3t + C2

(
1

1

)
e2t +

(
1

2

)
.
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5.3.5 Classification of fixed points

We may classify fixed points from two different aspects, one based on their stability
and another based on the geometric shape of the trajectories in their neighbour-
hood.

In the previous section, we learnt that if the system is initially at a fixed point, it
stays at the fixed point for all future times. But what happens if we start at a point
near the fixed point, does the trajectory move towards or away from it? This question
concerns the stability of a fixed point. We first introduce the following two concepts:

• A fixed point x∗ is Lyapunov stable if all trajectories that at some instant are
sufficiently close to x∗ remain close to it at all future times.

• A fixed point x∗ is attracting if all trajectories that at some instant are sufficiently
close to x∗ approach it as t →∞.

Note that Lyapunov stable and attracting are two separate notions and neither one
implies the other. We now classify the stability of a fixed point as follows. A fixed
point is:

• stable (or asymptotically stable) if it is both Lyapunov stable and attracting;

• neutrally stable if it is Lyapunov stable but not attracting;

• unstable if it is not Lyapunov stable.

We can also classify fixed points based on the pattern of the trajectories near it.
A fixed point is a:

• node if every trajectory approaches it in a definite direction as t →∞ or t → −∞;

• saddle if some trajectories approach it as t →∞ and some trajectories approach
it as t → −∞;

• centre if the trajectories form closed curves that enclose it;

• spiral if the trajectories spiral about it (i.e. individual trajectory does not approach
the fixed point in a definite direction).

Notice that “as t → −∞” means we are moving backwards in t. So approaching a
fixed point as t → −∞ is equivalent to moving away from the fixed point as t →∞.

We now focus on the linear system (5.14). We have seen that its general solution
depends on the eigenvalues and eigenvectors of the coefficient matrix A. So it is
not surprising that the type of its fixed point can be deduced from the eigenvalues of
A. There are six different cases as illustrated by the following examples. We do not
consider the special cases when the eigenvalues are equal (star nodes or improper
nodes) or when one of the eigenvalue is zero (non-isolated nodes) in this course.
In all of the examples below, without loss of generality, we consider homogeneous
systems, so the fixed point is at (0, 0).
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Example 5.5. Stable Node (distinct, real and negative eigenvalues)(
ẋ

ẏ

)
= A

(
x

y

)
, with A =

(
−3 −1

−1 −3

)
.

We first find the general solution. The eigenvalues of A are given by:

Det(A− λI) =

∣∣∣∣∣−3− λ −1

−1 −3− λ

∣∣∣∣∣ = λ2 + 6λ+ 8 = (λ+ 2)(λ+ 4) = 0.

Therefore λ1 = −2 and λ2 = −4. The eigenvectors corresponding to these eigen-
values are:

v(1) =

(
1

−1

)
and v(2) =

(
1

1

)
.

So the general solution is:

x(t) =

(
x(t)

y(t)

)
= C1

(
1

−1

)
e−2t + C2

(
1

1

)
e−4t .

Since both eigenvalues are real and negative, all solutions approach the fixed point
at (0, 0) as t → +∞. So the fixed point is stable. The phase portrait below shows
that the origin is a stable node.

x

y

v2 v1

Equipped with the eigenvalues and eigenvectors (and hence the general solu-
tion), we can make a qualitative sketch of the phase portrait as follows.

1. The two eigenvectors define two special directions. When one of the arbitrary
constant is zero, the particular solution becomes x = Civ

(i)eλi t (i = 1, 2). This
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solution is parallel to v(i) and its trajectory is a straight line through the origin with
slope v (i)2 /v

(i)
1 . In particular, when C2 = 0:

x(t) =

(
x(t)

y(t)

)
= C1

(
1

−1

)
e−2t .

As t increases, this solution moves towards (0, 0) along the straight line y = −x .
Similarly, when C1 = 0, the solution approaches (0, 0) along the straight line
y = x .

2. The two straight lines through the fixed point and parallel to v(1) and v(2) divide
the phase plane into four regions. Within each region, a trajectory represents a
particular solution with non-zero C1 and C2. We can deduce the shape of these
trajectories by considering their behaviour as t → ±∞. As t → +∞, e−4t tends
to 0 more rapidly than e−2t (since −4 < −2 < 0), so

x(t) ∼ C1

(
1

−1

)
e−2t for large positive t.

This means that as x(t) get close to (0, 0) at large positive t, the trajectories
become nearly parallel to v1. Conversely, as t → −∞, i.e. as we go backwards
in t and x(t) is moving away from (0, 0), e−4t increases more rapidly than e−2t ,
so

x(t) ∼ C2

(
1

1

)
e−4t for large negative t.

Therefore the trajectories are nearly parallel to v2 when x is far away from the
origin. For example, consider the single trajectory in red: far away from the origin,
the trajectory is nearly parallel to v2. As t increases, the trajectory bends towards
the origin and as it does so, it becomes nearly parallel to v1.

Example 5.6. Unstable Node (distinct, real and positive eigenvalues)(
ẋ

ẏ

)
= A

(
x

y

)
, with A =

(
3 1

1 3

)
.

The eigenvalues of A are given by

Det(A− λI) =

∣∣∣∣∣3− λ 1

1 3− λ

∣∣∣∣∣ = λ2 − 6λ+ 8 = (λ− 2)(λ− 4) = 0.

The roots are λ1 = 4 and λ2 = 2. The eigenvectors are:

v(1) =

(
1

1

)
and v(2) =

(
1

−1

)
.
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So the general solution is:

x(t) =

(
x(t)

y(t)

)
= C1

(
1

1

)
e4t + C2

(
1

−1

)
e2t .

Since both eigenvalues are real and positive, all solutions go away from the fixed
point at (0, 0) as t → +∞. So the fixed point is unstable. The phase portrait below
shows that the origin is an unstable node.

x

y

v1 v2

Except for the straight-line trajectories (which are parallel to one of the eigenvectors
at all t), all other trajectories are nearly parallel to v2 when they are close to the
origin and then bend to become nearly parallel to v1 when x(t) moves away from
the origin as t increases.

Example 5.7. Saddle (real eigenvalues with opposite sign)(
ẋ

ẏ

)
= A

(
x

y

)
, with A =

(
1 3

3 1

)
.

In this case, the characteristic equation for the eigenvalues is:

Det(A− λI) =

∣∣∣∣∣1− λ 3

3 1− λ

∣∣∣∣∣ = λ2 − 2λ− 8 = (λ+ 2)(λ− 4) = 0,

so the eigenvalues are λ1 = 4 and λ2 = −2. The eigenvectors are:

v(1) =

(
1

1

)
and v(2) =

(
1

−1

)
.
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So the general solution is:

x(t) =

(
x(t)

y(t)

)
= C1

(
1

1

)
e4t + C2

(
1

−1

)
e−2t .

Since λ2 = −2 < 0, we see that those solutions with C1 = 0 approach the fixed point
at (0, 0) as t → ∞. However, because λ1 = 4 > 0, all other solutions move away
from the origin at large positive t. So the origin is a saddle. By definition, saddles
are always unstable. The phase portrait is shown below.

x

y

v1 v2

As before, we can sketch this phase portrait using knowledge of the eigenvalues
and eigenvectors.

1. We again start with those solutions where one of the arbitrary constants is zero.
When C2 = 0, x is parallel to v(1) for all t. Furthermore, λ1 = 4 > 0, so the
solutions move along the straight line y = x away from (0, 0) as t increases. By
similar argument, when C1 = 0, the trajectory is the straight line y = −x , which
is parallel to v(2). However because λ2 = −2 < 0, these solutions move towards
(0, 0) as t increases.

2. For solutions with non-zero C1 and C2, we analyse the behaviour of x(t) as t →
±∞. For large negative t, e4t → 0 and the solution is dominated by the second
term:

x(t) ∼ C2

(
1

−1

)
e−2t .

So x is nearly parallel to v(2), far away from the origin (e−2t � 1) but moving
towards it (λ2 < 0). On the other hand, for large positive t, e−2t → 0 and the first
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term dominates:

x(t) ∼ C1

(
1

1

)
e4t .

So x is nearly parallel to v(1), far away from the origin (e4t � 1) and moving
further away from it (λ4 > 0). The trajectory in red shows how the transition
between these two behaviour happens: as t increases, x initially moves towards
the origin along a direction nearly parallel to v(2); as x approaches the origin,
its trajectory bends away from v(2) towards v(1); as t increases further, x moves
away from the origin along a direction nearly parallel to v(1).

Example 5.8. Centre (complex eigenvalues with zero real part)(
ẋ

ẏ

)
= A

(
x

y

)
, with A =

(
0 1

−1 0

)
.

To find the eigenvalues, the characteristic equation is:

Det(A− λI) =

∣∣∣∣∣−λ 1

−1 −λ

∣∣∣∣∣ = λ2 + 1 = 0,

The roots are λ± = ±i . The eigenvectors are also complex:

v(+) =

(
1

i

)
and v(−) =

(
1

−i

)
.

One way to write the general solution is:

x(t) =

(
x(t)

y(t)

)
= A

(
1

i

)
e it + B

(
1

−i

)
e−it .

We can also express the general solution in terms of real functions:(
x(t)

y(t)

)
=

(
A+ B

i(A− B)

)
cos t +

(
i(A− B)

−(A+ B)

)
sin t

=

(
C1

C2

)
cos t +

(
C2

−C1

)
sin t

where we have defined the new arbitrary constants C1 = A+ B and C2 = i(A− B).
Eliminatng t from x(t) and y(t) (see Example 5.2), we obtain the equation for the
trajectories on the phase plane:

x2 + y 2 = C21 + C22
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which represents a family of circles centred at (0, 0) with radius
√
C21 + C22 . To de-

termine the orientation of the trajectories, substitute a point, say (x, y) = (1, 1), into
the system of equations. This gives (ẋ , ẏ) = (1,−1). So at (1, 1), x is increasing
while y is decreasing. Therefore the trajectories are clockwise.

The phase portrait is shown below and we see that the fixed point at the origin is
a centre. By definition, centres are neutrally stable.

x

y

Note that if the eigenvalues are ±ai for some real constant a, the trajectories are
concentric ellipses.

Example 5.9. Stable Spiral (complex eigenvalues with negative real part)(
ẋ

ẏ

)
= A

(
x

y

)
, with A =

(
0 1

−2 −2

)

To find the eigenvalues, the characteristic equation is:

Det(A− λI) =

∣∣∣∣∣−λ 1

−2 −2− λ

∣∣∣∣∣ = λ2 + 2λ+ 2 = 0.

The roots are λ± = −1± i . The eigenvectors are also complex:

v(+) =

(
1

−1 + i

)
and v(−) =

(
1

−1− i

)
.

In terms of real functions, the general solution is

x(t) =

(
x(t)

y(t)

)
=

(
C1

C2 − C1

)
e−t cos t +

(
C2

−C1 − C2

)
e−t sin t.
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The phase portrait is shown below and we see that the fixed point at (0, 0) is a stable
spiral. The spiralling behaviour stems from the periodic functions cos t and sin t in
the solutions. The negative real parts of the eigenvalues leads to the factor e−t . So
x → 0 and y → 0 and the solutions spiral towards the fixed point as t → +∞.

x

y

Example 5.10. Unstable Spiral (complex eigenvalues with positive real part)(
ẋ

ẏ

)
= A

(
x

y

)
, with A =

(
0 1

−2 2

)

To find the eigenvalues, the characteristic equation is:∣∣∣∣∣−λ 1

−2 2− λ

∣∣∣∣∣ = λ2 − 2λ+ 2 = 0.

The roots are λ± = 1± i , The eigenvectors are also complex:

v(+) =

(
1

1 + i

)
and v(−) =

(
1

1− i

)
.

In terms of real functions, the general solution is

x(t) =

(
x(t)

y(t)

)
=

(
C1

C1 + C2

)
et cos t +

(
C2

C2 − C1

)
et sin t.

The phase portrait is shown below and we see that the fixed point at (0, 0) is an
unstable spiral. The positive real parts of the eigenvalues give rise to the factor et .
So the solutions spiral away from the fixed point at the origin as t → +∞.
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x

y

Summary. For an autonomous linear two-dimensional system of first-order ODEs:(
ẋ

ẏ

)
= A

(
x

y

)
+

(
h1

h2

)
, with A =

(
a b

c d

)
,

The fixed point can be classified by the eigenvalues of A as follows.

Real eigenvalues λ1 and λ2:
λ2 < λ1 < 0 distinct real negative eigenvalues: stable node
0 < λ2 < λ1 distinct real positive eigenvalues: unstable node
λ2 < 0 < λ1 real eigenvalues of opposite sign: saddle

Complex eigenvalues λ± = p ± iq:
p < 0 complex eigenvalues with negative real part: stable spiral
p = 0 complex eigenvalues with zero real part: centre
p > 0 complex eigenvalues with positive real part: unstable spiral

(excluding the special cases when λ1 = λ2 or when one of the eigenvalues is zero)
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