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Abstract

We consider presentations that were derived in [3] for the interval groups asso-
ciated with proper quasi-Coxeter elements of the Coxeter group W (Dn). We
use combinatorial methods to derive alternative presentations for the groups,
and use these new presentations to show that the interval group associated with
a proper quasi-Coxeter element of W (Dn) cannot be isomorphic to the Artin
group of type Dn. While the specific problems we solve arise from the study
of interval groups, their solution provides an illustration of how techniques in-
dicated by computational observation can be used to derive properties of all
groups within an infinite family.

1. Introduction

This article uses combinatorial methods to answer a question that arises from the
results of [3]. In particular, we prove that the presentations in an infinite family
associated with the Coxeter group W (Dn) define groups that are not isomorphic
to the Artin groups of the same type. Our proof of that non-isomorphism was
driven by observations made during computation with those presentations, and
provides an illustration of how a collection of computer results that strongly
indicate the correctness of a general conjecture for infinite classes of groups can
be used in writing a theoretical proof of those general results.

The presentations that we consider are those of interval groups associated with
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quasi-Coxeter elements of the Coxeter group W (Dn). The article [3] constructs
these presentations, defining each interval group as a one-relator quotient of
an Artin group A(∆), for a Carter diagram ∆ associated with the associated
conjugacy class of quasi-Coxeter elements. The question of whether a group so
defined is isomorphic to the Artin group A(Dn) is a natural one arising out of the
theory of interval groups associated with Coxeter (rather then quasi-Coxeter)
elements of W (Dn) [5]. However the question could only be partially answered
using that theory (an answer is provided for even n in [4]). The proof in this
article, valid for all integers n, uses none of that theory, and works purely from
the presentations derived in [3], using the method of Reidemeister-Schreier [10,
Section 2.5].

The main results of this article are Theorem 1.1, which uses combinatorial
methods to find alternative presentations for the interval groups considered
in this article, as one-relator quotients of a different Artin group (the affine
Artin group A(Ãn−1)), and Theorem 1.3, which uses those new presentations
to prove that none of those interval groups is isomorphic to the Artin group
of type Dn (for appropriate n). Our proof of Theorem 1.3 finds subgroups
of groups in the two infinite families that would have to correspond under an
isomorphism between a pair of groups, uses Reidemeister-Schreier techniques to
compute presentations of those subgroups, and then demonstrates that these
presentations have different abelianisations, thereby establishing the claimed
non-isomorphism.

While the questions that are answered in this article arise from the study of
interval groups in [3], that article provides motivation only, and no knowledge
of it is necessary for understanding of this current article. We have chosen not to
define Coxeter elements or quasi-Coxeter elements of the Coxeter group W (Dn)
in this article, or to explain the construction of the interval groups associated
to those elements, because we do not need this information; we merely study
presentations that are found in [3].

Each of the presentations from [3] that we study in this article is associated
with a Carter diagram associated with the Coxeter group W (Dn). Those Carter
diagrams are classified in [7], where they are called admissible diagrams. It is
the diagrams Dn(ai) (1 ≤ i ≤ bn2 c − 1) of [7] that are associated with the
quasi-Coxeter elements of W (Dn).

In this article we use the notation ∆t,n from [3] for the diagram with n vertices
that is formed by attaching paths containing t − 1 and n − 3 − t edges to
vertices at opposite ends of a diagonal of a square, where 1 ≤ t ≤ n − 3. For
1 ≤ t ≤ (n− 2)/2, this is the Carter diagram Dn(at).

We use the notation ∆n to denote the n-gon on n vertices; when n is even this
is a Carter diagram, denoted by Dn(bn

2−1) in [7]. We note that it is also the

Coxeter diagram of affine type Ãn−1
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Each of the diagrams ∆t,n can be found as the result of applying a sequence of
mutations to the diagram Dn, and hence it is covered by [9, Theorem 1.1] and
[8, Theorem A]. Those results prove that, for any diagram Γ′ derived from a
finite type Coxeter diagram Γ by a sequence of mutations, the Artin group A(Γ)
is isomorphic to the quotient of the Artin group A(Γ′) by the normal closure of
a set of cycle commutators (defined in Section 2 below) associated with the set
of chordless cycles of Γ′, each of which relates generators that correspond to the
vertices of a chordless cycle.

Each ∆t,n contains a single 4-cycle, and ∆n a single n-cycle. So each diagram
∆ = ∆t,n or ∆n provides us with a presentation of A(Dn) as a one-relator
quotient of A(∆). Similarly, by [6, Theorem 3.10] (or alternatively by later
work of [2] that is cited by [9]), the Coxeter group W (Dn) can be found as a
one-relator quotient of W (∆).

In Section 3 of this paper, we re-prove some of the isomorphisms proved as
corollaries of [9, Theorem 1.1], by presenting explicit isomorphisms, and use the
same methods to prove the following new result. Note that we define twisted
cycle commutators in Section 2 below. See also Figure 1 below for our numbering
of the vertices of the Coxeter diagrams, and hence our labelling of the generators
of the corresponding Artin group referred to in the theorem.

Theorem 1.1. For each t with 1 ≤ t ≤ n − 3, the following two groups are
isomorphic:

(1) the quotient Q = Qn,t of A(∆t,n) by the normal closure of the twisted
cycle commutator tc(b1, b2, b3, b4), and

(2) the quotient G = Gn,t of A(∆n) by the t-twisted cycle commutator
tc(a1, a2, . . . , an)t.

Remark 1.2. It is clear, by rotating the diagram ∆t,n through 180◦, that
A(∆t,n) ∼= A(∆n−2−t,n), and it follows from Lemma 2.5 below that Qn,t ∼=
Qn,n−2−t for all 1 ≤ t ≤ n − 3. So we could assume that t ≤ b(n − 2)/2c, but
this is not necessary for the proof.

It follows from the theorem that the groups Gn,t and Gn,n−2−t are isomorphic;
this can also be proved directly by applying the automorphism of A(∆n) induced
by ai 7→ a−1i for 1 ≤ i ≤ n.

It is natural to ask if the groups Q and G have soluble word problems, but we
have been unable to answer that question.

In Section 4 we prove Theorem 1.3 (stated below) that the groups Qn,t and
Gn,t are not isomorphic to the Artin group of type Dn. This theorem contrasts
with the results of [9] that we have already mentioned, and which we re-prove
in Section 3 as Propositions 3.1, 3.2 and 3.3, which find isomorphisms between
A(Dn) and each of the quotients A(∆t,n) by the normal closure of the cycle
commutator cc(b1, b2, b3, b4), and of A(∆n) by the normal closure of the cycle
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commutator cc(a1, a2, . . . , an). We note that each of these presentations for
quotients by cycle commutators can be derived in a natural way as a presentation
for the interval group of a Coxeter (rather than quasi-Coxeter) element of type
Dn, on a subset of the set of all reflections (using methods described in [3]).

Theorem 1.3. The groups Qn,t and Gn,t referred to in Theorem 1.1 are not
isomorphic to A(Dn) for any n, t with n ≥ 4 and 1 ≤ t ≤ n− 3.

This result for n up to about 70 was originally proved by computer calculations,
in which we found subgroups of the groups G of Theorem 1.1 and of A(Dn)
that would have to correspond under a putative isomorphism, but which had
different abelianisations. We were able to observe the details of the steps in the
computer calculations, and to use these to construct a proof for general n.

We note that the article [4] contains a proof that the groups Qn,t are non-
isomorphic to A(Dn) when n is even, but that proof does not extend to the
case where n is odd. We have not resolved the question of whether, for a given
value of n, the groups Gn,t are isomorphic for different values of t, except for
the isomorphism Gn,t ∼= Gn,n−2−t mentioned in the remark above.

Acknowledgements. The third author would like to acknowledge support
through the DFG grants BA2200/5-1 and RO1072/19-1. The first three authors
would like to thank Sarah Rees who hosted them during their research stay in
Newcastle.

All four authors would like to acknowledge some very helpful and constructive
comments from the referees.

2. Notation and preliminary lemmas

Throughout this article we denote the identity element of a group by 1. Given
words u, v we write u = v to indicate that words are identical as strings, and
u =G v to indicate that u, v represent the same element of the group G.

The labelling of the vertices in the diagrams that we shall now describe can be
seen in Figure 1.

We label the vertices of the Coxeter diagram of Dn as 1, 2, . . . , n, with 1 and 2
labelling the two vertices at ends of the fork, 3 joined to both 1 and 2, and then
4, 5, 6, . . . , n labelling the successive vertices from 3 to the end of the diagram.
We label the generators of the Artin group A(Dn) as x1, . . . , xn. So x1 and
x2 commute, x1 and x2 braid with x3, the generator xi braids with xi+1 for
3 ≤ i ≤ n− 1, and all other pairs of generators commute.

We label the vertices of the ∆n diagram (this is Ãn−1) as 1, 2, . . . , n around the
cycle. We label the generators of the Artin group A(∆n) as a1, . . . , an. So, for
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Figure 1: The labelled diagrams

1 ≤ i ≤ n − 1, ai braids with ai+1, an braids with a1 and all other pairs of
generators commute.

We label the vertices of the ∆1,n diagram 1, 2, . . . , n with 1, 2, 3, 4 around a
square, and 1, 5, 6, . . . , n labelling consecutive vertices on a path. We label
the generators of the Artin group A(∆1,n) as b1, . . . , bn. So the pairs {b1, b2},
{b2, b3}, {b3, b4}, {b4, b1}, {b1, b5} and then {bi, bi+1} for 5 ≤ i ≤ n − 1 braid,
and all other pairs of generators commute.

Define r := n−3−t, and s := t−1, so that the two arms of ∆t,n contain r and s
edges respectively. Some of our constructions may seem clearer when expressed
in terms of the parameters r, s rather than t. For t > 1, we label the vertices of
the ∆t,n diagram 1, 2, . . . , n, with 1, 2, 3, 4 around a square, and 1, 5, 6, . . . , 4+r
and 3, 5+r, . . . , n = 4+r+s each labelling sequential vertices on a path (where
we recall that r = n − 3 − t and s = t − 1). We label the generators of the
Artin group A(∆t,n) as b1, . . . , b4+r, c5+r, . . . , cn. So the pairs {b1, b2}, {b2, b3},
{b3, b4}, {b4, b1}; {b1, b5} and {bi, bi+1} for 5 ≤ i ≤ 3 + r; and {b3, c5+r} and
{ci, ci+1} for 5 + r ≤ i ≤ n− 1 braid, while all other pairs of vertices commute.

Definition 2.1. For n ≥ 3, we define the cycle commutator cc(y1, y2, . . . , yn)
to be the commutator [y1, y2 . . . yn−1yny

−1
n−1 . . . y

−1
2 ]. So we have, for example,

cc(y1, y2, y3, y4) = [y1, y2y3y4y
−1
3 y−12 ].

We define the twisted cycle commutator tc(y1, y2, y3, y4) to be the commutator
[y1, y

−1
2 y3y4y

−1
3 y2] and, for n ≥ 4 and 1 ≤ t ≤ n − 2, we define the t-twisted

cycle commutator tc(y1, y2, . . . , yn)t to be the commutator

[y1, y
−1
2 · · · y

−1
t+1yt+2 · · · yn−1yny−1n−1 · · · y

−1
t+2yt+1 · · · y2].

So in particular tc(y1, y2, y3, y4)1 = tc(y1, y2, y3, y4), and tc(y1, y2, . . . , yn)n−2
is the commutator

[y1, y
−1
2 · · · y

−1
n−1ynyn−1 · · · y2].

In the above definitions, the reader should feel free to use whichever of the
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two possible definitions of the commutator [g, h] they prefer - it will make no
difference! We shall show in Lemmas 2.4 and 2.5 below that, in the context of
our applications, these definitions have various equivalent formulations.

For group elements g, h, we will write CM(g, h) to mean that g and h commute
(i.e. gh =G hg) and BR(g, h) to mean that g and h braid (i.e. ghg =G hgh.) We
will sometimes write statements such as BR(g, h) = BR(g′, h′). By this we mean
that the two statements BR(g, h) and BR(g′, h′) are logically equivalent. We
will sometimes refer to the conjugate of such a relation, by an element k; by this
we mean a relation of the form k−1ghk =G k−1hgk or k−1ghgk =G k−1hghk.

The following technical lemmas will be used repeatedly in Section 3.

Lemma 2.2. Let G be a group, and suppose that f, g, h ∈ G satisfy BR(f, g),
BR(g, h) and CM(f, h). Then

(i) BR(f, ghg−1), BR(f, g−1hg), and BR(f, fghg−1f−1);

(ii) CM(g, fghg−1f−1), CM(f−1gf, h−1gh), and CM(fgf−1, hgh−1).

Proof. Since hghg−1h−1 =G g and h commutes with f , we have

BR(f, g)⇒ BR(f, hghg−1h−1)⇒ BR(f, ghg−1)

and similarly h−1g−1hgh =G g implies BR(f, g−1hg). Then BR(f, fghg−1f−1)
follows by conjugating BR(f, ghg−1) by f .

Furthermore, putting w = fghg−1f−1, we have

gw = gfghg−1f−1 =G fgfhg−1f−1 =G fghfg−1f−1 =G fghg−1f−1g = wg,

proving CM(g, fghg−1f−1). Also, conjugating CM(f, h), we derive the two
equalities:

CM(g−1fg, g−1hg) = CM(fgf−1, hgh−1),

CM(gfg−1, ghg−1) = CM(f−1gf, h−1gh).

Lemma 2.3. Let G be a group, and suppose that y1, . . . , yk ∈ G (with k ≥ 2)
satisfy BR(yi, yi+1) for 1 ≤ i < k and CM(yi, yj) for 1 ≤ i < j − 1 ≤ k − 1 (as
in the braid group). Let w := y1y2 · · · yk−1yky−1k−1 · · · y

−1
2 y−11 . Then

(i) w =G y−1k y−1k−1 · · · y
−1
2 y1y2 · · · yk−1yk;

(ii) BR(y1, w), BR(yk, w), and (if k ≥ 3) BR(yk, v),
where v := y−1k−1 · · · y

−1
2 y1y2 · · · yk−1;

(iii) CM(yi, w) for 2 ≤ i ≤ k − 1.

Proof. (i) We prove this by induction on k. It follows directly from BR(y1, y2)
when k = 2. For k > 2, we use BR(yk−1, yk) to replace the subword yk−1yky

−1
k−1
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of w by y−1k yk−1yk, and then use CM(yi, yk) for 1 ≤ i ≤ k− 2 and induction to
complete the proof.

(ii) To get BR(yk, w), note that BR(yk, yk−1) implies BR(yk, y
−1
k yk−1yk) =

BR(yk, yk−1yky
−1
k−1), and conjugating this by y1 · · · yk−2, which commutes with

yk, gives BR(yk, w). This implies BR(yk, ykwy
−1
k ) = BR(yk, v). Similarly, it

follows from BR(y1, y2) that BR(y1, y1y2y
−1
1 ) = BR(y1, y

−1
2 y1y2) and (when

k ≥ 3) conjugating by y−1k · · · y
−1
3 gives BR(y1, y

−1
k · · · y

−1
2 y1y2 · · · yk), and then

BR(y1, w) follows from Part (i). When k = 2, BR(y1, w) follows from BR(y1, y2).

(iii) For a given i with 2 ≤ i ≤ k − 1, let f = yi−1, g = yi, and h =
yi+1 · · · yk−1yky−1k−1 · · · y

−1
i+1. Then we have CM(f, h) and BR(f, g), and BR(g, h)

follows from (ii), so CM(yi, yi−1yi · · · yk−1yky−1k−1 · · · y
−1
i y−1i−1) follows from Lemma 2.2 (ii).

Conjugating by y1 · · · yi−2 gives CM(yi, w).

The next lemma is also proved as [8, Lemma 2.4]. We repeat the proof here
because we will need to use essentially the same argument in the following lemma
on twisted cycle commutators.

Lemma 2.4. Let n ≥ 3, and suppose that a1, a2, . . . , an are elements of a group
G that satisfy the defining relations of A(∆n). Then the n properties

cc(a1, a2, . . . , an) =G 1, cc(a2, a3, . . . , a1) =G 1, . . . ,cc(an, a1, . . . , an−1) =G 1

are all equivalent.

Proof. We have

cc(a1, a2, . . . , an) =G 1 ⇒
CM(a1, a2 . . . an−1ana

−1
n−1 . . . a

−1
2 ) ⇒

CM(ana1a
−1
n , ana2 . . . an−1ana

−1
n−1 . . . a

−1
2 a−1n ) ⇒

CM(ana1a
−1
n , a2 . . . an−2anan−1ana

−1
n−1a

−1
n a−1n−2 . . . a

−1
2 ) =G

CM(ana1a
−1
n , a2 . . . an−2an−1a

−1
n−2 . . . a

−1
2 ) ⇒

CM(a1ana1a
−1
n a−11 , a1a2 . . . an−2an−1a

−1
n−2 . . . a

−1
2 a−11 ) =G

CM(an, a1a2 . . . an−2an−1a
−1
n−2 . . . a

−1
2 a−11 )

and so cc(an, a1, . . . , an−1) =G 1, and we derive the equivalence of the proper-
ties by iterating this argument.

Lemma 2.5. Let n ≥ 3 and 1 ≤ t ≤ n− 2, and suppose that a1, a2, . . . , an are
elements of a group G that satisfy the defining relations of A(∆n). Then the
following statements hold.

(i) The n properties

tc(a1, a2, . . . , an)t =G 1, tc(a2, a3, . . . , a1)t =G 1, . . . ,

tc(an, a1, . . . , an−1)t =G 1
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are all equivalent.

(ii) Let I := {2, 3, . . . , n− 1} and let S be a subset of I with |S| = t. Define
εi for i ∈ I by εi = −1 if i ∈ S and εi = 1 if i 6∈ S.

tc(a1, a2, . . . , an)t =G 1⇐⇒ [a1, a
ε2
2 · · · a

εn−1

n−1 ana
−εn−1

n−1 · · · a−ε22 ] =G 1.

Proof. We prove (ii) first. There is nothing to prove if t = n−2, so suppose that
t < n−2 (and hence n ≥ 4). Let k ∈ I with k < n−2, and for i ∈ I \{k, k+1},
choose εi = ±1. Define

c1 := aε22 · · · a
εk−1

k−1 a
−1
k ak+1a

εk+2

k+2 · · · a
εn−1

n−1 ,

c2 := aε22 · · · a
εk−1

k−1 aka
−1
k+1a

εk+2

k+2 · · · a
εn−1

n−1 .

We shall show below that, for any choice of k and εi, we have

[a1, c1anc
−1
1 ] =G 1⇐⇒ [a1, c2anc

−1
2 ] =G 1. (∗)

Once (∗) is proved, (ii) will follow. For suppose S of size t is given. There must
exist i, i+ 1 ∈ I such that exactly one of i and i+ 1 is in S, and then the set S′

formed from S by deleting from S one of those elements of {i, i+ 1} and adding
in the other one, also has size t; a sequence of such ‘moves’ can be found to
define a sequence of sets S = S0, S1, . . . Sn = {2, 3, . . . , t+ 1}, for which any two
sets that are adjacent in the sequence differ by a single pair of elements i, i+ 1
of I. We associate the commutator [a1, a

ε2
2 · · · a

εn−1

n−1 ana
−εn−1

n−1 · · · a−ε22 ] with the
set S and tc(a1, a2, . . . , an)t with the set {2, . . . , t + 1}. We use (∗) to prove
equivalence of the relations defined by commutators associated with successive
terms in that sequence, and then (ii) follows.

To avoid horrific notation, we shall write out the proof of (∗) in the specific case
n = 6, k = 3, t = 2, ε2 = 1, ε5 = −1, which we hope will make the general case
clear. In this case c1 = a2a

−1
3 a4a

−1
5 and c2 = a2a3a

−1
4 a−15 . Using the braid and

commutativity relations in G, we have

[a1, c1anc
−1
1 ] = [a1, a2a

−1
3 a4a

−1
5 a6a5a

−1
4 a3a

−1
2 ] =G 1 ⇐⇒

[a1, a
−1
4 a2a

−1
3 a4a

−1
5 a6a5a

−1
4 a3a

−1
2 a4] =G 1 ⇐⇒

[a1, a2a
−1
4 a−13 a4a

−1
5 a6a5a

−1
4 a3a4a

−1
2 ] =G 1 ⇐⇒

[a1, a2a3a
−1
4 a−13 a−15 a6a5a3a4a

−1
3 a−12 ] =G 1 ⇐⇒

[a1, a2a3a
−1
4 a−15 a6a5a4a

−1
3 a−12 ] = [a1, c2anc

−1
2 ] =G 1.

For (i) with t < n − 2, we can prove as in the proof of Lemma 2.4 that
tc(a1, a2, . . . , an)t =G 1 if and only if

CM(an, a1a
−1
2 · · · a

−1
t+1at+2 · · · an−2an−1a−1n−2 · · · a

−1
t+2at+1 · · · a2a−11 ),

and the result now follows from (ii). The proof when t = n− 2 is similar, but in
that case we conjugate the commuting relation by a−1n and then by a−11 rather
than by an and a1.
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3. Specific transformations to show isomorphisms between A(Dn)
and the quotients of A(∆)

Although Propositions 3.1, 3.2, and 3.3 can be found as corollaries of [9, Theo-
rem 1.1], we have provided our own proofs, in order to see explicit isomorphisms.
Our construction of the proofs of those propositions also helped us to construct
the proof of Theorem 1.1, which is a new result.

Our proofs of these three propositions and of Theorem 1.1 below all have the
following structure. We are trying to establish that two groups A and B defined
by presentations on generators α1, . . . , αn and β1, . . . , βn are isomorphic. To do
this, we first define homomorphisms φ : A→ B and ψ : B → A, and then prove
that φ and ψ are mutually inverse, which implies that they are isomorphisms.
We construct φ by first defining φ(α1), . . . , φ(αn) as words over the βi (and
we abuse notation by denoting these words by α1, . . . , αn) and then verify that
these images satisfy the defining relations of the group A, which proves that
the map φ defined on the generators extends to a homomorphism A→ B. The
homomorphism ψ : B → A is defined similarly. To prove that φ and ψ are
mutually inverse, it is sufficient to verify this on the generators; that is, we
show that ψ(φ(αi)) = αi and φ(ψ(βi)) = βi for 1 ≤ i ≤ n.

Proposition 3.1. If n ≥ 4, then the Artin group G := A(Dn) is isomorphic to
the quotient Q of the Artin group A(∆n) on generators a1, . . . , an by the normal
closure of the cycle commutator cc(a1, a2, . . . , an).

Proof. Where x1, . . . , xn are generators of the group G in its standard presen-
tation, we define elements a1, . . . , an of G as words over x1, . . . , xn as follows.

a1 := x1, a2 := x3, a3 := x4, . . . , an−1 := xn,

an := x−1n x−1n−1 · · ·x
−1
3 x2x3 · · ·xn−1xn.

Given the Artin relations between the xi, we need to verify that all of the
relations of A(∆n) hold between the ai, and also verify the cycle commutator
relation cc(a1, a2, . . . , an) =G 1. That will prove that the map from Q to G
defined by mapping each generator ai of Q to the element ai of G that we have
just defined extends to a homomorphism from Q to G.

We have

an = a−1n−1a
−1
n−2 · · · a

−1
2 x2a2 · · · an−2an−1 so x2 = a2a3 · · · an−1ana−1n−1 · · · a

−1
2 ,

and cc(a1, a2, . . . , an) =G 1 follows immediately from CM(x1, x2).

We see that, since x4, . . . , xn all commute with x1, the relator BR(a1, an) is
equivalent to BR(x1, x

−1
3 x2x3), and that this (conjugating) is equivalent to

BR(x2, x3x1x
−1
3 ), which follows from Lemma 2.2 (i) applied with f = x2, g =

x3, h = x1.
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The other relations are immediate apart from those that involve an: i.e. BR(an−1, an)
and CM(ai, an) for 2 ≤ i ≤ n−2. They all follow from Lemma 2.3 (ii) and (iii).

Conversely, given generators a1, . . . , an of Q, we define elements x1, . . . , xn of Q
as products of those.

x1 := a1, x2 := a2a3 · · · an−1ana−1n−1 · · · a
−1
3 a−12 , x3 := a2, . . . , xn := an−1

Then we need to verify that all the relations of G hold between the xi. That
will prove that the map from G to Q defined by mapping each generator xi of
G to the element xi of Q that we have just defined extends to a homomorphism
from G to Q.

The relation CM(x1, x2) is precisely cc(a1, a2, · · · , an) =Q 1. All other relations
not involving x2 follow immediately from those of the n-gon. So that leaves
BR(x2, x3) and CM(x2, xk) for 4 ≤ k ≤ n. These all follow from Lemma 2.3 (ii)
and (iii).

We also need to check that the two maps between the two groups are mutually
inverse, but this is clear from their actions on the generators.

Proposition 3.2. If n ≥ 4, then the Artin group G := A(Dn) is isomorphic
to the quotient Q of the Artin group A(∆1,n) on generators b1, . . . , bn by the
normal closure of the cycle commutator cc(b1, b2, b3, b4).

Proof. Where x1, . . . , xn are the generators of G in its standard presentation
we define elements b1, . . . , bn of G as products of those as follows.

b1 := x4, b2 := x3, b3 := x1, b4 := x−11 x−13 x2x3x1,

bk := xk for 5 ≤ k ≤ n.

We need now to check that the relations of Q hold between these elements of
G. All relations of Q involving bk for k ≥ 5 are immediate, as are BR(b1, b2),
BR(b2, b3) and CM(b1, b3) whereas, since b4 freely reduces to x2x3x1x

−1
3 x−12 by

Lemma 2.3 (i), BR(b3, b4) and CM(b2, b4) come from Lemma 2.3 (ii) and (iii).
Furthermore, since b4 =G x2x

−1
1 x3x1x

−1
2 and x1 and x2 commute with x4, we

see that BR(b4, b1) follows from BR(x3, x4), whereas, since b2b3b4b
−1
3 b−12 =G x2,

cc(b1, b2, b3, b4) =G 1 follows immediately from CM(x2, x4).

In the other direction, we define elements xi of Q in terms of the generators bi
of Q as follows.

x1 := b3, x2 := b2b3b4b
−1
3 b−12 , x3 := b2, x4 := b1,

xk := bk for 5 ≤ k ≤ n.

All relations of G involving xk for k ≥ 5 are immediate, as are BR(x1, x3),
BR(x4, x3) and CM(x1, x4), whereas BR(x2, x3) and CM(x1, x2) come from
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Lemma 2.3 (ii) and (iii). Finally, CM(x2, x4) is precisely the relation
cc(b1, b2, b3, b4) =G 1.

The fact that the two homomorphisms that we have defined are mutually inverse
follows immediately from their definitions.

Proposition 3.3. For 1 ≤ t ≤ n − 3, the quotient Q1 of the Artin group
A(∆1,n) on generators b1, . . . , bn by the normal closure of the cycle commutator
cc(b1, b2, b3, b4) is isomorphic to the quotient Q2 of the Artin group A(∆t,n) on
generators b1, . . . , b4+r, c5+r, . . . , cn by the normal closure of the cycle commu-
tator cc(b1, b2, b3, b4).

Proof. In the homomorphisms that we shall define between these groups, the
generators bk in the two groups will correspond for 1 ≤ k ≤ r + 4, that is each
map will map each such generator bk of the first group to the generator bk of
the second group, so there should be no danger of confusion. In order to find a
homomorphism from Q2 to Q1, we define elements ck of Q1 as products of the
generators b1, . . . , bn of Q1 as follows.

c5+r := b5+rb4+r · · · b5b1b2b3b−12 b−11 b−15 · · · b
−1
5+r

and ck := bk for 6 + r ≤ k ≤ n. Note that, by Lemma 2.3 (i), we have

c5+r =Q1
b−13 b−12 b−11 b−15 · · · b

−1
4+rb5+rb4+r · · · b5b1b2b3.

We only need to verify the relations ofQ2 that involve c5+r. Of these CM(ck, c5+r)
is immediate for k > 6 + r. Since b4+r · · · b5b1b2b3 commutes with c6+r = b6+r
(when s > 1), BR(c6+r, c5+r) follows from BR(b6+r, b5+r), whereas BR(b3, c5+r)
and CM(bk, c5+r) for k = 1, 2 and 5 ≤ k ≤ 4 + r follow from Lemma 2.3 (ii) and
(iii).

Finally, applying Lemma 2.4 to the cycle commutator relation
cc(b1, b2, b3, b4) =Q1

1 gives CM(b4, b1b2b3b
−1
2 b−11 ) and, since b4 commutes with

b5+r · · · b5, we get CM(b4, c5+r).

In the other direction, in order to define a homomorphism from Q1 to Q2, we
define elements bk of Q2 for k ≥ 5 + r as follows.

b5+r := b4+rb3+r · · · b5b1b2b3c5+rb−13 b−12 b−11 b−15 · · · b
−1
4+r

and bk := ck for 6 + r ≤ k ≤ n. Note that, by Lemma 2.3 (i), we have

b5+r =Q2 c
−1
5+rb

−1
3 b−12 b−11 b−15 · · · b

−1
3+rb4+rb3+r · · · b5b1b2b3c5+r.

We only need to verify the relations ofQ1 that involve b5+r. Of these CM(bk, b5+r)
is immediate for k > 6 + r. Since b4+r · · · b5b1b2b3 commutes with c6+r = b6+r,
BR(b6+r, b5+r) follows from BR(c6+r, c5+r), whereas BR(b4+r, b5+r), BR(b6+r, b5+r),
and CM(bk, b5+r) for k = 1, 2, 3 and 5 ≤ k ≤ 3 + r follow from Lemma 2.3 (ii)
and (iii).
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We can also use Lemma 2.3 (i) to give

b5+r =Q2
c−15+rb4+rb3+r · · · b5b1b2b3b

−1
2 b−11 b−15 · · · b

−1
3+rc5+r,

and then, since c−15+rb4+r · · · b5 commutes with b4, CM(b4, b5+r) follows from

CM(b4, b1b2b3b
−1
2 b−11 ).

It follows immediately from their definitions and Lemma 2.3 (i), that the two
homomorphisms that we have defined are mutually inverse.

Proof of Theorem 1.1. Let a1, . . . , an denote the generators of G. The pre-
sentations for G and Q clearly match when n = 4, so we may assume that
n ≥ 5. Then we define elements b1, . . . , br+4, c5+r, . . . , cn of G as products of
the generators a1, . . . , an, as follows.

b1 := a2a3 · · · ar+1ar+2a
−1
r+1 · · · a

−1
3 a−12 ,

b2 := a2 · · · ar+2a
−1
r+3 · · · a

−1
n−1anan−1 · · · ar+3a

−1
r+2 · · · a

−1
2 ,

b3 := a−1r+4 · · · a
−1
n−1anan−1 · · · ar+4 (= an when s = 0),

b4 := a1,

bk := ar+7−k for 5 ≤ k ≤ r + 4,

ck := ak−1 for 5 + r ≤ k ≤ n .

We need to verify that the relations of Q hold between the elements b1, . . . , b4+r,
cr+5, . . . , cn. The relations of Q among the bj and ck that do not involve b1, b2
or b3 are all immediate, as are CM(b1, b3), CM(b1, ck) for 5 + r ≤ k ≤ n and
CM(b3, bk) for 5 ≤ k ≤ r + 4.

Also, since a1 commutes with an−1 · · · ar+4, BR(b3, b4) follows immediately from
BR(a1, an). Similarly, since b1 =G a−1r+2 · · · a

−1
3 a2a3 · · · ar+2 by Lemma 2.3 (i),

we see that BR(b1, b4) follows from BR(a1, a2) and CM(a1, a3 · · · ar+2).

Now BR(b1, b5), CM(b1, bk) for 6 ≤ k ≤ r + 4, BR(b3, c5+r), and CM(b3, ck)
for 6 + r ≤ k ≤ n all follow from Lemma 2.3 (ii) and (iii).

That leaves the relations involving b2. Let g := a−13+r · · · a
−1
n−1anan−1 · · · ar+3.

Then, since

b1 = a2 · · · ar+1ar+2a
−1
r+1 · · · a

−1
2 and b2 = a2 · · · ar+1ar+2ga

−1
r+2a

−1
r+1 · · · a

−1
2 ,

BR(b1, b2) is equivalent to BR(ar+2, ar+2ga
−1
r+2) and hence to BR(ar+2, g),

which follows from Lemma 2.3 (ii).

To verify BR(b2, b3), again note that b2 = a2 · · · ar+2ga
−1
r+2 · · · a

−1
2 Then, since

b3 =G ar+3ga
−1
r+3 and a2, . . . , ar+2 commute with b3, we see that BR(b2, b3)

is equivalent to BR(g, ar+3ga
−1
r+3). Now Lemma 2.3 (ii) gives BR(ar+3, g),
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so ar+3ga
−1
r+3 =G g−1ar+3g, from which BR(g, ar+3ga

−1
r+3) (and hence also

BR(b2, b3)) follows immediately.

By Lemma 2.5 (ii), the relation CM(b2, b4) follows from the relator
tc(a1, a2, . . . , an)s+1 of G.

As we saw above, Lemma 2.3 (ii) gives BR(ar+2, g) and, since we also have
CM(ai, g) for 2 ≤ i ≤ r+1, we can apply Lemma 2.3 to the sequence a2, . . . , ar+2, g,
and then Lemma 2.3 (iii) implies CM(b2, bk) for 5 ≤ k ≤ r + 4. Furthermore
(since a2 · · · ar+2 commutes with ck), CM(b2, ck) is equivalent to CM(g, ck) for
5 + r ≤ k ≤ n, which also follows from Lemma 2.3 (iii).

It remains to verify that tc(b1, b2, b3, b4)1 =G 1. Since b3 commutes with
ak for 2 ≤ k ≤ ar+2, and BR(b3, ar+3) by Lemma 2.3 (ii), while also b2 =
a2 · · · ar+2(a−1r+3b3ar+3)a−1r+2 · · · a

−1
2 , we have

b2b3b
−1
2 =G a2 · · · ar+2(a−1r+3b3ar+3)b3(a−1r+3b

−1
3 ar+3)a−1r+2 · · · a

−1
2

=G a2 · · · ar+2ar+3a
−1
r+2 · · · a

−1
2

Now, using this expression for b2b3b
−1
2 , we find that b−11 b2b3b

−1
2 b1 reduces to ar+3

using free reduction and the commuting relations between ar+3 and a2, . . . , ar+1.
Hence CM(b4, b

−1
1 b2b3b

−1
2 b1) follows from CM(a1, ar+3), and now tc(b1, b2, b3, b4)1 =G

1 follows from this, by Lemma 2.5 (i).

In the other direction, let b1, . . . , cn denote the generators of Q, and define
elements a1, . . . , an in Q as follows.

a1 := b4,

a2 := br+4br+3 · · · b5b1b−15 · · · b
−1
r+3b

−1
r+4,

ak := br+7−k for 3 ≤ k ≤ r + 2,

ar+3 := b−11 b2b3b
−1
2 b1,

ak := ck+1 for r + 4 ≤ k ≤ n− 1,

an := cn · · · cr+5b3c
−1
r+5 · · · c−1n (= b3 when s = 0).

We need to verify that the relations of G hold between the elements a1, . . . , an
of Q.

The relations of G among the ai that do not involve a2, ar+3 or an are all
immediate, as are CM(a2, ak) for r+4 ≤ k ≤ n−1, CM(an, ak) for 3 ≤ k ≤ r+2,
and CM(ar+3, ak) for 3 ≤ k ≤ r + 1 and r + 5 ≤ k ≤ n− 1.

Now BR(a1, an) follows from BR(b4, b3) since b4 commutes with cn · · · cr+5,
and CM(a2, an) follows similarly from CM(b1, b3), whereas CM(a1, ar+3) comes
from tc(b1, b2, b3, b4) =G 1 and Lemma 2.5 (i).

13



Since ar+3 commutes with br+4 · · · b6, CM(a2, ar+3) reduces to CM(b5b1b
−1
5 , ar+3),

which is equivalent to CM(b−11 b5b1, ar+3), and this follows from CM(b5, b2b3b
−1
2 ).

Similarly, since a1 commutes with br+4 · · · b5, BR(a1, a2) reduces to BR(b4, b1).

Next we see that BR(a2, a3) comes from Lemma 2.3 (ii), and CM(a2, ak) for
4 ≤ k ≤ r + 2 come from Lemma 2.3 (iii). Similarly, BR(an−1, an) comes from
Lemma 2.3 (ii) and CM(ak, an) for r+4 ≤ k ≤ n−2 come from Lemma 2.3 (iii).

Furthermore, we have BR(b1, b2b3b
−1
2 ) by Lemma 2.2 (i) and, since we also have

CM(b5, b2b3b
−1
2 ), we get BR(ar+2, ar+3) = BR(b5, b

−1
1 b2b3b

−1
2 b1) by applying

Lemma 2.2 (i) with f = b5, g = b1 and h = b2b3b
−1
2 .

From BR(cr+5, b3) and CM(cr+5, b
−1
1 b2), we get BR(cr+5, b

−1
1 b2b3b

−1
2 b1) =

BR(ar+4, ar+3).

Since b1 commutes with an and b2b3b
−1
2 commutes with cn · · · cr+6, CM(an, ar+3)

reduces to CM(cr+5b3c
−1
r+5, b2b3b

−1
2 ), which we get by applying Lemma 2.2 (ii)

with f = cr+5, g = b3 and h = b2.

It remains to check that tc(a1, a2, . . . , an)s+1 =G 1. We find that

a2 · · · ar+2a
−1
r+3 · · · a

−1
n−1anan−1 · · · ar+3a

−1
r+2 · · · a

−1
2

freely reduces to br+4 · · · b5b2b−13 b−12 b1b3b
−1
1 b2b3b

−1
2 b−15 · · · b

−1
r+4 which, since b1

and b3 commute, is equal in G to

br+4 · · · b5b2b−13 b−12 b3b2b3b
−1
2 b−15 · · · b

−1
r+4 =G

br+4 · · · b5b2b−15 · · · b
−1
r+4 =G b2,

and this commutes with a1 = b4, so the relation tc(a1, a2, . . . , an)s+1 =G 1
follows from Lemma 2.5 (ii).

Finally, we need to check that both composites of the homomorphisms between
the two groups are equal to the identity.

First consider the images of the ai under the composite mapping G→ Q→ G.
They map back to ai immediately except when i = 2, r+ 3 or n, and for an this
follows using a free reduction. Note that by Lemma 2.3 (i), the definition of b1
in G is equivalent to b1 := a−1r+2 · · · a

−1
3 a2a3 · · · ar+2 and using this, we find that

a2 also maps back to itself by using a free reduction. As for ar+3, we saw earlier
that the image of b−11 b2b3b

−1
2 b1 under the map Q→ G reduces to ar+3 in G by

using free reduction and the commuting relations, and so it too maps back to
itself.

The images of bi under the composite mapping Q → G → Q are immediately
equal to bi except for b1, b2 and b3. The same applies to b3 using a free reduction,
and also for b1 after rewriting it as a−1r+2 · · · a

−1
3 a2a3 · · · ar+2 as above.

Finally, for b2, note first that the image of a2 · · · ar+2 under the map G → Q
freely reduces to br+4 · · · b5b1, whereas the image of a−1r+4 · · · a

−1
n−1anan−1 · · · ar+4
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freely reduces to b3, and hence that of a−1r+3 · · · a
−1
n−1anan−1 · · · ar+3 reduces to

b−11 b2b
−1
3 b−12 b1b3b

−1
1 b2b3b

−1
2 b1 =Q b−11 b2b

−1
3 b−12 b3b2b3b

−1
2 b1 =Q b−11 b2b1

and, since b2 commutes with br+4 · · · b5, we find that the image of b2 under the
composite is indeed b2. �

4. Proving non-isomorphism

The aim of this section is to prove Theorem 1.3. By Proposition 3.1 and The-
orem 1.1, this is equivalent to proving that the quotients of A(∆n) by the
normal closures of the cycle and twisted cycle commutators cc(a1, a2, . . . , an)
and tc(a1, a2, . . . , an)t are not isomorphic for any t with 1 ≤ t ≤ n − 3, which
is what we shall prove here. (Note that these quotients are isomorphic when
t = n−2, which can be seen by considering the automorphism of A(∆n) induced
by ai 7→ a−1i for 1 ≤ i ≤ n.)

When n = 4, the result is easily proved by computer. For example, the two
quotients have 9 and 8 conjugacy classes of subgroups of index 4. So we shall
assume from now on that n > 4.

We start with a result that is probably already known. In general, two surjective
homomorphisms σ1, σ2 : G→ H are said to be equivalent if they have the same
kernels or, equivalently, if there is an automorphism α of H with α(σ1(g)) =
σ2(g) for all g ∈ G.

Proposition 4.1. All surjective homomorphisms σ : A(∆n) → Sym(n) are
equivalent when n > 4.

Proof. Let σ : A(∆n) → Sym(n) be a surjective homomorphism. We consider
the restriction of σ to the subgroup B := 〈a1, a2, . . . , an−1〉 of A(∆n), which
is isomorphic to the braid group Bn. If σ(B) is abelian then, since a2 and
an commute, we have σ(a2) ∈ Z(Sym(n)) = 1. But the generators ai are all
conjugate in A(∆n) so this is impossible. Hence σ(B) is nonabelian.

In [11, Theorem A] Lin proved that, for n > 4, all homomorphisms of Bn to
Sym(k) with k < n have cyclic image. So, if σ(B) is intransitive then it is
abelian, contrary to what we just proved. Artin proved in [1] that, for n > 4,
all homomorphisms from Bn to a transitive subgroup of Sym(n) are surjec-
tive and equivalent to the homomorphism in which the generators map to the
transpositions (i, i+ 1) for 1 ≤ i < n.

So we may assume that σ(ai) = (i, i + 1) for 1 ≤ i < n. Now, since σ(an)
commutes with the images of σ(ai) for 2 ≤ i ≤ n− 2 and these images generate
the subgroup Sym(n−2) of Sym(n) acting on {2, 3, . . . , n−1}, which has trivial
centre, we see that the only possible image of σn is (1, n).
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4.1. Subgroups of A(∆n) and its quotients

Let G := A(∆n) = 〈X | R〉 be our standard presentation of ∆n with X =
{a1, . . . , an}. Let G0 and Gt for 1 ≤ t ≤ n − 2 be the quotients of G by
the normal closures of the cycle commutator cc(a1, a2, . . . , an) and the twisted
cycle commutator tc(a1, a2, . . . , an)t, respectively. Define σ : G → Sym(n) by
σ(ai) = (i, i+ 1) for 1 ≤ i < n and σ(an) = (1, n). Then, since we are assuming
that n > 4, Proposition 4.1 tells us that σ is a representative of the unique
equivalence class of surjective homomorphisms G→ Sym(n).

Since cc(a1, a2, . . . , an) and tc(a1, a2, . . . , an)t are both contained in ker(σ), it
follows that there is also a unique equivalence class of surjective homomorphisms
Gi → Sym(n) for 0 ≤ i ≤ n, with the map σi induced by σ as representative.

Let H < G be the inverse image in G of the stabiliser in Sym(n) of the unordered
pair {1, 2} under σ. So |G : H| = n(n − 1)/2. Define Hi for 1 ≤ i ≤ n − 2
to be the corresponding subgroups of Gi, and note that they also have index
n(n− 1)/2 in Gi. In fact the uniqueness of the equivalence classes of surjective
homomorphisms Gi → Sym(n) implies that an isomorphism G0 → Gt for 1 ≤
t ≤ n− 2 would map H0 to an image of Ht under an automorphism of Sym(n),
and so there would be such an isomorphism mappingH0 toHt. The remainder of
this section will be devoted to the proof of Proposition 4.3, stated below, which
shows that H0 and Ht have different abelianisations when 1 ≤ t ≤ n−3, and so
they cannot be isomorphic. This will also complete the proof of Theorem 1.3.

Remark 4.2. We initially carried out corresponding calculations using the in-
verse image in G of the stabiliser of 1 in Sym(n), which has index n in G, but we
found that the corresponding subgroups H0 and Ht both had the abelianisation
Z
2Z ⊕ Z2, so that did not work.

Proposition 4.3. For all n > 4 isomorphisms exist between H/[H,H] and Z4,
between H0/[H0, H0] and Z

2Z ⊕ Z3, and between Ht/[Ht, Ht] and Z
2Z ⊕

Z
4Z ⊕ Z2

for 1 ≤ t ≤ n− 3.

The proof of this proposition will be completed only at the very end of Sec-
tion 4.5.

4.2. Computing presentations of subgroups

We shall now present a quick summary of the methods based on the Reidemeister-
Schreier algorithm that are used in computer calculations of presentations of
subgroups of finite index of groups defined by a finite presentation. In the fol-
lowing subsections we shall use this theory to carry out a calculation of this
type by hand for an infinite family of examples, although this calculation was
based on observations of the results of computer calculations in small cases.
This theory can be found in many textbooks; our description here is based on
that in [10, Section 2.5.2].
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Let G := 〈X | R〉 be a group defined by a presentation, let H ≤ G, and let T
be a right transversal of H in G that contains the empty word ε. For t ∈ T and
g ∈ G, we denote the unique element of Htg ∩ T by tg. (So tg is the image of
t under g in the action of G on T induced by its natural action on the right
cosets of H in G.) In the remainder of this section, we shall apply the results of
this section to various pairs G,H that have just been introduced, namely to the
pair (G,H) = (G,H) = (A(∆n), H) as well as the pairs (Gi, Hi) of subgroups
of those. Hence we have been careful to distinguish between (G,H) and (G,H)
typographically.

Let Y be a subset of H and suppose that, for each t ∈ T and x ∈ X, there exists
a word ρ(t, x) ∈ (Y ±)∗ with tx =G ρ(t, x)u, where u = tx. This implies that
ux−1 =G ρ(t, x)−1t, and we define ρ(u, x−1) := ρ(t, x)−1.

We can now recursively extend the definition of ρ to words w ∈ (X±)∗, by
defining ρ(t, ε) = ε for all t ∈ T and, for a word v ∈ (X±)∗ and x ∈ X±,
ρ(t, vx) = ρ(t, v)ρ(u, x), where tv = u. So we have tw =G ρ(t, w)tw for all t ∈ T
and w ∈ (X±)∗.

Note that, if w represents an element of H, then w = ε, and so w =G ρ(t, w),
which proves:

Proposition 4.4. Under the assumptions above, we have H = 〈Y 〉.

Suppose that, for each y ∈ Y , we are given a word ϕ(y) ∈ (X±)∗ with y =G ϕ(y).
The following result, which we shall use in our hand calculations, is proved in
[10, Theorem 2.63] and the remark that follows it. We note that we are following
the common practice of abusing notation by using Y to denote both a subset of
H and a set of generators in a presentation of H.

Theorem 4.5. Under the assumptions above, 〈Y | S1 ∪ S2〉 is a presentation
of H on the generating set Y , where S1 = {ρ(t, w) : t ∈ T,w ∈ R}, and
S2 = {ρ(ε, ϕ(y))y−1 : y ∈ Y }.

In our application below, the relators R are given as a set R′ of relations w1 =
w2, and it is convenient to replace the relators in S1 by the equivalent relations
{ρ(t, w1) = ρ(t, w2) : t ∈ T, (w1 = w2) ∈ R′}.

4.3. The words ρ(t, x) for the subgroup H of G.

Our aim in the remainder of this section is to apply Theorem 4.5 to the sub-
groups H of G and Hi of Gi that were defined in Subsection 4.1. We start by
finding a generating set Y of H and a transversal T of H in G, and computing
the words ρ(t, ai) ∈ (Y ±)∗ for t ∈ T and 1 ≤ i ≤ n.
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Define the words

ξ1 := a1, ξi := ai+1 (2 ≤ i ≤ n− 2), ξn−1 := a22, ξn := a2n, ξn+1 := a2a1

n∏
i=3

ai.

It is straightforward to check that the words ξi ∈ (X±)∗ represent elements
of H for 1 ≤ i ≤ n + 1, and we denote the element of H that is represented
by the word ξi by yi. So, in the notation of the preceding subsection, we can
define ϕ(yi) := ξi. It follows from Proposition 4.6 below and Theorem 4.5 that
H = 〈yi : 1 ≤ i ≤ n+ 1〉.

For 1 ≤ k < l ≤ n, define

tk,l :=

l−1∏
i=2

ai

k−1∏
i=1

ai.

Then the element σ(tk,l) ∈ Sym(n) maps 1 to k and 2 to l (note that we are
composing permutations from left to right), so the elements tk,l form a right
transversal of H in G.

Proposition 4.6. For 1 ≤ k < l ≤ n and 1 ≤ m ≤ n, let words ρ(tk,l, am) ∈ Y ∗
and pairs of integers k′, l′ be as specified by the following table.

Then for all such k, l,m, the equation tk,lam =G ρ(tk,l, am)tk′,l′ holds.

Case ρ(tk,l, am) (k′, l′)
l < m < n ym−1 (k, l)
l = m < n ε (k, l + 1)
k = m = l − 1 y1 (k, l)
k = m < l − 1 ε (k + 1, l)

k < m = l − 1 y
∏l−2

i=2 yi
n−1 (k, l − 1)

k < m < l − 1 ym (k, l)

k = m+ 1 y
∏k−1

i=1 yi
n−1 (k − 1, l)

k > m+ 1 ym+1 (k, l)

k = 1, l = m = n y
y−1
n+1

1 (k, l)
k = 1, l < m = n yny

−1
n+1 (l, n)

k > 1, l = m = n yn+1 (1, k)

k > 1, l < m = n y
y−1
n+1

n−2 (k, l)

Proof. We shall go through the table entries line by line, proving the claimed
result in each case.

When l < m < n, am commutes with tk,l and am = ym−1.

When l = m < n, am commutes with
∏k−1
j=1 ai, and so tk′,l′ =G tk,l+1.
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When k = m = l − 1, we need to prove that

l−1∏
i=2

ai

l−2∏
j=1

aj

 al−1 =G a1

l−1∏
i=2

ai

l−2∏
j=1

aj ,

which we do by induction on l. The base case l = 2 is trivial. Since al−1
commutes with a1 · · · al−3 we have, using induction,

l−1∏
i=2

ai

l−2∏
j=1

aj

 al−1 =G

l−2∏
i=2

ai

l−3∏
j=1

aj

 al−1al−2al−1 =G

l−2∏
i=2

ai

l−3∏
j=1

aj

 al−2al−1al−2 =G a1

l−2∏
i=2

ai

l−3∏
j=1

aj

 al−1al−2 =G

a1

l−1∏
i=2

ai

l−2∏
j=1

aj .

The result for k = m < l − 1 is immediate.

When k < m = l − 1, note first that the claimed value of ρ(tk,l, am) is

y
∏l−2

i=2 yi
n−1 = (a22)

∏l−1
i=3 ai =G (a

∏l−1
i=3 ai

2 )2

which, by Lemma 2.3, is equal in G to (a2l−1)(
∏l−2

i=2 ai)
−1

and so, after free cancel-

lation, we have y
∏l−2

i=2 yi
n−1 tk,l−1 =G

(∏l−2
i=2 ai

)
a2l−1

∏k−1
j=1 aj , and the claim follows

from the fact that al−1 commutes with
∏k−1
j=1 aj .

When k < m < l−1, since am commutes with
∏k−1
j=1 aj and with

∏l−1
i=m+2 ai, the

proof reduces to showing that
(∏m+1

i=2 ai

)
am = am+1

∏m+1
i=2 ai, which follows

from BR(am, am+1) and the fact that am+1 commutes with
∏m−1
i=2 ai.

The case k = m+ 1 seems to be the most difficult to prove. Note first that a1
commuting with

∏k
i=3 ai followed by Lemma 2.3 give

y
∏k−1

i=1 yi
n−1 =G a−11 (a22)(

∏k
i=3 ai)a1 =G a−11 (a2k)(

∏k−1
i=2 ai)

−1

a1,

so

y
∏k−1

i=1 yi
n−1 tk−1,l =G a−11 (a2k)(

∏k−1
i=2 ai)

−1

a1

l−1∏
i=2

ai

k−2∏
j=1

aj .

Now, the right hand side of this equality contains the subword a
∏k−1

i=2 ai
1 which,

by Lemma 2.3 is equal in G to a
(
∏k−2

i=1 ai)
−1

k−1 , and this substitution results in the
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expression

a−11

(
k−1∏
i=2

ai

)
a2k a

(
∏k−2

i=1 ai)
−1

k−1

l−1∏
i=k

ai

k−2∏
j=1

aj

which, since
∏k−2
i=1 ai commutes with

∏l−1
i=k ai, reduces to a−11

(∏k−1
i=2 ai

)
a2k
∏l−1
i=1 ai.

Now, by applying Lemma 4.7 below to a prefix of this expression followed by
commutativity relations, we find that it is equal in G to

k−1∏
i=2

ai

(
k−2∏
i=1

ai

)
aka

2
k−1

l−1∏
i=k+1

ai =G

l−1∏
i=2

ai

k−2∏
j=1

aj

 a2k−1 = tk,lak−1 = tk,lam.

When k > m+1 we find, by using the commutativity relations and BR(am, am+1),

that
(∏k−1

j=1 aj

)
am =G am+1

∏k−1
j=1 aj and similarly, since m + 1 < l − 1, we

have
(∏l−1

j=2 aj

)
am+1 =G am+2

∏l−1
j=2 aj . So in this case

tk,lam =G am+2tk,l = ym+1tk,l

and the result follows.

For the case k = 1 and l = m = n, note that y
y−1
n+1

1 = a
(a2a1

∏n
i=3 ai)

−1

1 and, since

a1 commutes with
∏n−1
i=3 ai, this is equal in G to

(a1ana1a
−1
n a−11 )(

∏n−1
i=2 ai)

−1

=G a
(
∏n−1

i=2 ai)
−1

n

(using BR(a1, an)). It follows by free cancellation that

y
y−1
n+1

1 t1,n = y
y−1
n+1

1

n−1∏
i=2

ai =

(
n−1∏
i=2

ai

)
an = t1,nam.

When k = 1 and l < m = n, we apply commutativity to get

yny
−1
n+1tl,n = a2n

(
n∏
i=3

ai

)−1
a−11 a−12

n−1∏
i=2

ai

l−1∏
j=1

aj =G ana
−1
1

(
n−1∏
i=2

ai

)−1 n−1∏
i=2

ai

l−1∏
j=1

aj .

The final product freely reduces to an
∏l−1
i=2 ai which, since an commutes with∏l−1

i=2 ai, is equal in G to t1,lan.

For the case k > 1, l = m = n, we use first that an commutes with
∏k−1
j=2 aj

and then that a1 commutes with
∏n−1
i=3 ai to see that

tk,lam = tk,nan =

n−1∏
i=2

ai

(
k−1∏
i=1

ai

)
an =G

(
n−1∏
i=2

a1

)
an

(
k−1∏
i=2

ai

)

=

(
a2a1

n∏
i=3

ai

)
k−1∏
i=2

ai = yn+1t1,k.
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Finally, for the case k > 1, l < m = n, we need to verify(
l−1∏
i=2

ai

k−1∏
i=1

ai

)
an =G y

y−1
n+1

n−2

(
l−1∏
i=2

ai

k−1∏
i=1

ai

)

We note that, since a1 commutes with
∏n−2
i=3 ai, we have

y
y−1
n+1

n−2 =G a
(a2a1

∏n
i=3 ai)

−1

n−1 =G a
((

∏n−2
i=2 ai)an−1a1an)

−1

n−1

=G

(
a
(an−1a1an)

−1

n−1

)(
∏n−2

i=2 ai)
−1

=
(
an−1a1anan−1a

−1
n a−11 a−1n−1

)(∏n−2
i=2 ai)

−1

Braid and commutator relations reduce that last product to

(
a1ana

−1
1

)(∏n−2
i=2 ai)

−1

,

and then the commutator relators between ai for i = l, . . . , n − 2 and both a1
and an reduce it further to

(a1ana
−1
1 )(

∏l−1
i=2 ai)

−1

.

So now, applying commutator relations, we deduce that

y
y−1
n+1

n−2 tk,l =G

(
l−1∏
i=2

ai

)(
a1ana

−1
1

)(k−1∏
i=1

ai

)
=G

(
l−1∏
i=2

ai

)
(a1an)

(
k−1∏
i=2

ai

)

=G

(
l−1∏
i=2

ai

k−1∏
i=1

ai

)
an =G tk,lan

Lemma 4.7. Suppose that 1 < k < n. Then

a−11

(
k−1∏
i=2

ai

)
a2k

k∏
i=1

ai =G

k−1∏
i=2

ai

(
k−2∏
i=1

ai

)
aka

2
k−1.

Proof. The proof is by induction on k. In the base case k = 2, the relation to be
proved is a−11 a22a1a2 =G a2a

2
1, which follows from BR(a1, a2). So assume that

k > 2.

Using the fact that a1 commutes with a2k and with
∏k−1
i=3 ai, as well as BR(a1, a2),

we deduce that the left hand side of the required relation is equal in G to

a−11 a2a1

(
k−1∏
i=3

ai

)
a2k

k∏
i=2

ai =G a2a1a
−1
2

(
k−1∏
i=3

ai

)
a2k

k∏
i=2

ai
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which, by applying the inductive hypothesis applied to the sequence a2, a3, . . . , ak
followed by commutativity relations, is equal in G first to

a2a1

k−1∏
i=3

ai

(
k−2∏
i=2

ai

)
aka

2
k−1

and then (since a1 commutes with each ai with i ≥ 3) to

k−1∏
i=2

ai

(
k−2∏
i=1

ai

)
aka

2
k−1.

4.4. The relations of H/[H,H].

We shall now use Theorem 4.5 to calculate the set S1∪S2 of defining relators of
H on the generators yi, using in those calculations the values of ρ(tk,l, am) that
were verified in Proposition 4.6. Since we want to calculate a presentation of
H/[H,H], we shall abelianise the relators of H immediately, and write them as
words in the images zi of yi in H/[H,H] using additive notation. Note that this
means that each of the entries for ρ(tk,l, am) in the table within Proposition 4.6
that are conjugates ywi for some i and some w ∈ (Y ±)∗ can be replaced by yi
for the purposes of these calculations, and we shall henceforth denote such a
conjugate of yi by c(yi). So apart from the entry yny

−1
n+1 in the case k = 1, l <

m = n (which will be replaced by zn − zn+1), these are all words of length at
most 1.

We find that all the relators of H within the set S2 = {ρ(ε, ϕ(yi))y
−1
i : 1 ≤

i ≤ n + 1} are empty. For example, where i = n + 1, ϕ(yn+1) = a2a1
∏n
i=3 ai,

and we have t1,2a2 = t1,3, t1,3a1 = t2,3, t2,lal = t2,l+1 for 3 ≤ l ≤ n − 1, and
t2,nan = yn+1t1,2, so the resulting relator of H is yn+1y

−1
n+1, freely reducing to

the empty word.

So now we consider the relators of H within the set S1 = {ρ(tk,l, w) : tk,l ∈
T,w ∈ R}. We find that each relator of H/[H,H] is derived several times, for
various values of tk,l, w.

The calculations of the abelianisations of relations of H that are derived from
relations aiai+1ai = ai+1aiai+1 (1 ≤ i < n), ana1an = a1ana1, or aiaj = ajai
(1 < i < j − 1 ≤ n − 1) of G are routine. So we shall work out a couple of
examples, and otherwise list the results.

We derive relations zj = zj+1 for H/[H,H] for all i with 2 ≤ j ≤ n − 3 using
the braid relations w = aiai+1ai = ai+1aiai+1 of G with 1 ≤ i ≤ n− 1.

More precisely, exactly what is derived from the braid relation above depends
on the associated transversal element t = tk,l. Suppose first that i < n − 1. If

22



l < i then we derive zi−1 = zi, while if k < i < l − 3 then we derive zi = zi+1,
and if i + 1 < k − 1 we derive zi+1 = zi+2, but all other cases give an empty
relation. Otherwise suppose that i = n. Then if (k, l) = (1, n − 1) we derive
zn−1 = zn, while if 1 < k < n − 1, l = n we derive zn−1 = zn, but all other
cases give an empty relation.

The braid relation ana1an = a1ana1 is more complicated, and yields the empty
relation for (k, l) = (1, 2) and (1, n); zn + z2 = zn−2 + zn−1 when 1 = k,
3 ≤ l < n; zn−2 = z2 when 2 ≤ k < l < n; zn = zn−1 when (k, l) = (2, n); and
zn−2 = z2 when 2 < k < l = n.

For example, for the relation ana1an = a1ana1 with 1 = k, 3 ≤ l < n, we
get t1,lan = yny

−1
n+1tl,n, tl,na1 = y2tl,n, tl,nan = yn+1t1,l; and t1,la1 = t2,l,

t2,lan = c(yn−2)t2,l, t2,la1 = c(yn−1)yn−1t1,l which, as claimed, yields zn + z2 =
zn−2 + zn−1 on abelianisation.

For the relations aiaj = ajai (1 ≤ i < j − 1 ≤ n − 1, and (i, j)=(1, n)) of G,
there is a large but finite number of different cases to consider depending on the
relative values i, j, k, l. We claim first that they all yield the empty relation of
H/[H,H] when j < n.

To see this, assume that j < n, and note first that, if k, l 6∈ {i, i + 1, j, j + 1},
then tk,lai = tk,laj = tk,l, and so the resulting relation ρ(tk,l, w1) = ρ(tk,l, w2) is
just ρ(tk,l, ai)ρ(tk,l, aj) = ρ(tk,l, aj)ρ(tk,l, ai), which is trivial on abelianisation.

Suppose next that exactly one of k, l is in {i, i + 1, j, j + 1}, say k ∈ {i, i + 1}
(the other three cases are similar). Then tk,laj = tk,l and tk,lai = tk′,l, with
k′ = k ± 1, and then tk′,laj = tk′,l. We find from the table in Proposition 4.6
that ρ(tk,l, aj) = ρ(tk′,l, aj) = yj−1 or yj (depending on whether l < j or l > j),
so again the resulting relation of H/[H,H] is trivial.

Finally (still assuming that j < n), suppose that k, l ∈ {i, i + 1, j, j + 1}, so
k ∈ {i, i+1} and l ∈ {j, j+1}. Then tk,lai = tk′,l, with k′ = k±1, tk,laj = tk,l′ ,
with l′ = l ± 1, and tk,l′ai = tk′,laj = tk′,l′ . Again, by using the table of
Proposition 4.6, we find that in each of the four possible cases for k and l, we
get the trivial relation of H/[H,H].

When j = n we find, by similar calculations using the table of Proposition 4.6,
that we get the relation zi = zi+1 of H/[H,H] when 2 ≤ i ≤ n − 2 and
(k = 1, i < l − 1 < n − 1 or l = n, i < k − 1); and the relation zi−1 = zi when
3 ≤ i ≤ n− 1 and (k = 1, i > l or l = n, i > k).

For example, if 2 ≤ i ≤ n− 3, j = n, k = 1, and i < l− 1 < n− 1, then we have
t1,lai = yit1,l, t1,lan = yny

−1
n+1tl,n, and tl,nai = yi+1tl,n, so we get the relation

zi = zi+1, as claimed.

Now all of these relations taken together reduce to z2 = z3 = · · · = zn−2 and
zn = zn−1, and hence H/[H,H] is free abelian of rank 4 with free basis the
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images of z1, z2, zn, zn+1. This proves the first part of Proposition 4.3.

4.5. The cycle and twisted cycle commutator relations of Hi/[Hi, Hi]

The relations of H0 and Hi for 1 ≤ t ≤ n − 2 consist of all of the relations
of H together with those that are derived from the cycle and twisted cycle
commutator relations of G0 and Gt. These twisted cycle commutator relations
have the form a1w = wa1, where w = vanv

−1, and v = a2a3 · · · an−1 for the
cycle commutator cc(a1, a2, . . . , an), and v = a−12 a−13 · · · a

−1
t+1at+2 · · · an−1 for

the twisted cycle commutator tc(a1, a2, . . . , an)t.

Since σ(a1) and σ(w) both fix {1, 2} in all of the groups Hi, we see that the
relations ρ(tk,l, a1w) = ρ(tk,l, wa1) of Hi are trivial when k > 2 and when
{k, l} = {1, 2}. So we need only consider the cases when k = 1 or 2 and l > 2.

In these cases, we have t1,la1 = t2,l and t2,la1 = c(yn−1)t1,l, whereas t1,lw =
α1lt2,l and t2,lw = α2lt1,l for some words α1l, α2l ∈ (Y ±)∗ (which may depend
also on which group Hi we are considering). Then the relations of Hi in the
cases i = 1 and 2 and l > 2 are α2l = α1lyn−1 and yn−1α1l = α2l, respectively,
which have the same abelianisation, and hence we need only consider the cases
k = 1, 3 ≤ l ≤ n.

Before calculating the ensuing relations of Hi/[Hi, Hi], it is helpful to calculate
the images of {1, l} and of {2, l} under the image σ(v) of the word v under σ.
Since σ(am) = σ(a−1m ) for all i, these are the same in all of the groups Hi.

We have {1, l}σ(am) = {1, l} for 2 ≤ m ≤ l − 2, {1, l}σ(al−1) = {1, l − 1}, and
{1, l − 1}σ(am) = {1, l − 1} for l ≤ m ≤ n− 1, so {1, l}σ(v) = {1, l − 1}.

For the image of {2, l}, we have {m, l}σ(am) = {m + 1, l} for 2 ≤ m ≤ l − 2,
{l−1, l}σ(al−1) = {l−1, l}, and {l−1,m}σ(am) = {l−1,m+1} for l ≤ m ≤ n−1,
so {2, l}σ(v) = {l − 1, n}.

In the case ofH0, the quotient by the normal closure of the cycle commutator, we
have t1,lv = β1lt1,l−1 and t2,lv = β2ltl−1,n for some words β1l, β2l ∈ (Y ±)∗, and
also t1,l−1an = yny

−1
n+1tl−1,n and tl−1,nan = yn+1t1,k−1 so, denoting the images

of β1l, β2l in H0/[H0, H0] by γ1l, γ2l, the resulting relations of H0/[H0, H0] are
γ2l + zn+1 − γ1l = γ1l + zn − zn+1 − γ2l + zn−1 or, equivalently,

2γ1l − 2γ2l + zn−1 + zn − 2zn+1 = 0.

A routine calculation shows that, for all l with 3 ≤ l ≤ n, we have γ1l =
∑n−1
i=2 zi

and γ2l = z1, so from the cycle commutator we get the single extra relation

−2z1 + 2

n−2∑
i=2

zi + 3zn−1 + zn − 2zn+1.
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We saw above that zn and zn−1 have equal images in H/[H,H], so
H0/[H0, H0] ∼= Z

2Z ⊕ Z3.

In the case of the quotients Ht of H by the normal closures of the twisted cycle
commutators tc(a1, a2, . . . , an)t, the corresponding words in (Y ±)∗ and their
images in Ht/[Ht, Ht] depend also on t, and so we denote them by βilt and γilt
for i = 1, 2. In this case, the corresponding calculation shows that we get two
extra relations when 1 ≤ t ≤ t−3. (We observed at the beginning of this section
that G0

∼= Gt−2 and hence H0
∼= Ht−2.)

When t+ 1 ≤ l − 2 we have

γ1lt = −
t+1∑
i=2

zi +

n−2∑
i=t+2

zi + zn−1, γ2lt = −tzn−1 + z1,

and when t+ 1 ≥ l − 1 we have

γ1lt = −
t∑
i=2

zi +

n−2∑
i=t+1

zi, γ2lt = −(t− 1)zn−1 − z1.

Here is some more detail for the case t + 1 ≥ l − 1. For 2 ≤ i ≤ l − 2 we
get t1,la

−1
i = y−1i t1,l, then t1,la

−1
l−1 = t1,l−1, then for l ≤ i ≤ t + 1 we have

t1,l−1a
−1
i = y−1i−1t1,l−1, and finally for t + 2 ≤ i ≤ n − 1 we have t1,l−1ai =

yi−1t1,l−1, which results in the claimed value of γ1lt.

For 2 ≤ i ≤ l − 2 we get ti,la
−1
i = c(yn−1)−1ti+1,l, then tl−1,la

−1
l−1 = y−11 tl−1,l,

then for l ≤ i ≤ t + 1 we have tl−1,it
−1
i = c(yn−1)−1tl−1,i+1, and finally for

t+ 2 ≤ i ≤ n− 1 we have tl−1,iai = tl−1,i+1, so this results in the claimed value
for γ2lt.

The above equations result in the two relations

−2
t+1∑
i=1

zi + 2
n−2∑
i=t+2

zi + (2t+ 3)zn−1 + zn − 2zn+1 = 0,

2z1 − 2

t∑
i=2

zi + 2

n−2∑
i=t+1

zi + (2t− 1)zn−1 + zn − 2zn+1 = 0

of Ht/[Ht, Ht]. Subtracting the first of these from the second yields 4z1 +
4zt+1−4zn−1 = 0 and, again using the fact that zn−1 and zn have equal images
in H/[H,H], we see that Ht/[Ht, Ht] ∼= Z

2Z ⊕
Z
4Z ⊕ Z2, for 1 ≤ t ≤ n, which

completes the proof of Proposition 4.3.
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