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Abstract

We derive presentations of the interval groups related to all quasi-Coxeter elements in the
Coxeter group of type Dn. Type Dn is the only infinite family of finite Coxeter groups that
admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators
in bijection with what we call a Carter generating set, and the relations are those defined by
the related Carter diagram together with a twisted or a cycle commutator relator, depending
on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the
description of two combinatorial techniques related to the intervals of quasi-Coxeter elements.

In a subsequent work [4], we complete our analysis to cover all the exceptional cases of
finite Coxeter groups, and establish that almost all the interval groups related to proper
quasi-Coxeter elements are not isomorphic to the related Artin groups, hence establishing a
new family of interval groups with nice presentations. Alongside the proof of the main results,
we establish important properties related to the dual approach to Coxeter and Artin groups.
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1 Introduction
The philosophy of interval Garside theory is that starting from suitable intervals in a given group,
we construct an interval Garside monoid and group, along with a complex whose fundamental group
is the interval Garside group, such that the divisibility relations of the interval provide relevant
information about the interval Garside group. Part of the information we obtain are efficient
solutions to the word and conjugacy problems, as well as important group-theoretical properties
[14]. Interval Garside groups also enjoy important homological, and homotopical properties [13].

Garside theory is relevant in the context of Coxeter and Artin groups. Actually, Garside
structures first arose out of observations of properties of Artin’s braid group that were made in
Garside’s Oxford thesis [19] and his article [20]. It was then realised that Garside’s approach
extend to all Artin groups of spherical type, independently by Brieskorn–Saito and Deligne in two
adjacent articles in the Inventiones [10] and [15]. This approach is called the standard approach
to Coxeter and Artin groups.

The dual approach consists of analysing the Coxeter group as a group generated by all its re-
flections. Spherical Artin groups are constructed from intervals called the generalised non-crossing
partitions. The dual approach was first considered by Birman–Ko–Lee [8] for the usual braid
group, and then generalised by Bessis in [6]. The relevant intervals consist of elements lying below
the so-called Coxeter elements that play a prominent role within the dual approach. The Coxeter
elements are all conjugate to one another and some of them can be found by taking the product
of the elements in the standard generating set in any order.

Coxeter elements are of maximal length over the set of reflections, but they do not exhaust
all the elements of maximal length. Quasi-Coxeter elements [3] are of maximal length such that
the reflections in a certain reduced decomposition generate the Coxeter group. Among them are
Coxeter elements. We call a proper quasi-Coxeter element a quasi-Coxeter element that is not
a Coxeter element. Amongst the infinite families of finite Coxeter groups, proper quasi-Coxeter
elements exist only in type Dn. Carter [12] classified the conjugacy classes in Weyl groups. Among
them are the conjugacy classes of quasi-Coxeter elements. He also defined diagrams related to
these classes that we call Carter diagrams. Cameron-Seidel-Tsaranov [11] defined presentations of
Weyl groups defined on Carter diagrams by adding cycle commutator relators.

We establish presentations of the interval groups related to all quasi-Coxeter elements. Our
presentations are compatible with the analysis of Carter [12]. Actually, they are always nicely
defined on Carter diagrams by adding either cycle commutator relators or twisted cycle commutator
relators depending whether the quasi-Coxeter element is a Coxeter element or not. Twisted cycle
and cycle commutator relators can be written as relations between positive words. For Coxeter
elements, where the interval group is the Artin group, some of our group presentations also arise
from cluster algebras (see [1, 21] and also [22]). For almost all the other proper quasi-Coxeter
elements, we can establish that the interval group related to each of them is not isomorphic to the
corresponding Artin group. Although we obtain nice presentations of these groups, the intervals
of proper quasi-Coxeter elements are not lattices in almost all the cases, hence not giving rise to
Garside structures. This classifies the interval Garside structures one obtains for quasi-Coxeter
elements within the dual approach. Along with the description of the presentations of interval
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groups, we describe important properties for quasi-Coxeter elements, their divisors, and their lifts
to the interval groups.

We divide our analysis into two parts. This paper is the first part of the series. It concerns
the only infinite family of Coxeter groups (that of type Dn), where proper quasi-Coxeter elements
exist. This family needs a special treatment. The second part deals with the exceptional cases and
establishes the non-isomorphism results.

The main theorem of this paper is actually the following. We refer to Sections 2 and 3 for the
definitions of a quasi-Coxeter element, its associated Carter diagram ∆, and the group A(∆).

Theorem A. Let w be a quasi-Coxeter element of the Coxeter group W of type Dn and ∆ its
associated Carter diagram, as shown in Figure 1 of Section 3.3. Then the interval group G([1, w])
admits a presentation over the generators x1, . . . , xn corresponding to the vertices of ∆ together with
the relations described by ∆ and the twisted cycle commutator relator tc(xi, xj , xk, xl), associated
with the 4-cycle (xi, xj , xk, xl) within ∆, that is,

G([1, w]) ∼= A(∆)/〈〈[xi, x−1j xkxlx
−1
k xj ]〉〉.

We shall reformulate Theorem A as Theorem 5.1, and prove that theorem in Section 6.
Our use of the word ‘twisted’ comes from the fact that when following the cycle (xi, xj , xk, xl) in

the cycle commutator relator, we invert the element xj . We call the set {x1, . . . , xn} of generators
that appears in Theorem A a Carter generating set.

The case where w is a Coxeter element is a particular case of Theorem A, where there is no
4-cycle. Therefore, in this case, we get a new proof of the fact that G([1, w]) is the Artin group of
type Dn, that was covered before in [6].

Within the proof of Theorem A, we describe an important combinatorial technique that derives
reduced expressions over the set of reflections for the divisors of length n − 1 of quasi-Coxeter
elements. This reveals important information on the poset of quasi-Coxeter elements, on parabolic
subgroups, and enables us to establish nice presentations of the interval groups in accordance with
Carter diagrams. The algorithms we define use the description of the elements in the Coxeter group
of type Dn as monomial matrices. This is relevant to the dual approach for complex reflection
groups. We suspect that our algorithms generalise to the context of the infinite families of complex
reflection groups.

This first paper is structured as follows. After some preparations and after introducing the
notation, Section 2 contains our strategy for the proof of Theorem A. The section also contains a
good summary of our results (see Section 2.5). In Section 3, we recall the dual approach to the
Coxeter group of type Dn. Next, we describe the combinatorial technique that defines reduced
decompositions and introduce diagrams for these decompositions in Section 4. Within our proof,
parabolic subgroups play an important role. In Section 5, we decompose the reflections over the
Carter generating set and define the lift of these decompositions to the interval groups. Finally,
Section 6 finishes our proof by induction.

Acknowledgements. The second author would like to thank the DFG (project BA2200/5-1).
The three authors would like to thank Bielefeld University which hosted the visit of the third
author, and to thank the MFO in Oberworfach that hosted them for two weeks in September 2020
in a Research in Pairs meeting. The authors would also like to thank Derek Holt who helped them
to optimise their use of kbmag [23] within GAP [18].

2 Definitions and Preliminaries

2.1 Coxeter groups and Artin groups
Definition 2.1. Suppose that W is a group and S is a subset of W . For s and t in S, let mst

be the order of st if this order is finite, and be ∞ otherwise. We say that (W,S) is a Coxeter
system, and that W is a Coxeter group with Coxeter system S, if W admits the presentation with
generating set S together with the quadratic relations: s2 = 1 for all s ∈ S, and the braid relations:
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sts . . .︸ ︷︷ ︸
mst

= tst . . .︸ ︷︷ ︸
mst

for s, t ∈ S, s 6= t and mst 6=∞. We define an element t of W to be a reflection if

it is a conjugate of an element of S.

We define the Artin group A(W ) associated with a Coxeter system (W,S) as follows.

Definition 2.2. The Artin group A(W ) associated with a Coxeter system (W,S) is defined by a
presentation with generating set S in bijection with S and the braid relations: sts . . .︸ ︷︷ ︸

mst

= tst . . .︸ ︷︷ ︸
mst

for

s, t ∈ S and s 6= t, where mst ∈ Z≥2 is the order of st in W .

These presentations are often represented graphically using a Coxeter diagram Γ. This is a
graph with vertex set S, in which the edge {s, t} exists if mst ≥ 3, and is labelled with mst when
mst ≥ 4. Let Γ be such a diagram. We denote by W (Γ) and A(Γ) the related Coxeter and Artin
groups W and A(W ). The finite Coxeter groups are precisely the real reflection groups, and the
spherical Artin groups are the Artin groups related to the finite Coxeter groups. The corresponding
Coxeter diagrams are the three infinite families of types A, B, and D, and the exceptional cases
of types E6, E7, E8, F4, H3, H4, and I2(e). In the remainder of the article, W will always be a
finite Coxeter group.

Recall that the Coxeter group of type An (n ≥ 1) is the symmetric group Sym(n+ 1) and the
related Artin group is the usual braid group

Bn+1 = 〈s1, . . . , sn | sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 1 and

sisj = sjsi for |i− j| > 1〉.

2.2 Quasi-Coxeter elements
Let (W,S) be a finite Coxeter system, and let T := ∪w∈WSw be the set of all its reflections. As
each w ∈W is a product of reflections in T , we can define

`T (w) := min{k ∈ Z≥0 | w = t1t2 . . . tk; ti ∈ T},

the reflection length of w. If w = t1t2 . . . tk with ti ∈ T and k = `T (w), we call (t1, t2, . . . , tk) (or
t1t2 . . . tk by abuse of notation) a reduced decomposition of w.

Now we define the notion of quasi-Coxeter elements.

Definition 2.3. An element w of a finite Coxeter group W is called a quasi-Coxeter element
if there exists a reduced decomposition t1t2 . . . tn of w where n is the cardinality of S such that
〈t1, t2, . . . , tn〉 = W .

A Coxeter element is a conjugate of any element that is written as the product of the simple
generators of W in any order. Note that every Coxeter element is a quasi-Coxeter element. A
quasi-Coxeter element is called proper if it is not a Coxeter element.

It is shown in [5] that the quasi-Coxeter elements in simply laced Coxeter groups are precisely
those elements that admit a reduced decomposition into reflections such that the roots related to
these reflections form a basis of the related root lattice. In the non-simply laced case, it is also
required that the system of coroots generates the coroot lattice.

Recall that a parabolic subgroup of W is a subgroup generated by a conjugate of a subset
of S. Note that a more general definition of parabolic subgroups, which is in fact equivalent to
our definition for finite Coxeter systems, is used in [2, 3]. We call an element in W a parabolic
quasi-Coxeter element if it is a quasi-Coxeter element in a parabolic subgroup of W .

Since the set T of reflections is closed under conjugation, there is a natural way to obtain new
reflection decompositions from a given one. The braid group Bn acts on the set Tn of n-tuples of
reflections via

si(t1, . . . , tn) = (t1, . . . , ti−1, titi+1ti, ti , ti+2, . . . , tn),

s−1i (t1, . . . , tn) = (t1, . . . , ti−1, ti+1 , ti+1titi+1, ti+2, . . . , tn), i = 1, . . . , n− 1,
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the so-called Hurwitz action of Bn on Tn. It is readily observed that this action restricts to the set
of all reduced reflection decompositions of a given element w ∈W . If the latter action is transitive,
then we say that the dual Matsumoto property holds for w.

The dual Matsumoto property characterises the parabolic quasi-Coxeter elements (see Theo-
rem 1.1 in [3]).

Theorem 2.4. An element w ∈ W is a parabolic quasi-Coxeter element if and only if the dual
Matsumoto property holds for w.

We recall the following fact, and thereby introduce the notation Pw for parabolic quasi-Coxeter
elements w ∈W . The result is a consequence of Theorem 1.4 of [2] and Theorem 1.2 of [3].

Lemma 2.5. Let w be a parabolic quasi-Coxeter element in a Coxeter group W and w = t1t2 . . . tk
be a reduced decomposition into reflections. Then Pw := 〈t1, . . . , tk〉 is a parabolic subgroup and
the definition of Pw is independent of the choice of the reduced reflection decomposition of w.

2.3 Decomposition diagrams
We introduce diagrams related to reduced decompositions.

Definition 2.6. Let t1t2 . . . tk be a reduced decomposition of w ∈ W . We define a decomposition
diagram related to t1t2 . . . tk as follows. The vertices of the diagram correspond to the reflections
t1, t2, . . . , tk. If two reflections commute, we put no edge between the related vertices. Otherwise,
we put an edge, and we label it by the order of the product of the two reflections when this order is
strictly bigger than 3.

In Carter’s classification of the conjugacy classes in the Weyl groups [12], it is shown that
every element w in W is the product w = w1w2 of two involutions, and that each involution is
the product of commuting reflections, which then provides a bipartite decomposition of w. Carter
exhibited the list of conjugacy classes of proper quasi-Coxeter elements by describing for each class
a diagram related to a bipartite decomposition for a representative of the class (see Table 2 in
[12]) which we call a Carter diagram. Note that Definition 2.6 generalises the notion of Carter
diagrams.

2.4 Interval groups of quasi-Coxeter elements
We start by defining left and right division.

Definition 2.7. Let v, w ∈W . We say that v is a (left) divisor of w, and write v � w, if w = vu
with u ∈ W and `T (w) = `T (v) + `T (u), where `T (w) is the length over T of w ∈ W . The order
relation � is called the absolute order relation on W .

The interval [1, w] related to an element w ∈W is defined to be the set of divisors of w for �,
that is [1, w] = {v ∈W | v � w}.

Similarly, we define divisibility from the right. We say that v is a right divisor of w, and write
v �r w, if w = uv with u ∈ W and `T (w) = `T (v) + `T (u). Similarly, we also define the interval
[1, w]r of right divisors of an element w ∈W .

Remark 2.8. A quasi-Coxeter element has the inductive property that every left divisor of it is
a parabolic quasi-Coxeter element (see Corollary 6.11 in [3]). Therefore, if w is a quasi-Coxeter
element, then every element in the interval [1, w] is a parabolic quasi-Coxeter element.

Now we introduce the definition of an interval group related to quasi-Coxeter elements in W .
Let w be a quasi-Coxeter element in W . Consider the interval [1, w] of divisors of w.

Definition 2.9. We define the group G([1, w]) by a presentation with set of generators [1, w] in
bijection with the interval [1, w], and relations corresponding to the relations in [1, w], meaning that
uv = r if u, v, r ∈ [1, w], uv = r, and u � r, i.e. `T (r) = `T (u) + `T (v).
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By transitivity of the Hurwitz action on the set of reduced decompositions of w (see Lemma
2.4), the next result follows immediately.

Proposition 2.10. Let w ∈W be a quasi-Coxeter element, and let T ⊂ [1, w] be the copy of the
set of reflections T in W . Then

G([1, w]) = 〈T | tt′ = t′t′′ for t, t′, t′′ ∈ T if t 6= t′, t′′ ∈ T and tt′ = t′t′′ � w〉

is a presentation of the interval group with respect to w.

Notice that the relations described in Proposition 2.10 are the relations that are visible in the
poset ([1, w],�) in heights one and two. They are called the dual braid relations (see [6]).

The following result is due to Michel as stated by Bessis in [6] (Theorem 0.5.2) and explained
on page 318 of Chapter VI in [14] (see also [7]). It is the main theorem in interval Garside theory.

Theorem 2.11. If the two intervals [1, w] and [1, w]r are equal (we say that w is balanced) and if
both posets ([1, w],�) and ([1, w]r,�r) are lattices, then the interval group G([1, w]) is an interval
Garside group.

Since T is stable under conjugation, quasi-Coxeter elements are always balanced. The only
obstruction to obtaining interval Garside groups is the lattice property. In the case when the
quasi-Coxeter element is a Coxeter element, Bessis [6] showed the following.

Theorem 2.12. Let W be a finite Coxeter group. The interval group G([1, w]) for w ∈ W a
Coxeter element is an interval Garside group isomorphic to the corresponding Artin group A(W ).

The main purpose of our work is to continue the analysis of the interval groups related to all
quasi-Coxeter elements.

We introduce the following notation, which we shall use in the remainder of the article.

Notation 2.13. We denote by b(x, y) the braid relator xyx(yxy)−1 or xy(yx)−1, by tc(x, y, z, t)
the twisted cycle commutator relator [x, yz−1tzy−1], and by cc(x, y, z, t) the cycle commutator
relator [x, yztz−1y−1].

2.5 Strategy of the proof
We describe here our general strategy for the proof of Theorem A (see also Theorem 5.1). We are
also going to mention some important results that we established within the proof, as they are
interesting in themselves.

Let W be the Coxeter group of type Dn. We employ the description of W as a group of
monomial matrices as will be explained in Section 3.1. Let w be a quasi-Coxeter element of the
Coxeter groupW of type Dn. Actually, there exists a reduced decomposition of w whose reflections
s1, s2, . . . , sn satisfy the relations that can be described by the Carter diagram ∆ (see Figure 1 in
Section 3.3). The quasi-Coxeter elements in type Dn are characterised in Proposition 3.8. From
now on, we let S := {s1, s2, . . . , sn}.

By [11], the Coxeter group W admits a presentation on the set S of generators whose relations
are the quadratic relations (s2i = 1 for 1 ≤ i ≤ n) along with the relations of the diagram ∆ and the
cycle commutator relator cc(si, sj , sk, sl) in correspondence with the unique 4-cycle (si, sj , sk, sl)
of ∆. Note that in W , the cycle commutator and the twisted cycle commutator relators associated
with the 4-cycle are the same. All this is described in Section 3.

Consider the interval group G([1, w]). By Proposition 2.10, the group G([1, w]) is generated
by a copy T of T along with the dual braid relations tt′ = t′t′′ (t ∈ T corresponds to t ∈ T ),
whenever tt′ = t′t′′ � w, t 6= t′ and t, t′, t′′ ∈ T .

We want to prove that G([1, w]) is isomorphic to the group G that is defined by a presen-
tation on the set of generators S = {s1, s2, . . . , sn} ⊂ T corresponding to the subset S of T
with the corresponding relations described by ∆, along with the twisted cycle commutator relator
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tc(si, sj , sk, sl) in correspondence with the 4-cycle (si, sj , sk, sl), where si, sj , sk, sl correspond
to si, sj , sk, sl, respectively.

Step 1: Definition of f . We define a map f from G to G([1, w]) by setting f(si) = si for each
i. It will follow from Proposition 3.12 and Lemma 5.12 that the braid relators b(si, sj) and the
twisted cycle commutator relator tc(si, sj , sk, sl) specified by the presentation given for G hold
in G([1, w]) as well. Hence f extends to a homomorphism from G to G([1, w]).

Step 2: Reduced decompositions and their diagrams. Let w0 be a divisor of length n− 1 of w.
We describe a particular reduced decomposition of w0 = t1t2 . . . tn−1 in Sections 4.2 and 4.3, and
characterise whether w0 is a Coxeter element or a proper quasi-Coxeter element in the subgroup
Pw0

:= 〈t1, . . . , tn−1〉 ⊆W (see for instance Propositions 4.5, 4.15, and 4.16). In order to describe
these reduced decompositions, we describe a combinatorial technique (in Section 4.1) by using the
description of the elements of W as monomial matrices.

The reduced decomposition t1t2 . . . tn−1 of w0 corresponds to a decomposition diagram (see
Definition 2.6) that we denote by ∆0. We show that ∆0 is a disjoint union of Coxeter diagrams
of types A or D or of the same type as ∆ (but with fewer generators) with a (single) 4-cycle (see
Propositions 4.5, 4.15, and 4.16). Thereby we are able to determine the type of w0.

If w0 is a Coxeter element in Pw0
, then by [6], the dual braid relation tt′ = t′t′′ satisfied in

G([1, w0]) where tt′ = t′t′′ � w is a consequence of the relators b(ti, tj) for ti, tj ∈ {t1, t2, . . . , tn−1}
(i 6= j). If w0 is a proper quasi-Coxeter element, then induction on n implies that the dual braid re-
lation tt′ = t′t′′ satisfied in G([1, w0]) is a consequence of the relations b(ti, tj) and tc(ti, tj , tk, tl)
for ti, tj ∈ {t1, t2, . . . , tn−1} (i 6= j) and (ti, tj , tk, tl) the 4-cycle of ∆0. In this way, we have shown
that all the dual braid relations are consequences of the relations between t1, t2, . . . , tn−1 in
correspondence with the relations between t1, t2, . . . , tn−1 implied by each decomposition diagram
∆0 corresponding to a divisor w0 of length n− 1 of w.

Step 3: Decomposition of elements in T and T . In order to find a homomorphism g :
G([1, w])→ G, we describe a decomposition of each element t in T in terms of elements in S. This
can be done because of the dual Matsumoto property for w, i.e. the transitive Hurwitz action on
the set of reduced decompositions over T of w. This is based on particular decompositions over S
of the reflections in T . This is done in Propositions 5.7 and 5.10.

Let g be the map that sends ti ∈ G([1, w]) to its decomposition over S as given in Proposi-
tion 5.10. We show that the map g is a homomorphism. Suppose that tt′ = t′t′′ is a dual braid
relation of G([1, w]). We need to check that the image of this relation under g holds within G.
There exists a divisor w0 of length n− 1 of w such that tt′ is a prefix of w0. Therefore, tt′ = t′t′′

holds in G([1, w0]). So rather than checking that the images by g of all the dual braid relations
hold in G, our strategy is to shift the analysis to the groups G([1, w0]), from which we can establish
the desired homomorphism. This analysis was done in Step 2.

Step 4: Lift of the relations. In order to conclude homomorphism for g, we finally need to
show that the image by g of all the defining relations between the elements t1, t2, . . . , tn−1 of
G([1, w0]) in correspondence with the relations between t1, t2, . . . , tn−1 implied by each decompo-
sition diagram ∆0 can be derived from the relations between the elements of S that are implied
by the diagram ∆. This is proved in Section 6.3 by induction on n. The base of our induction
is the cases n = 4 and n = 5 (see Sections 6.1 and 6.2). Note that we also separate n = 5 as a
base of induction so that we do not need anymore to show twisted cycle commutator relators in
Section 6.3. This is possible since, apart from one special case (Equation 11 with i = n − 1), in
the reduced decomposition t1t2 . . . tn−1 of each w0, the only reflection ti such that g(ti) contains
sn in its decomposition over S is precisely the last one, that is tn−1.

Section 6.4 concludes the proof that g is a homomorphism. Isomorphism between G([1, w]) and
G is proved once the composites f ◦ g and g ◦ f have been shown to be identity maps.
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Note that it might be possible to apply this strategy more generally, but this article only deals
with the case where W is of type Dn.

3 Dual approach to the Coxeter group of type Dn

3.1 The Coxeter group of type Dn

We employ the description of the Coxeter group W of type Dn (n ≥ 4) as the group of n × n
monomial matrices such that the nonzero coefficients are equal to 1 or −1 and their product is
equal to 1. This description will help us to describe our combinatorial technique and to easily
explain our arguments.

Note that this description of W corresponds to the case d = 1, e = 2 of the infinite series
G(de, e, n) of complex reflection groups (see [27]).

Notation 3.1. A monomial matrix w ∈ W is associated with a permutation in Sym(n) that
has been marked by overlining some elements within its cycles. We call the result, σw, a marked
permutation, where an entry i (1 ≤ i ≤ n) of a cycle indicates that the coefficient in row i of w is
equal to 1, while an entry i indicates that this coefficient is equal to −1.

The monomial matrix w is denoted by σw, so we have w = σw. When there is no confusion,
we remove the cycles (i), for 1 ≤ i ≤ n of length 1 from σw.

We note that, for w ∈ W , the marked permutation σw must always have an even number
of overlined entries. We also note that the notation σw is not the cycle decomposition of the
permutation πw of the unit vectors ±ei, 1 ≤ i ≤ n of Rn that is also naturally associated with w.
In fact, each cycle of length k in σw corresponds to either two cycles of length k or a single cycle
of length 2k in πw.

Example 3.2. Let w =


0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 1 0 0 0 0

 be an element of W of type D6. Using Nota-

tion 3.1, we have w = (1, 3, 4)(2, 5, 6), while we have πw = (1,−3,−4,−1, 3, 4)(2, 5,−6,−2,−5, 6)
where, for brevity, we label the unit vectors ±i with 1 ≤ i ≤ 6. .

We set the following convention for the remainder of the article.

Convention 3.3. When i = i′, we interpret each cycle (i′, i′ + 1, . . . , i), (i′, i′ − 1, . . . , i), (i, i −
1, . . . , i′), or (i, i + 1, . . . , i′) as the 1-cycle (i). By convention, we also set i = i for any positive
integer i. We also suppose that a decreasing-index cycle of the form (xi, xi−1, . . . , xi′) is the identity
element when i ≤ i′ and an increasing-index expression of the form (xi, xi+1, . . . , xi′) is the identity
element when i ≥ i′. Finally, we also assume that a cycle of length ≥ 3 that contains n should
start by n.

Lemma 3.4. The set T of reflections in W is represented by the set of elements

{(i, j), (i, j) | 1 ≤ i 6= j ≤ n}.

Note that the reflection (i, j) represents a transposition matrix whose entries are all 1, while
(i, j) represents a matrix derived from the previous one by changing the signs in rows i and j. For
2 ≤ i ≤ n, we denote by si the reflection (i− 1, i).

The following lemma is straightforward to prove.

Lemma 3.5. Let t and t′ be two reflections in W , with t = (i, j) or (i, j) and t′ = (k, l) or (k, l).
If {i, j} does not intersect {k, l}, then the reflections t and t′ commute. If the cardinality of the
intersection is 1, then we get (i, j)(k, l)(i, j) = (k, l)(i, j)(k, l).
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3.2 Length function over the set of reflections
Shi computed in [26] the length function over the set of reflections in the infinite series of complex
reflection groups. The Coxeter group W of type Dn corresponds to the group G(2, 2, n). The
length function over the set of reflections in G(2, 2, n) appears in Corollary 3.2 in [26]. Let us recall
this result.

Proposition 3.6. Let w ∈ G(2, 2, n), and suppose that w is represented by a marked permutation
σw as described in Notation 3.1 Suppose that σw is written as a product of r cycles, and define e
to be the number of these cycles that have an even number of overlined entries. Then, the length
`T (w) over T of w is equal to n− e.

Example 3.7. Let w ∈ G(2, 2, 6) be as in Example 3.2. Then w = (1, 3, 4)(2, 5, 6). Here we have
C1 = (1, 3, 4) and C2 = (2, 5, 6). Both cycles have an odd number (equal to 1) of overlined entries.
Hence e = 0 and we get `T (w) = 6.

Note also that the n× n identity matrix corresponds to the marked permutation with n cycles
each containing a single entry i. Each cycle then contains 0 overlined entries. So e = n and we see
that the `T (Id) = 0.

3.3 Quasi-Coxeter elements in type Dn

Let W be a Coxeter group of type Dn. It is a consequence of Carter (see [12] and [3, Remark 8.3
(b)]) that W contains bn2 c conjugacy classes of quasi-Coxeter elements. We fix an integer m with
1 ≤ m ≤ bn/2c; this fixes a conjugacy class of quasi-Coxeter elements in W . The m-th conjugacy
class is associated by Carter [12] with the diagram ∆m,n displayed in Figure 1. The elements si
where 2 ≤ i ≤ n are defined after Lemma 3.4 and we set s1 := (m,m+ 1). When there is no
confusion, we denote ∆m,n by ∆.

s2 s3 sm−1

sm

sm+1

s1

sm+2

sm+3 sn−1 sn

Figure 1: Carter diagram ∆m,n of type Dn.

In ∆ an edge between two nodes si and sj describes the relation sisjsi = sjsisj , and when there
is no edge between si and si, this means that the two reflections commute. In the next proposition,
we choose a particular representative of each conjugacy class of quasi-Coxeter elements that will
be helpful in the description of our main result.

Proposition 3.8. The m-th conjugacy class of quasi-Coxeter elements contains a representative

w = (m,m− 1, . . . , 2, 1)(n, n− 1, . . . ,m+ 1).

The element w can be written as the product s2s3 . . . sms1sm+1sm+2sm+3sm+4 . . . sn.

Proof. See Proposition 25 in [12] for representatives of the conjugacy classes, where Carter defines
the notion of signed cycle-type. The second sentence of the proposition is readily checked.

We call the set {s1, s2, . . . , sn} a Carter generating set. As w is a quasi-Coxeter element, every
Carter generating set generates the Coxeter group.
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Note that the Carter diagram ∆ containsm−2 and n−m−2 vertices on the left- and right-hand
sides of the single 4-cycle within ∆, respectively.

For m = 1, the element w is a Coxeter element and ∆1,n is the Coxeter diagram of type Dn,
and w becomes (1)(n, n− 1, . . . , 2). We call a proper Carter diagram of type Dn a diagram ∆m,n

that is not the Coxeter diagram of type Dn, that is with m ≥ 2.
The Carter diagram ∆ is the decomposition diagram (see Definition 2.6) related to the reduced

decomposition s2s3 . . . sms1sm+1sm+2sm+3sm+4 . . . sn of the quasi-Coxeter element w. We are
using this particular decomposition of the quasi-Coxeter element since it will be helpful to describe
the divisors of length n − 1 of w in Section 4 and to describe necessary combinatorial techniques
for our analysis in Sections 4 and 5.

Example 3.9. The element w = (3, 2, 1)(6, 5, 4) is a representative of a conjugacy class of quasi-
Coxeter elements in type D6. In this case m = 3.

Lemma 3.10. If h ∈W has a reduced reflection decomposition h = t1 . . . tr, ti ∈ T whose decom-
position diagram is a Coxeter diagram, then this diagram is the Carter diagram of the conjugacy
class which contains h, and h is a Coxeter element in 〈t1, . . . , tr〉.

Proof. According to Dyer [16, Theorem (3.3)] the reflection subgroup Wh := 〈t1, . . . , tr〉 of W is a
Coxeter group itself. If the decomposition diagram of h is a Coxeter diagram, we can choose the
signs of the roots α1, . . . , αr related to the reflections t1, . . . , tr such that their dihedral angles are
obtuse, as the diagram does not contain any cycles. Therefore {α1, . . . , αr} is a simple system for
Wh (see Theorem 4.4 of Dyer [16] or Lemma 4.1 of [5]). This yields that h is a Coxeter element
in Wh. Therefore the decomposition diagram is the Carter diagram of the conjugacy class which
contains h.

The next result is a consequence of Theorem 3.10 of Cameron–Seidel–Tsaranov [11].

Proposition 3.11. The Coxeter group has a presentation with set of generators the Carter gen-
erators. The relations are s2i = 1 for 1 ≤ i ≤ n and the relations described by ∆m,n together with
the cycle commutator relation

[sm, sm+1sm+2s1sm+2sm+1] = (smsm+1sm+2s1sm+2sm+1)2 = 1.

We end this section by the following statement that will be used to construct the homomorphism
f introduced in Step 1 of the strategy of our proof in Section 2.5.

Proposition 3.12. (1) We have that sisj � w and sisj is of order 2, for |i− j| > 1.

(2) We have that sisi+1 � w, and sisi+1 is of order 3, for 2 ≤ i ≤ n− 1.

(3) Let 2 ≤ i ≤ n. We have that s1sm � w, sm+2s1 � w, and s1si � w. Further the elements
s1sm and sm+2s1 are of order 3, and s1si is of order 2.

(4) Let t = s
smsm+1

1 = (m− 1,m). We have that tsm+2 � w and tsm+2 is of order 2.

Proof. The result is an immediate consequence of the Hurwitz action and of the choice of the
elements si.

4 Maximal divisors of quasi-Coxeter elements
As we pointed out in the strategy of our proof (Step 2), our method depends on an analysis of
maximal divisors of a quasi-Coxeter element w, and in particular of the decomposition of each such
as a product of n − 1 reflections. In Section 4.1 we identify 11 different cases for such maximal
divisors w0, which fall into three types, I, II and III, and then in the following sections, we find
reduced decompositions for elements w0 of type I (in Section 4.2), and of types II and III (in
Section 4.3), as well as their decomposition diagrams (see Definition 2.6).
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4.1 Divisors of length n− 1

Let w = (m,m− 1, . . . , 2, 1)(n, n− 1, . . . ,m+ 1) be a quasi-Coxeter element. Since the maximum
possible length of an element in W is n, the elements of length n − 1 that divide w consist of all
the products w(i, j) and w(i, j) for which 1 ≤ i < j ≤ n. We denote by w0 a divisor of length
n − 1 of w. We compute these divisors in Equations 1 to 11 below. We distinguish 3 types that
we denote by I, II, and III and that are displayed in the following Tables 1, 2, and 3. The first
column of each table represents the cases for i and j. The second column is the divisor w0. Notice
that we get from type II to type III by applying symmetry.

Remark also that Equation 2 is similar to Equation 1; the difference is that two entries are
further overlined in Equation 2. We see the same similarities between Equations 6 and 7, and
Equations 9 and 10.

Notice that each element w0 of the 11 Equations admits exactly one cycle with an even num-
ber of overlined elements (we assume that 0 is even). Hence each element is of length n − 1 by
Proposition 3.6. In Sections 4.2 and 4.3, we describe a reduced decomposition over the set T of
reflections for each divisor w0 of w of type I and of types II and III, respectively.

We provide an example where we explicitly write the monomial matrices.

Example 4.1. Let W be a Coxeter group of type D5. Let m = 2 and let w = (2, 1)(5, 4, 3) be a
proper quasi-Coxeter element. As a monomial matrix,

w =


0 −1 0 0 0
1 0 0 0 0
0 0 0 0 −1
0 0 1 0 0
0 0 0 1 0

.

Let us multiply w from the right by the transposition (1, 4) as described in Equation (1). So we get

w(1, 4) =


0 −1 0 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 1 0 0
1 0 0 0 0

.

Using the marked permutation notation introduced in Notation 3.1, we have that w(1, 4) =
(5, 1, 2, 4, 3) (the coefficient is equal to −1 on row numbers 1 and 3 of the matrix w1) which is
compatible with the result of Equation 1.
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1 ≤ i ≤ m,
(m+ 1) ≤ j ≤ n w(i, j) = (n, n−1, . . . , j+1, i, i−1, . . . , 1,m,m−1, . . . , i+1, j, j−1, . . . ,m+ 1). (1)

i 6= m,
j 6= n w(i, j) = (n, n−1, . . . , j + 1, i, i−1, . . . , 1,m,m−1, . . . , i+ 1, j, j−1, . . . ,m+ 1). (2)

i = m,
j 6= n

w(m, j) = (n, n− 1, . . . , j + 1,m,m− 1, . . . , 1, j, j − 1, . . . ,m+ 1). (3)

i 6= m,
j = n

w(i, n) = (n, n− 1, . . . ,m+ 1, i, i− 1, . . . , 1,m,m− 1, . . . , i+ 1). (4)

i = m,
j = n

w(m,n) = (n, n− 1, . . . ,m+ 1,m,m− 1, . . . , 1) = (n, n− 1, . . . , 1). (5)

Table 1: Type I: 1 ≤ i ≤ m and (m+ 1) ≤ j ≤ n.

1 ≤ i < j ≤ m

w(i, j) = (m,m−1, . . . , j+1, i, i−1, . . . , 1)(i+1, j, j−1, . . . , i+2)(n, n−1, . . . ,m+ 1). (6)

j 6= m

w(i, j) = (m,m− 1, . . . , j + 1, i, i− 1, . . . , 1)(i+ 1, j, j− 1, . . . , i+2)(n, n− 1, . . . ,m+ 1).
(7)

j = m
w(i,m) = (i, i− 1, . . . , 1)(i+ 1,m,m− 1, . . . , i+ 2)(n, n− 1, . . . ,m+ 1). (8)

Table 2: Type II: 1 ≤ i < j ≤ m.

(m+ 1) ≤ i <
j ≤ n w(i, j) = (m,m− 1, . . . , 1)(n, n− 1, . . . , j +1, i, i− 1, . . . ,m+ 1)(j, j − 1, . . . , i+1). (9)

j 6= n

w(i, j) = (m,m−1, . . . , 1)(n, n−1, . . . , j + 1, i, i−1, . . . ,m+ 1)(j, j−1, . . . , i+ 1). (10)

j = n
w(i, n) = (m,m− 1, . . . , 1)(i, i− 1, . . . ,m+ 1)(n, n− 1, . . . , i+ 1). (11)

Table 3: Type III: (m+ 1) ≤ i < j ≤ n.
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4.2 Reduced decompositions and diagrams for type I
Suppose that w0 has type I (see Table 1). As a marked permutation, it is a cycle of the form
(x1, x2, x3, . . . , xn), where each xk is equal to p or p (1 ≤ p ≤ n), with {x1, x2, . . . , xn} =
{1, 2, . . . , n}, and with an even number of overlined entries (see Equations 1 to 5). We will describe
how to produce a reduced reflection decomposition of length n− 1 for this element.

We continue the study of Example 4.1 that will help the understanding of a procedure that
describes the reduced decompositions. The general idea is to multiply the marked permutation
w0 = (x1, x2, x3, . . . , xn) from the right by a sequence of reflections in order to obtain the identity
matrix. A decomposition of w0 is given by the product in reverse order of all the reflections used
in the procedure. It turns out that this decomposition is reduced.

Example 4.2. Let w = (2, 1)(5, 4, 3) and w0 = w(1, 4) = (5, 1, 2, 4, 3) be as in Example 4.1. We
follow the cycle (5, 1, 2, 4, 3). The first two entries are 5 and 1. We multiply w0 from the right by
the transposition (1, 5) and get

w1 = w0(1, 5) =


0 −1 0 0 0
0 0 0 1 0
−1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 = (1, 2, 4, 3)(5),

and 5 becomes a fixed point.
We continue by following the cycle (1, 2, 4, 3). The first two entries are 1 and 2. We multiply

w1 from the right by the reflection (1, 2) and get

w2 = w1(1, 2) =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 = (2, 4, 3)(5)(1).

This operation permutes the columns 1 and 2 and multiplies their entries by −1. This then yields
that 1 becomes a fixed point. Remark that by this operation, the third entry in (2, 4, 3)(5)(1) is
not overlined anymore.

We continue by following the cycle (2, 4, 3). Here, the first two entries are 2 and 4. Then, we
multiply w2 from the right by the transposition (2, 4). We therefore obtain a coefficient equal to 1
in diagonal position [2, 2]. We get

w3 = w2(2, 4) =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 = (4, 3)(5)(1)(2).

Now, we arrive at the last step. We multiply w3 from the right by the transposition (3, 4) and
finally obtain the identity matrix denoted by I5 = (5)(1)(2)(4)(3).

This implies that w0 = (3, 4)(2, 4)(1, 2)(1, 5) = s4(2, 4)(1, 2)(1, 5). These are the reflections
that we used before in reverse order. By Proposition 3.6, the length of w0 is equal to 4. Hence
(3, 4)(2, 4)(1, 2)(1, 5) is a reduced decomposition of w0 as it consists of 4 reflections. By Lemma 3.5,
the related decomposition diagram is described by the following standard type A4 diagram.

s4 (2, 4) (1, 2) (1, 5)

The general procedure is as follows.
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Procedure 4.3. Let x = (x1, x2, . . . , xr). For k from 1 to r − 1,

• If xk = p, then whether xk+1 = q or q, we multiply (xk, xk+1, . . . , xr) from the right by the
reflection (p, q) and get (xk)(xk+1, xk+2, . . . , xr), whose length is one less than the length of
(xk, xk+1, . . . , xr).

• If xk = p, then whether xk+1 = q or q, we multiply (xk, xk+1, . . . , xr) from the right by the
reflection (p, q) and get (xk)(xk+1, xk+2, . . . , xr), whose length is one less than the length of
(xk, xk+1, . . . , xr).

Remark that the entry xr can be equal to u for 1 ≤ u ≤ n in which case it is equal to u, by the
convention that i = i for any positive integer i (see Convention 3.3).

Proposition 4.4. Let w0 be a divisor of w of type I. A reduced decomposition of w0 is obtained
as the product in reverse order of the reflections that are applied in Procedure 4.3.

Proof. Let w0 be a divisor of w of type I. It is of the form (x1, x2, x3, . . . , xn). Applying Proce-
dure 4.3 for all k from 1 to n − 1, the element (x1, x2, x3, . . . , xn) is transformed to the identity
matrix (x1)(x2) . . . (xn) in n− 1 steps. Since all reflections are of order 2, a decomposition of the
element (x1, x2, x3, . . . , xn) is given by the product in reverse order of all the reflections used in
this procedure.

Since `(w0) = n− 1 by Proposition 3.6, the decomposition we obtain is reduced (as it consists
of n− 1 reflections).

Proposition 4.5. The decomposition diagram of each reduced decomposition corresponding to
Type I is represented by a Coxeter diagram of type An−1, and w0 is a Coxeter element in Pw0 . In
particular, w0 is a parabolic Coxeter element in W .

Proof. It is an immediate consequence of Proposition 4.4 that the decomposition diagram of the
reduced decomposition of w0 produced in Procedure 4.3 is a string. Therefore, Lemmas 3.10 and
2.5 yield the assertion.

We apply Proposition 4.4 to establish decompositions of type I divisors w0 of w, as described
in the following lemmas.

Lemma 4.6. Let w0 := w(i, j) be a divisor of w of type I, where 1 ≤ i ≤ m, m + 1 ≤ j ≤ n, so
that we are in the situation of Equation 1. Then w0 has one of the following decompositions of
length n− 1 over T .

(1) Suppose i 6= m, j 6= n− 2, n− 1, n :

w0 = sm+2sm+3 . . . sj−1sj(i+ 1, j)si+2si+3 . . . sm−1sm(1,m)s2s3 . . .

. . . si−1si(i, j + 1)sj+2 . . . sn−1sn.

(2) Suppose i 6= m, j = n− 2 :

w0 = sm+2 . . . sn−2sn−1(i+ 1, n− 2)si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i, n− 1)sn.

(3) Suppose i = m, j = n− 2 :

w0 = sm+2 . . . sn−3sn−2(1, n− 2)s2 . . . sm−1sm(m,n− 1)sn.

(4) Suppose i 6= m, j = n− 1 :

w0 = sm+2 . . . sn−2sn−1(i+ 1, n− 1)si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i, n).

(5) Suppose i = m, j = n− 1 :

w0 = sm+2 . . . sn−2sn−1(1, n− 1)s2 . . . sm−1sm(m,n).

(6) Suppose i 6= m, j = n :

w0 = si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i,m+ 1)sm+2 . . . sn−1sn.

(7) Suppose i = m, j = n :

w0 = s2 . . . sm−1sms1sm+2 . . . sn−1sn.
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Proof. We apply Proposition 4.4 to Equation 1.

Lemma 4.7. Let w0 = w(i, j) be a divisor of w of type I, where 1 ≤ i < m, m + 1 ≤ j < n, so
that we are in the situation of Equation 2. Then w0 has one of the following decompositions of
length n− 1 over T .

(1) Suppose i 6= m, j < n− 2 :

w0 = sm+2 . . . sj−1sj(i+ 1, j)si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i, j + 1)sj+2 . . . sn.

(2) Suppose i 6= m, j = n− 2 :

w0 = sm+2 . . . sn−3sn−2(i+ 1, n− 2)si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i, n− 1)sn.

(3) Suppose i 6= m, j = n− 1 :

w0 = sm+2 . . . sn−2sn−1(i+ 1, n− 1)si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i, n).

Proof. We apply Proposition 4.4 to Equation 2.

Lemma 4.8. Let w0 = w(m, j) be a divisor of w of type I, where m + 1 ≤ j < n, so that we are
in the situation of Equation 3. Then w0 has one of the following decompositions of length n − 1
over T .

(1) Suppose j < n− 2 :

w0 = sm+2 . . . sj−1sj(1, j) . . . sm−1sm(m, j + 1)sj+2 . . . sn−1sn.

(2) Suppose j = n− 2 :

w0 = sm+2 . . . sn−3sn−2(1, n− 2)s2 . . . sm−1sm(m,n− 1)sn.

(3) Suppose j = n− 1 :

w0 = sm+2 . . . sn−2sn−1(1, n− 1)s2 . . . sm−1sm(m,n).

Proof. We apply Proposition 4.4 to Equation 3.

Similarly, we get the next result.

Lemma 4.9. Let w0 be as in the situation of Equations 4 and 5. Then w0 has the following
decompositions of length n− 1 over T .

(1) Suppose i 6= m and j = n, so that we are in the situation of Equation 4:
w0 = si+2 . . . sm−1sm(1,m)s2 . . . si−1si(i,m+ 1)sm+2 . . . sn−1sn

(2) Suppose i = m and j = n, so that we are in the situation of Equation 5:
w0 = s2s3 . . . sn.

4.3 Reduced decompositions and diagrams for types II and III
In this section, we find reduced decompositions for the maximal divisors w0 of w that are of types
II and III. They are listed in Equations 6 to 11.

We define a combinatorial technique that enables us to obtain a reduced decomposition, whose
decomposition diagram ∆0 is the union of Coxeter diagrams of type A or D, or a proper Carter
diagram of type D.

First, observe that each element w0 defined in one of the Equations 6– 11 is the product of
three cycles. Since `(w0) = n−1, by Proposition 3.6 each w0 admits exactly one cycle with an even
number of overlined elements. The other two cycles contain an odd number of overlined elements.
Observing these equations, we recognise that these cycles contain exactly one overlined element
at the end of the cycle. Assume that the cycles are x := (x1, x2, . . . , xp), y := (y1, y2, . . . , yq), z :=
(z1, z2, . . . , zr) such that an even number of entries of (z1, z2, . . . , zr) are overlined, xp = u, and
yq = v. Also, observe that we always have p+ q + r = n.

The combinatorial technique is based on Procedure 4.3. We formulate it in the following
procedure.
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Procedure 4.10.

Step 1. If r ≥ 2, then apply Procedure 4.3 to the cycle (z1, z2, . . . , zr). We obtain (z1)(z2) . . . (zr).

Step 2. If p ≥ 2, then apply Procedure 4.3 to the cycle (x1, x2, . . . , xp). We obtain (x1)(x2) . . . (xp−1)(u).

Step 3. If q ≥ 2, then apply Procedure 4.3 to the cycle (y1, y2, . . . , yq). We obtain (y1)(y2) . . . (yq−1)(v).

Furthermore, we impose an additional condition: If n does not appear in the cycle (z1, z2, . . . , zr),
then we choose (x1, x2, . . . , xp) to be the cycle that contains n in Step 2.

Proposition 4.11. Let w0 be a divisor of w of type II or III. We continue with the notations
introduced at the beginning of the section. A reduced decomposition of w0 is obtained as the product
(u, v)(u, v) followed by the reflections used in Procedure 4.10 in reverse order.

Proof. After application of Procedure 4.10, the monomial matrix w0 is transformed to the diagonal
matrix with diagonal coefficients equal to 1 everywhere apart from diagonal positions [u, u] and
[v, v], where the two coefficients are equal to −1. Multiplying this diagonal matrix by (u, v)(u, v),
it is transformed to the identity matrix. A decomposition of w0 is therefore the product of (u, v)
by (u, v) followed by the reflections used in Procedure 4.10 in reverse order.

The decomposition is reduced if its length is equal to n − 1. In the first step of Procedure
4.10, the number of reflections that have been used is equal to r − 1, while p − 1 and q − 1
reflections are used in each of Steps 2 and 3. In addition, we multiplied at the end by two
reflections: (u, v) and (u, v). Therefore, the number of reflections used in this decomposition is
(r − 1) + (p− 1) + (q − 1) + 2 = (r + p+ q)− 1 = n− 1.

We explain Procedure 4.10 and Proposition 4.11 in the following two examples. The first
example corresponds to type II and the second to type III.

Example 4.12. We continue with our running Example 4.1, so n = 5, m = 2 and w =
(2, 1)(5, 4, 3). Let w0 = w(1, 2) = (1)(2)(5, 4, 3), whose cycle decomposition is given in Equation 6.

We apply Procedure 4.10 to w0.
Step 1. The even cycle is (2) and corrsponds to r = 1 in Procedure 4.10. Step 1 does not apply

and we move to Step 2.
Step 2. The cycle containing a unique overlined entry and containing n = 5 is (5, 4, 3). Here,

we have p = 3. Then, this step applies, and we execute Procedure 4.3 to the cycle (5, 4, 3).
Therefore, we first multiply (5, 4, 3) by (4, 5) and then the result by (3, 4) from the right, and get
(5, 4, 3)(4, 5)(3, 4) = (5)(4)(3). We set w2 := w0(4, 5)(3, 4).

Step 3. The second cycle contains a unique overlined entry (1). In this case, we have q = 1.
Therefore, we do not modify w2 = (1)(2)(5)(4)(3) in Step 3.

By Proposition 4.11, we multiply w2 from the right by (1, 3)(1, 3) so that it is transformed to
the identity matrix. A reduced decomposition of w0 is then obtained by adding to (1, 3)(1, 3) the
reflections used in Procedure 4.10 in reverse order. Hence we obtain w0 = (1, 3)(1, 3)(3, 4)(4, 5).

The decomposition diagram associated to this reduced decomposition is a Coxeter diagram of
type D4. This is readily checked by Lemma 3.5. The diagram is then the following.

(3, 4) (4, 5)

(1, 3)

(1, 3)

The element w0 is therefore a Coxeter element in the subgroup generated by the reflections
(1, 3), (1, 3), (3, 4), (4, 5) that compose the reduced decomposition.
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Example 4.13. Let n = 6 and m = 2. Consider the proper quasi-Coxeter element w =
(2, 1)(6, 5, 4, 3) and w0 = w(3, 6). By Equation 11, it is w0 = (2, 1)(3)(6, 5, 4).

We apply now Procedure 4.10. The cycle (3) contains only one element. So, we move to Step 2.
Step 2. We apply Procedure 4.3 to the cycle (6, 5, 4) that contains n = 6. We obtain

(6, 5, 4)(5, 6)(4, 5) = (6)(5)(4). We set w2 := w0(5, 6)(4, 5).
Step 3. We apply Procedure 4.3 to the cycle (2, 1), and get w3 := w2(1, 2) = (2)(1)(3)(6)(5)(4).

By Proposition 4.11, a reduced decomposition of w0 is obtained by adding to (1, 4)(1, 4) the reflec-
tions used in Procedure 4.10 in reverse order. Therefore, we obtain w0 = (1, 4)(1, 4)(1, 2)(4, 5)(5, 6).

By Lemma 3.5, the decomposition diagram associated with this reduced decomposition is a
proper Carter diagram of type D5. The diagram is the following.

(1, 2)

(1, 4)

(1, 4)

(4, 5) (5, 6)

We will show later that the element w0 = (1, 4)(1, 4)(1, 2)(4, 5)(5, 6) is a proper quasi-Coxeter
element in the subgroup generated by the reflections (1, 4), (1, 4), (1, 2), (4, 5), (5, 6) that compose
the reduced decomposition.

Now, we characterise the diagrams ∆0 of the reduced decompositions, and whether the elements
w0 are Coxeter or proper quasi-Coxeter elements in the subgroup Pw0 generated by the reflections
that compose the reduced decomposition. In fact, Procedures 4.3 and 4.10 are tailored in order to
obtain a Coxeter diagram of type A or D, or a proper Carter diagram of type D. Observe first
the following. We continue to use the notation of x, y and z introduced at the beginning of this
section.

Lemma 4.14. The elements xy and z are parabolic quasi-Coxeter elements in W .

Proof. By Proposition 4.11, we have `T (z) + `T (w0z
−1) = `T (w0) which yields z, xy � w0 � w.

Therefore z as well as xy are parabolic quasi-Coxeter elements in W , see Corollary 6.11 in [3].

Proposition 4.15. Let w0 be a divisor of w of type II or III. Let x = (x1, x2, . . . , xp), y =
(y1, y2, . . . , yq) and z = (z1, z2, . . . , zr) be as introduced before. Consider the reduced decomposition
of w0 as described in Procedure 4.10 and Proposition 4.11.

• If p and q are equal to 1, then the diagram of the reduced decomposition is the disjoint union
of a diagram of type Ar−1 and two nodes.

• If p = 1 and q = 2 (or q = 1 and p = 2), then the diagram of the reduced decomposition is a
disjoint union of a type A3 and type Ar−1 diagrams.

• If p = 1 and q > 2 (or q = 1 and p > 2), then the diagram of the reduced decomposition is a
disjoint union of a Coxeter diagram of type Dq+1 and a Coxeter diagram of type Ar−1 (or a
disjoint union of diagrams of types Dp+1 and Ar−1, respectively).

In all these cases, the element w0 is a Coxeter element in Pw0
and therefore a parabolic Coxeter

element in W .

Proof. By Lemma 4.14, xy as well as z are parabolic quasi-Coxeter elements in W . Here we prove
that xy and z are Coxeter elements in Pxy and Pz, respectively.

By Proposition 4.11 and Lemma 3.10 the cycle z is a Coxeter element of type Ar−1 in Pz. As
xy and z are disjoint cycles, the two elements commute.
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If p = q = 1, then w0 equals (u, v)(u, v)z. As (u, v) and (u, v) commute, the first bullet of the
proposition follows.

If p = 1 and q ≥ 2, then it is straightforward to check that the decomposition diagram of the
reduced decomposition of xy given in Proposition 4.11 is a Coxeter diagram of type Dq+1. Thus,
by Lemma 3.10 xy is a Coxeter element of type Dq+1 in Pxy. This yields the other two bullets, as
A3 = D3.

Proposition 4.16. Suppose p, q ≥ 2. Then the decomposition diagram of w0 is a disjoint union
of a proper Carter diagram of type Dp+q and a Coxeter diagram of type Ar−1. Further

• the element z′ := xy is a proper quasi-Coxeter element of type Dp+q in Pz′ ,

• the decomposition of z′ is related to its Carter diagram as described in Proposition 3.8,

• the element z is a Coxeter element of type Ar−1 in Pz .

In particular, w0 is a proper parabolic quasi-Coxeter element in W .

Proof. Since xy and z commute, we can apply Proposition 4.5 to z, and obtain the assertion for z,
as well as Procedure 4.10 along with Proposition 4.11 to xy. The latter yields the decomposition

xy = (u, v)(u, v)(v, yq−1)(yq−1, yq−2) . . . (y2, y1)(v, xp−1)(xp−1, xp−2) . . . (x2, x1),

whose decomposition diagram is the Carter diagram ∆q−1,n with p + q vertices. In particular
the decomposition diagram is connected, which yields that Pxy is either of type Ap+q or of type
Dp+q. By [12, Theorem A], ∆q−1,n is not a Carter diagram in a group of type Ap+q (as in the
latter type Carter diagrams contain no cycles). Therefore Pxy is of type Dp+q. All the parabolic
subgroups of type Dm, m ≥ 4, are conjugate in W (every parabolic subgroup is conjugate to a
standard parabolic subgroup, and there is just one standard parabolic subgroup, which is of type
D4), and all the Coxeter elements in a finite Coxeter group are conjugate. As xy has a different
cycle-type than the elements appearing in Proposition 4.15, it is not a Coxeter element in Pxy.
Thus, in this case xy is a proper quasi-Coxeter element in Pxy. Therefore, w0 is a proper parabolic
quasi-Coxeter element in W .

Example 4.17. Consider Equation 11 for m+ 1 ≤ i < j ≤ n and n large enough. We have that

w(i, n) = (m,m− 1, . . . , 1)(i, i− 1, . . . ,m+ 1)(n, n− 1, . . . , i+ 1).

By Proposition 4.10, a reduced decomposition of w(i, n) is

w(i, n) = (1, i+ 1)(1, i+ 1)s2s3 . . . smsi+2 . . . sn−1snsm+2 . . . si−1si.

Its decomposition diagram is described in Figure 2.

sm sm−1 s2

(1, i+ 1)

(1, i+ 1)

si+2 sn−1 sn

sm+2 si−1 si

Figure 2: Decomposition diagram in the situation of Equation 11.
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5 Decomposition of the reflections and their lifts

5.1 Interval groups and the claimed presentation
Let w be a quasi-Coxeter element in W of type Dn. Consider the interval [1, w] of divisors of w for
the absolute order � given in Definition 2.7 and the interval group G([1, w]) with its presentation
given in Definition 2.9.

We denote by bold symbols the elements in G([1, w]). The copy [1, w] of the interval [1, w]
contains copies of the reflections (i, j) and (i, j) for 1 ≤ i < j ≤ n, which we denote by (i, j) and
(i, j).

By Proposition 2.10, the group G([1, w]) is described by a presentation on the set

T = {(i, j), (i, j) : 1 ≤ i 6= j ≤ n},

with relations the dual braid relations. These relations are described as uv = vu if uv � w and
uv = vu, and as uv = vt = tu (t ∈ T ) if uv = vt � w for u, v ∈ T and u 6= v.

It is convenient to reformulate our main result, Theorem A, as the following Theorem, which we
shall prove in Section 6. Again we choose 1 ≤ m ≤ bn2 c, and consider the quasi-Coxeter element
w = (m,m − 1, . . . , 1)(n, n − 1, . . . ,m+ 1). Let S = {s1, . . . , sn} be the Carter generating set,
where si+1 = (i, i + 1) for 1 ≤ i ≤ n − 1 and s1 = (m,m+ 1). Let S = {s1, . . . , sn} ⊂ T be the
set in G([1, w]) in correspondence with S.

Theorem 5.1. The interval group G([1, w]) is isomorphic to the group G defined by the presenta-
tion with generating set S and relations described by the diagram ∆ in Figure 3 together with the
twisted cycle commutator relator

tc(s1, sm, sm+1, sm+2) = [s1, s
−1
m sm+1sm+2s

−1
m+1sm] = [s1, s

s−1
m+1sm

m+2 ],

associated with the cycle (s1, sm, sm+1, sm+2), that is,

G = A(∆)/〈〈tc(s1, sm, sm+1, sm+2) = [s1, s
−1
m sm+1sm+2s

−1
m+1sm] = [s1, s

s−1
m+1sm

m+2 ]〉〉.

Note that we will always describe the TC relator by a curved arrow inside the corresponding
cycle; see Figure 3.

s2 s3 sm−1

sm

sm+1

s1

sm+2

sm+3 sn−1 sn
�

Figure 3: The diagram presentation for the claimed presentation.

Proposition 5.2. Adding the quadratic relations to the presentation of G, we obtain a group that
is isomorphic to the Coxeter group W of type Dn.

Proof. In fact, the twisted cycle commutator relator becomes the cycle commutator relator [s1, s
sm+1sm

m+2 ] =
(s1smsm+1sm+2sm+1sm)2 introduced in Proposition 3.11. The result follows immediately from
the same proposition.

The proof of the next lemma is easy and left as an exercise.
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Lemma 5.3. The twisted cycle commutator relation [s1, s
s−1
m+1sm

m+2 ] = 1 can be written as a relation
between positive words as follows:

sms1sm+1sm+2smsm+1s1 = s1sm+1sm+2smsm+1s1sm,

meaning that sm commutes with s1sm+1sm+2smsm+1s1.

Remark 5.4. Consider the cycle (s1, sm, sm+1, sm+2) of the presentation of G. Consider the

twisted cycle commutator relators [s1, s
s−1
m+1sm

m+2 ], [sm, s
s−1
m+2

1 sm+1], [sm+1, s
s−1
1

m+2sm], and [sm+2, s
s−1
m

1 sm+1].
It is an easy exercise to check that if one of the twisted cycle commutator relators holds, then the
three other relators also hold.

Remark 5.5. Suppose that m = 1, i.e. w is a Coxeter element. In this case, the group G is the
Artin group of type Dn. Our proof of Theorem 5.1 establishes a new proof of a result of Bessis
showing that the interval group related to a Coxeter element in type Dn is isomorphic to the related
Artin group (see [6]).

We end the section by showing that the poset ([1, w],�) of a proper quasi-Coxeter element w
in type Dn is not a lattice. Hence the monoid defined by the same presentation as G([1, w]) viewed
as a monoid presentation fails to be a Garside monoid. Note that this fact does not mean that the
group G([1, w]) does not admit Garside structures.

Proposition 5.6. Let w be a proper quasi-Coxeter element in type Dn for n ≥ 4. The poset
([1, w],�) is not a lattice.

Proof. We check using GAP that for w a proper quasi-Coxeter element in type D4, there exists a
bowtie in ([1, w],�), hence it is not a lattice, see Proposition 1.10 in [24]. (The bowtie consists of
two reflections t1, t2 that commute in W such that t1t2 6∈ [1, w].)

Let w be a proper quasi-Coxeter element in type Dn for n > 4. Then it contains a subword
w′ of w whose Carter diagram is a 4-cycle. According to Theorem 2.1 in [17], all elements below
w′ in ([1, w],�) are in ([1, w′],�) read as a poset in the rank 4 parabolic subgroup Pw′ . Therefore
there is still the bowtie coming from the case n = 4 inside ([1, w],�) for n > 4.

5.2 Decomposition of the reflections on Carter generators
The purpose of this section is to find decompositions of the elements of T in terms of Carter
generators. This corresponds to Step 3 in the strategy of our proof as explained in Section 2.5.

We recall that we fix an integer m with 1 ≤ m ≤ bn/2c. We recall from Proposition 3.11
that a presentation of the Coxeter group W is defined on Carter generators s1, s2, . . . , sn together
with the relations described in the diagram presentation illustrated in Figure 1 together with the
quadratic relations.

Recall that the reflections s2, s3, . . . , sn are the transpositions (1, 2), (2, 3), . . . , (n − 1, n),
respectively, while the reflection s1 is the marked permutation (m,m+ 1). In the next proposition,
we decompose each reflection (i, j) and (i, j) over the Carter generators s1, s2, . . . , sn.

Proposition 5.7. (1) Let t = (i, j) with 1 ≤ i < j ≤ n. We have

t = s
sj−1sj−2...si+1

j . (12)

(2) Let t = (i, j) with 1 ≤ i ≤ m and m+ 1 ≤ j ≤ n. We have

(i, j) = s
sm+2sm+3...sjsmsm−1...si+1

1 . (13)

(3) Let t = (i, j) with 1 ≤ i < j ≤ m. We have

(i, j) = s
smsm−1...si+1sm+1sm...sj+1

1 . (14)
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(4) Let t = (i, j) with m+ 1 ≤ i < j ≤ n. We have

(i, j) = s
sm+2sm+3...sjsm+1sm+2...si
1 . (15)

Proof. The equations are easily obtained by direct calculation using the definition of the reflections
as marked permutations.

Remark 5.8. (1) In Equation 12, if j = i+ 1, we get t = (i, i+ 1) = si+1 (1 ≤ i ≤ n−1) visible
among Carter generators.

(2) In Equation 13, if i = m and j = m+ 1, we have t = s1 visible among Carter generators.

(3) The decompositions of (i, j) and (i, j) obtained in Equations 12– 15 are reduced decomposi-
tions over Carter generators. This result is not straightforward, but can be established using
techniques from [25]. Since this fact is not used in the proof of our main result, we will not
include its proof in this paper.

5.3 Lifting the reflections
The purpose of this section is to write each element (i, j) and (i, j) (1 ≤ i < j ≤ n) of G([1, w])
in terms of the generators s1, s2, . . . , sn that appear in the presentation of Theorem 5.1. This
corresponds to Step 3 in the strategy of our proof as explained in Section 2.5. Recall that (i, j) and
(i, j) are the copies of the reflections (i, j) and (i, j) within T , and s1, s2, . . . , sn are the copies of
the reflections s1 = (m,m+ 1), s2, s3, . . . , sn. We employ the decompositions of the reflections in
term of s1, s2, . . . , sn that we described in Equations 12 to 15 of Section 5.2. These decompositions
serve as a guide. In fact, we walk through the reflections in the exponent expressions of these
equations and derive our result. The explicitness of these equations enables us to describe in a
simple way the main result of this section, Proposition 5.10.

As a preamble, let us illustrate our ideas in the following example.

Example 5.9. Let W be the Coxeter group of type D4. Let m = 2 and let w = (2, 1)(4, 3) be a
proper quasi-Coxeter element of length 4 by Proposition 3.6. Consider the reflection (1, 4) ∈ T . It
is equal to ss3s24 by Equation 12. We decompose the copy (1, 4) ∈ T in terms of the generators s1,
s2, s3, . . . , sn.

• Since w′ = s2(1, 4)w = (1, 3, 4)(2) is of length 2 by Proposition 3.6, then we have (1, 4)s2 � w.
So we get (1, 4)s2 = s2(1, 4)

s2 = s2s
s3
4 = s2(2, 4) � w. Hence this gives (1, 4) = s2(2, 4)s

−1
2 .

• Similarly, for ss34 = (2, 4), we have that (2, 4)s3 = s3(3, 4) � w also by a direct application of
Proposition 3.6. Hence we get (2, 4) = s3(3, 4)s

−1
3 = s3s4s

−1
3 .

It follows that (1, 4) = s2(2, 4)s
−1
2 = s2s3s4s

−1
3 s−12 = s

s−1
3 s−1

2
4 .

Proposition 5.10. The copies of the reflections to the interval group G([1, w]) decompose on the
generators s1, s2, . . . , sn as follows.

(i, j) = s
s−1
j−1s

−1
j−2...s

−1
i+1

j , for 1 ≤ i < j ≤ n, (16)

(i, j) = s
sm+2sm+3...sjs

−1
m s−1

m−1...s
−1
i+1

1 , for 1 ≤ i ≤ m,m+ 1 ≤ j ≤ n. (17)

(i, j) = s
s−1
m s−1

m−1...s
−1
i+1sm+1s

−1
m s−1

m−1...s
−1
j+1

1 , for 1 ≤ i < j ≤ m, (18)

(i, j) = s
sm+2sm+3...sjs

−1
m+1sm+2...si

1 , for m+ 1 ≤ i < j ≤ n, (19)
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Proof. We employ the decompositions of the reflections (i, j) and (̄i, j̄) for 1 ≤ i < j ≤ n in term
of Carter generators s1, s2, . . . , sn that we described in Equations 12 to 15 in Section 5.2. Each of
these equations is of the form

t = yx1x2...xp ,

for p ≥ 1. For k from p down to 1, we proceed as follows. Let tk = yx1x2...xk . We have that tp = t.

• If tkxk � w, then we have tkxk = xkt
xk

k = xktk−1 � w. It follows that tkxk = xktk−1,
which implies that tk = xktk−1x

−1
k .

• If xktk � w, then we have xktk = txk

k xk = tk−1xk � w. It follows that xktk = tk−1xk,
which gives tk = x−1

k tk−1xk.

It turns out that for all k from p down to 1, we are in one of the previous two situations in all
Equations 12 to 15. It follows that t = yx

ε1
1 x

ε2
2 ...x

εp
p , where εk = −1 or 1 (1 ≤ k ≤ p), depending

whether we apply the first or the second situation, respectively.
Let us explain this for the copy (i, j) of (i, j) for 1 ≤ i < j ≤ m. The same argument applies

for the other equations. For 1 ≤ i < j ≤ m, by Equation 14, we have that

(i, j) = s
smsm−1...si+1sm+1sm...sj+1

1 .

Applying Proposition 3.6, we have that (i, j)sj+1 � w, so (i, j)sj+1 = sj+1(i, j)
sj+1

= sj+1(i, j + 1) �
w. Then we get

(i, j) = sj+1(i, j + 1)s−1j+1.

Next, applying Proposition 3.6, we have (i, j + 1)sj+2 � w, meaning that (i, j + 1)sj+2 =
sj+2(i, j + 1)

sj+2
= sj+2(i, j + 2) � w. So, we get

(i, j + 1) = sj+2(i, j + 2)s−1j+2.

Hence we have
(i, j) = (i, j + 2)

s−1
j+2s

−1
j+1 .

And so on, we apply the same computations for sj+2, sj+3, . . . , sm appearing in the exponent part
of Equation 14, and get

(i, j) = (i,m)
s−1
m ...s−1

j+2s
−1
j+1 .

Next, applying Proposition 3.6, we have sm+1(i,m) � w (and not (i,m)sm+1 � w), meaning
that sm+1(i,m) = (i,m+ 1)sm+1 � w. Hence we get

(i,m) = s−1m+1(i,m+ 1)sm+1.

Then we obtain
(i, j) = (i,m+ 1)

sm+1s
−1
m ...s−1

j+2s
−1
j+1 .

Similarly, we have (i,m+ 1)si+1 � w, so (i,m+ 1)si+1 = si+1(i+ 1,m+ 1) � w. Thus, we
get

(i,m+ 1) = si+1(i+ 1,m+ 1)s−1i+1.

And so on, we apply the same calculation for si+1, si+2, . . . , sm until we obtain the desired
equation:

For 1 ≤ i < j ≤ m, (i, j) = s
s−1
m s−1

m−1...s
−1
i+1sm+1s

−1
m s−1

m−1...s
−1
j+1

1 .

We provide an example where the decomposition that we obtain will appear in the twisted
cycle commutator relators in the next section.
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Example 5.11. Let W be a Coxeter group of type D4. Let m = 2 and w = (2, 1)(4, 3) be a proper
quasi-Coxeter element. Consider the reflection t = (1, 2) of type II. By Equation 14, we have that
(1, 2) = ss2s31 .

• Since w′ = (1, 2)s3w = (2)(4, 3, 1) is of length 2 by Proposition 3.6, then we have that
s3(1, 2) � w. Note that we are in the situation of the second bullet in the proof of Proposition
5.10. Hence we get s3(1, 2) = (1, 2)s3s3 = ss21 s3 = (1, 3)s3 � w. Therefore, we obtain
s3(1, 2) = (1, 3)s3, which gives (1, 2) = s−13 (1, 3)s3.

• Next, we consider (1, 3) = ss21 . We have that w′ = s2(1, 3)w = (1)(4, 3, 2) is of length 2.
Thus, we have (1, 3)s2 � w, which says that (1, 3)s2 = s2(1, 3)

s2 = s2s1 � w. We obtain
(1, 3)s2 = s2s1, which is (1, 3) = s2s1s

−1
2 .

Therefore, we obtain

(1, 2) = s−1
3 (1, 3)s3 = s−1

3 s2s1s
−1
2 s3 = s

s
−1
2 s3

1 .

We finish this section by the next lemma which is used to show that f is a homomorphism (see
Step 1 of the strategy of the proof in Section 2.5). The proof of the lemma uses Proposition 5.10.

Lemma 5.12. The braid relators b(si, sj) and the twisted cycle commutator relator tc(sm+2, sm+1, sm, s1)
specified by the presentation given for G hold in G([1, w]).

Proof. Consider case (1) of Proposition 3.12. It implies a commuting braid relation, which lifts to
sisj = sjsi for |i− j| > 1.

Consider case (2) of Proposition 3.12. It implies a dual braid relation sisi+1 = si+1t, for
2 ≤ i ≤ n − 1, where t = (i− 1, i+ 1). Applying Equation (16) of Proposition 5.10, we have

that t is equal to ss
−1
i

i+1. The dual braid relation becomes sisi+1 = si+1s
s
−1
i

i+1, that is sisi+1si =
si+1sisi+1.

Case (3) of Proposition 3.12 is treated similarly. We will give details on case (4) where the TC
relator will appear.

Consider then Case (4) of Proposition 3.12. It implies that tsm+2 � w with tsm+2 of order
2. So we get a commuting dual braid relation. Now, we have to lift the relation to prove that it
lives in G([1, w]). Applying Equation (18) of Proposition 5.10 for i = m − 1 and j = m, we have

that t is equal to ss
−1
m sm+1

1 . Then the dual braid relation becomes [sm+2, s
s−1
m sm+1

1 ] = 1, which
is exactly the TC relator (see Remark 5.4).

6 The proof of the main theorem

6.1 The case n = 4

Let W be the Coxeter group of type D4. By Proposition 3.11, W has a presentation on the
four generators s2 = (1, 2), s3 = (2, 3), s4 = (3, 4), and s1 = (2, 3). We have m = 2 and the
corresponding proper quasi-Coxeter element is w = (2, 1)(4, 3).

We prove that the interval group G([1, w]) is isomorphic to the group G with four generators
s1, s2, s3, s4, corresponding to reflections s1, s2, s3, s4, with relations described by the correspond-
ing Carter diagram, along with the twisted cycle commutator relator

tc(s1, s2, s3, s4) = [s1, s
s−1
3 s2

4 ].

We consider a reflection t in T to be of type I, II, or III according to the type of the maximal
divisor w0 = wt of w, and assign the same types to the elements of T . We collect the information
we need in Tables 4 and 5.

Table 4 provides decompositions for the elements of T by applying Proposition 5.10.
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Number Decomposition of t (type I)

1. (1, 3) = s
s
−1
2

3

2. (1, 4) = s
s
−1
3 s

−1
2

4

3. (2, 3) = s3

4. (2, 4) = s
s
−1
3

4

5. (1, 3) = s
s
−1
2

1

6. (1, 4) = s
s4s

−1
2

1

7. (2, 3) = s1
8. (2, 4) = ss4

3

Decomposition of t (type II)
9. (1, 2) = s2

10. (1, 2) = s
s
−1
2 s3

1

Decomposition of t (type III)
11. (3, 4) = s4

12. (3, 4) = s
s4s

−1
3

1

Table 4: Decompositions of t in the case n = 4.

The second column of Table 5 contains the 12 divisors (the w0’s) of length 3 of the quasi-
Coxeter element w of types I, II, and III, where we separate each type by two lines. We follow
Section 4.1 in order to produce them. We also follow Sections 4.2 and 4.3 to produce reduced
decompositions of these elements and their decomposition diagrams (the ∆0’s). The last column
produces a Coxeter-like diagram related to ∆0 that we call the lift of ∆0. It encodes the relations
between the lift to the interval group of two reflections that appear in the reduced decomposition
of each w0.

Proposition 6.1. All the relations that describe the type A3 diagrams on the last column of Table 5
are consequences of the relations described by the diagram presentation over s1, s2, s3, s4 illustrated
in Figure 3.

We prove the proposition by showing using kbmag [23] within GAP [18] that the relations ap-
pearing in the last column of Table 5 are consequences of the relations between s1, s2, s3, s4. For
example, let us consider a diagram where some twisted cycle commutator relators appear. Con-
sider the element Number 6 of the table. We have to show that (1, 2) commutes with s4, where

(1, 2) = s
s
−1
2 s3

1 . The commuting relation between (1, 2) and s4 is precisely the twisted cycle

commutator relator [s4, s
s
−1
2 s3

1 ] that is a consequence of the relations of the claimed presentation.
Now we can show that G([1, w]) is isomorphic to G, that is Theorem 5.1 in the case where

n = 4.

Proposition 6.2. In the case n = 4, the groups G and G([1, w]) are isomorphic.

Proof. By transitivity of the Hurwitz action on the reduced decompositions over T of w, the group
G([1, w]) is generated by a copy

T = {(i, j), (i, j) : 1 ≤ i < j ≤ 4}

of the set of reflections in T , and subject to the dual braid relations tt′ = t′t′′ that correspond to
relations tt′ = t′t′′ in W where tt′ = t′t′′ � w.

Consider the map f : G −→ G([1, w]) : si 7−→ si. By Lemma 5.12, the relations of the
presentation of G hold in G([1, w]).
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Number Maximal divisor w0 Reduced Decomposition Lift of ∆0

1. w(1, 3) = (4, 1, 2, 3) (2, 3)(1, 2)(1, 4)
(1, 4)(1, 2)(2, 3)

2. w(1, 4) = (4, 3, 1, 2) (1, 2)(1, 3)(3, 4)
(3, 4)(1, 3)(1, 2)

3. w(2, 3) = (4, 2, 1, 3) (1, 3)(1, 2)(2, 4)
(1, 3) (1, 2) (2, 4)

4. w(2, 4) = (4, 3, 2, 1) (1, 2)(2, 3)(3, 4)
(1, 2) (2, 3) (3, 4)

5. w(1, 3) = (4, 1, 2, 3) (2, 3)(1, 2)(1, 4)
(2, 3) (1, 2) (1, 4)

6. w(1, 4) = (4, 3, 1, 2) (1, 2)(1, 3)(3, 4)
(1, 2) (1, 3) (3, 4)

7. w(2, 3) = (4, 2, 1, 3) (1, 3)(1, 2)(2, 4)
(1, 3) (1, 2) (2, 4)

8. w(2, 4) = (4, 3, 2, 1) (1, 2)(2, 3)(3, 4)
(1, 2) (2, 3) (3, 4)

9. w(1, 2) = (1)(2)(4, 3) (1, 3)(1, 3)(3, 4)
(1, 3) (3, 4) (1, 3)

10. w(1, 2) = (1)(2)(4, 3) (2, 3)(2, 3)(3, 4)
(2, 3) (3, 4) (2, 3)

11. w(3, 4) = (2, 1)(3)(4) (1, 3)(1, 3)(1, 2)
(1, 3) (1, 2) (1, 3)

12. w(3, 4) = (2, 1)(3)(4) (1, 4)(1, 4)(1, 2)
(1, 4) (1, 2) (1, 4)

Table 5: Reduced decompositions and diagram lifts.

Now consider the map g : G([1, w]) −→ G that maps each generator t of G([1, w]) to the
expression for it over the generators s1, s2, s3, and s4 that is given by Proposition 5.10. Let tt′,
t′t′′ be the two sides of a dual braid relation. Then there exists w0 � w of length 3 such that
tt′ = t′t′′ � w0. By [6], we know that the group G([1, w0]) is isomorphic to the group defined by a
presentation that we have described by Coxeter diagrams of type A3 in the last column of Table 5.
Hence we obtain that the dual braid relation tt′ = t′t′′ is a consequence of the relations of the
corresponding diagram in the table.

In addition, we have already shown in Proposition 6.1 that the relations of these diagrams
are consequences of the relations we have associated with the diagram ∆. Hence the map g is a
homomorphism.

Clearly, the composition f ◦g is equal to idG([1,w]) and g ◦f equal to idG. Therefore, the groups
G and G([1, w]) are isomorphic.

6.2 The case n = 5

Let W be the Coxeter group of type D5. It has a presentation on the five generators s2 = (1, 2),
s3 = (2, 3), s4 = (3, 4), s5 = (4, 5), and s1 = (2, 3) (see Proposition 3.11). Here m is equal to 2
and the corresponding proper quasi-Coxeter element is w = (2, 1)(5, 4, 3).

We prove that the interval group G([1, w]) is isomorphic to the group G with five generators
s1, s2, s3, s4, and s5 corresponding to s1, s2, s3, s4, s5, with relations described by the diagram of
Figure 3, where the curved arrow describes the twisted cycle commutator relator: tc(s1, s2, s3, s4) =

[s1, s
s
−1
3 s2

4 ].
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Similarly to Table 4, we provide decompositions of t by applying Proposition 5.10 and we divide
them according to the three types I, II, III of elements in T .

Number Decomposition of t (type I)

1. (1, 3) = s
s
−1
2

3

2. (1, 4) = s
s
−1
3 s

−1
2

4

3. (1, 5) = s
s
−1
4 s

−1
3 s

−1
2

5

4. (2, 3) = s3

5. (2, 4) = s
s
−1
3

4

6. (2, 5) = s
s
−1
4 s

−1
3

5

7. (1, 3) = s
s
−1
2

1

8. (1, 4) = s
s4s

−1
2

1

9. (1, 5) = s
s4s5s

−1
2

1

10. (2, 3) = s1
11. (2, 4) = ss4

1

12. (2, 5) = ss4s5
1

Decomposition of t (type II)
13. (1, 2) = s2

14. (1, 2) = s
s
−1
2 s3

1

Decomposition of t (type III)
15. (3, 4) = s4

16. (3, 5) = s
s
−1
4

5

17. (4, 5) = s5

18. (3, 4) = s
s4s

−1
3

1

19. (3, 5) = s
s4s5s

−1
3

1

20. (4, 5) = s
s4s5s

−1
3 s4

1

Table 6: Decompositions of t in the case n = 5.

Table 7 contains the same information as Table 5 in the case n = 4. We have 20 divisors of w of
length 4 (the w0’s) obtained by multiplying w from the right by (i, j) and (i, j) for 1 ≤ i < j ≤ 5.
These divisors belong to types I, II, and III. We separate each type by 2 lines in the table. The
third column produces the reduced decomposition from Sections 4.2 and 4.3. The last column
describes the lift of the diagram ∆0 that encodes the relations between the lift to the interval
group of two reflections that appear in the reduced decomposition of each w0.

We showed, using kbmag within GAP that all the relations described in the diagrams of the last
column are consequences of the relations of the claimed presentation (see Theorem 5.1). The only
cases that correspond to proper quasi-Coxeter elements are numbers 15, 17, and 19 of Table 7.
Let w0 be one of these elements. We know from Proposition 6.2 that G([1, w0]) is isomorphic
to the group defined by a presentation associated to the square diagram with the twisted cycle
commutator relator. We conclude with the statement of the result for n = 5, whose proof we omit
since it is similar to the proof of Proposition 6.2.

Proposition 6.3. In the case n = 5, the groups G and G([1, w]) are isomorphic.
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Table 7: Reduced decompositions and diagram lifts.

Maximal divisor w0 Reduced decomposition Lift of ∆0

1. w(1, 3) = (5, 4, 1, 2, 3) (2, 3)(1, 2)(1, 4)(4, 5)
(2, 3) (1, 2) (1, 4) (4, 5)

2. w(1, 4) = (5, 1, 2, 4, 3) (3, 4)(2, 4)(1, 2)(1, 5)
(3, 4) (2, 4) (1, 2) (1, 5)

3. w(1, 5) = (5, 4, 3, 1, 2) (1, 2)(1, 3)(3, 4)(4, 5)
(1, 2) (1, 3) (3, 4) (4, 5)

4. w(2, 3) = (5, 4, 2, 1, 3) (1, 3)(1, 2)(2, 4)(4, 5)
(1, 3) (1, 2) (2, 4) (4, 5)

5. w(2, 4) = (5, 2, 1, 4, 3) (3, 4)(1, 4)(1, 2)(2, 5)
(3, 4) (1, 4) (1, 2) (2, 5)

6. w(2, 5) = (5, 4, 3, 2, 1) (1, 2)(2, 3)(3, 4)(4, 5)
(1, 2) (2, 3) (3, 4) (4, 5)

7. w(1, 3) = (5, 4, 1, 2, 3) (2, 3)(1, 2)(1, 4)(4, 5)
(2, 3) (1, 2) (1, 4) (4, 5)

8. w(1, 4) = (5, 1, 2, 4, 3) (3, 4)(2, 4)(1, 2)(1, 5)
(3, 4) (2, 4) (1, 2) (1, 5)

9. w(1, 5) = (5, 4, 3, 1, 2) (1, 2)(1, 3)(3, 4)(4, 5)
(1, 2) (1, 3) (3, 4) (4, 5)

10. w(2, 3) = (5, 4, 2, 1, 3) (1, 3)(1, 2)(2, 4)(4, 5)
(1, 3) (1, 2) (2, 4) (4, 5)

11. w(2, 4) = (5, 2, 1, 4, 3) (3, 4)(1, 4)(1, 2)(2, 5)
(3, 4) (1, 4) (1, 2) (2, 5)

12. w(2, 5) = (5, 4, 3, 2, 1) (1, 2)(2, 3)(3, 4)(4, 5)
(1, 2) (2, 3) (3, 4) (4, 5)

13. w(1, 2) = (1)(2)(5, 4, 3) (1, 3)(1, 3)(3, 4)(4, 5)

(3, 4) (4, 5)

(1, 3)

(1, 3)

14. w(1, 2) = (1)(1)(5, 4, 3) (2, 3)(2, 3)(3, 4)(4, 5)

(3, 4) (4, 5)

(2, 3)

(2, 3)

15. w(3, 4) = (2, 1)(5, 3)(4) (1, 3)(1, 3)(1, 2)(3, 5) (1, 2)

(1, 3)

(1, 3)

(3, 5)�

16. w(3, 5) = (2, 1)(3)(5, 4) (1, 3)(1, 3)(1, 2)(4, 5)
(1, 3) (1, 2) (1, 3) (4, 5)

17. w(4, 5) = (2, 1)(4, 3)(5) (1, 3)(1, 3)(1, 2)(3, 4) (1, 2)

(1, 3)

(1, 3)

(3, 4)�

18. w(3, 4) = (2, 1)(5, 3)(4) (1, 4)(1, 4)(1, 2)(3, 5)
(1, 4) (1, 2) (1, 4) (3, 5)

19. w(3, 5) = (2, 1)(3)(5, 4) (1, 4)(1, 4)(1, 2)(4, 5) (1, 2)

(1, 4)

(1, 4)

(4, 5)�

20. w(4, 5) = (2, 1)(4, 3)(5) (1, 5)(1, 5)(1, 2)(3, 4)
(1, 5) (1, 2) (1, 5) (3, 4)
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6.3 Lifting the reduced decompositions
This section establishes Step 4 in our strategy that we have described in Section 2.5.

Let w be the quasi-Coxeter element (m,m − 1, . . . , 2, 1̄)(n, n − 1, . . . ,m+ 1) in type Dn. We
define g to be the map from G([1, w]) to G that sends ti to its decomposition over the generating
set S of G given by Proposition 5.10. In this section, we prove the following.

Proposition 6.4. Let w0 be a divisor of length n−1 of the quasi-Coxeter element w, let t1t2 . . . tn−1
be the reduced decomposition of w0 obtained using the results of Sections 4.2, 4.3, and let ∆0 be the
associated decomposition diagram (described in Propositions 4.5, 4.15 and 4.16). Then for each
of the relators b(ti, tj) and tc(ti, tj , tk, tl) between the reflections ti that is implied by the diagram
∆0, the corresponding relators b(g(ti), g(tj)) or tc(g(ti), g(tj), g(tk), g(tl)) can be derived from the
relations of the presentation of G given in Theorem 5.1.

Proof. The proof is by induction on n. The proposition is proved for n = 4 and n = 5 in Sections 6.1
and 6.2 within the proofs of Propositions 6.2 and 6.3.

So now let n ≥ 6. Set w′ := (m,m− 1, . . . , 2, 1)(n− 1, n− 2, . . . ,m+ 1). Then

w′ = s2s3 . . . sms1sm+1sm+2sm+3sm+4 . . . sn−1

with diagram ∆m,n−1 by Proposition 3.8, and we have P := Pw′ = 〈s1, . . . , sn−1〉. Moreover, the
braid relators in the generators g(si) and g(sj) as well as the twisted cycle relator for w′, which
we will call the w′-relators, are a subset of the G-relators.

There are 11 different possibilities for w0 that are described in Section 4.1 by Equations 1–11.
For the 11-th equation we need to deal separately with the cases n > i+ 1 and n = i+ 1.

So suppose first that w0 is either as in one of Equations 1 − 10 or as in Equation 11 with
n > i+ 1. In any of these cases, in the cycle decomposition of w0 the number n is only overlined in
a cycle that has an even number of overlined entries. This implies that at most one of the reflections
t1, . . . , tn−1 is not contained in P and that this reflection corresponds to an end node of ∆0 and
is without loss of generality tn−1. Thus we have t1, . . . , tn−2 ∈ P . Set w1 := w0tn−1 = t1 · · · tn−2.
Then we get by Lemma 5.3 in [9] that w1 is a divisor of length `T (w1) = n− 2 of w′. Further w′
is of length n − 1. By induction, the relators b(g(ti), g(tj)) and tc(g(ti), g(tj), g(tk), g(tl)) are a
consequence of the w′-relators, which are G-relators.

Hence it only remains to show that b(g(ti), g(tj)) and tc(g(ti), g(tj), g(tk), g(tl)) are a con-
sequence of the G-relators under the assumption that i = n − 1. This is done in the appendix
in Lemmas A.1, . . . , A.6. Thereby notice, as tn−1 corresponds to an end node of ∆0, it is not
contained in a cycle of ∆0 and the relator tc(tn−1, tj , tk, tl) does not appear.

Now suppose that w0 is as in Equation 11 and that n is overlined. Then ∆0 is the union of three
strings, one of length 1. The reflections ti are in P beside that one corresponding to the single
vertex and one of the other 4 end nodes of the strings of ∆0. By induction it remains to derive
the braid relators for the two just mentioned reflections from the G-relators, which is treated in
Lemma A.6.

In Appendix A we establish the proof of the lemmas we refer to in the proof of Proposition 6.4.

6.4 The proof for n > 5

We are in position to prove Theorem 5.1. The details of the proof are discussed and commented
in our strategy developed in Section 2.5.

Consider the map f : G −→ G([1, w]) : si 7−→ si. By Proposition 3.12 and Lemma 5.12, the
relations of the presentation of G hold in G([1, w]). This is Step 1 in the strategy of the proof.

Consider the map g : G([1, w]) −→ G that maps each generator t of the generating set T of
G([1, w]) to its decomposition on the generators s1, s2, . . . , sn that we described in Equations
16 to 19 within Proposition 5.10. This is Step 3 in the strategy of the proof that was established
within Section 5.
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We want to show that g is a homomorphism. Consider a dual braid relation of G([1, w]),
meaning a relation of the form tt′ = t′t′′ for t, t′, t′′ ∈ T . It corresponds to the fact that tt′ =
t′t′′ � w. Then we have to prove that the relation g(t)g(t′) = g(t′)g(t′′) is a consequence of
the relations of the presentation of G. As ([1, w],�) is a graded poset in which all the maximal
flags have the same length, there are divisors w0 of length n − 1 of w such that tt′ � w0. By
Proposition 6.4, the braid relations and the twisted cycle commutator relator that correspond
to the reduced decomposition and the diagram ∆0 for w0 (produced in Sections 4.2 and 4.3)
are a consequence of the G-relations (see Step 4 of our strategy). By induction, the relation
g(t)g(t′) = g(t′)g(t′′) is a consequence of the braid relations and the twisted cycle commutator
relator related to the reduced decomposition in the g-image of the lift of Pw0 to G. Therefore, g
is a homomorphism.

Clearly, the composition f ◦ g is equal to idG([1,w]) and g ◦ f is equal to idG. Therefore, the
groups G and G([1, w]) are isomorphic.
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A Proof of the lemmas
In the calculations within the proofs of the next lemmas, we underline an expression being manip-
ulated for emphasis.

Lemma A.1. Suppose that w0 = w(i, j), with 1 ≤ i ≤ m, m + 1 ≤ j ≤ n, so that we
are in the situation of Equation 1. Let t1t2 . . . tn−1 be the reduced decomposition of w0 de-
scribed in Lemma 4.6. Then we can deduce from the relations of the presentation of G that
g(tn−1)g(tn−2)g(tn−1) = g(tn−2)g(tn−1)g(tn−2) and g(tn−1) commutes with each of the elements
g(tk) with k < n− 2.

Proof. We consider the seven different possible decompositions of w0 that are described in Lemma 4.6.
In each case we do not need to consider the relations between g(tn) and g(tk) if both elements are
within the set S.

(1) Where i 6= m and j 6= n−2, n−1, n, we need to check that the element g(sn) = g((n− 1, n))
commutes with each of g ((i+ 1, j)), g ((i, j + 1)), and g

(
(1,m)

)
.

By Proposition 5.10, we have that

g ((i+ 1, j)) = s
s−1
j−1s

−1
j−2...s

−1
i+2

j and g ((i, j + 1)) = s
s−1
j s−1

j−1...s
−1
i+1

j+1 .

It follows from the relations of the presentation of G that g (sn) commutes with both g ((i+ 1, j))
and g ((i, j + 1)).

We also have that g
(
(1,m)

)
= s

s−1
m s−1

m−1...s
−1
2 sm+1

1 . Then it also follows from the relations of
the presentation of G that g (sn) commutes with g

(
(1,m)

)
.

(2) Where i 6= m and j = n−2, we need to check that the element g (sn) = g ((n− 1, n)) com-
mutes with each of g ((i+ 1, n− 2)), g

(
(1,m)

)
, and that the relation g (sn) g ((i, n− 1)) g (sn) =

g ((i, n− 1)) g (sn) g ((i, n− 1)) holds.
We have already shown in item (1) of this proof that g (sn) commutes with g

(
(1,m)

)
.

We have that g ((i+ 1, n− 2)) = s
s−1
n−3s

−1
n−4...s

−1
i+2

n−2 . It follows directly from the relations of G
that g (sn) commutes with g ((i+ 1, n− 2)).

Now we prove that g (sn) g ((i, n− 1)) g (sn) = g ((i, n− 1)) g (sn) g ((i, n− 1)):
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g (sn) g ((i, n− 1)) g (sn) = si+1 . . . sn−3sn−2snsn−1sns
−1
n−2s

−1
n−3 . . . s

−1
i+1

= si+1 . . . sn−3sn−2sn−1snsn−1s
−1
n−2s

−1
n−3 . . . s

−1
i+1

= (si+1 . . . sn−3sn−2sn−1s
−1
n−2s

−1
n−3 . . . s

−1
i+1)

(si+1 . . . sn−3sn−2snsn−1s
−1
n−2s

−1
n−3 . . . s

−1
i+1)

= (si+1 . . . sn−3sn−2sn−1s
−1
n−2s

−1
n−3 . . . s

−1
i+1)

sn(si+1 . . . sn−3sn−2sn−1s
−1
n−2s

−1
n−3 . . . s

−1
i+1)

= g ((i, n− 1)) g (sn) g ((i, n− 1)).
(3) Where i = m and j = n − 2, we need to check that g (sn) commutes with g

(
(1, n− 2)

)
and the relation

g (sn) g ((m,n− 1)) g (sn) = g ((m,n− 1)) g (sn) g ((m,n− 1)) .

We already proved this last relation in item (2). For the commuting relation, we have that

g
(
(1, n− 2)

)
= s

sm+2sm+3...sn−2s
−1
m s−1

m−2...s
−1
2

1 for n > 5. It follows that g (sn) commutes with
g
(
(1, n− 2)

)
.

(4) Where i 6= m and j = n−1, we need to prove that g (si) g ((i, n)) g (si) = g ((i, n)) g (si) g ((i, n))
and g ((i, n)) commutes with all the images by g of elements of T that correspond to reflections
in the string of item (4) in Lemma 4.6:

sm+2 . . . sn−2sn−1(i+ 1, n− 1)si+2 . . . sm−1sm(1,m)s2 . . . si−1.

We have that g ((i, n)) = s
s−1
n−1s

−1
n−2...s

−1
i+1

n . Then, we get

g (si) g ((i, n)) g (si) = si(si+1 . . . sn−2sn−1sns
−1
n−1s

−1
n−2 . . . s

−1
i+1)si

= si(si+1 . . . sn−2s
−1
n sn−1sns

−1
n−2 . . . s

−1
i+1)si

= s−1n si(i, n− 1)sisn
= s−1n (i, n− 1)si(i, n− 1)sn by induction hypothesis
= s−1n (i, n− 1)snsis

−1
n (i, n− 1)sn,

with s−1n g ((i, n− 1)) sn = g ((i, n)). Hence we get

g (si) g ((i, n)) g (si) = g ((i, n)) g (si) g ((i, n)) .

It is clear that g ((i, n)) commutes with s2, s3, . . . , si−1.
Let us show that g ((i, n)) commutes with sm. We have seen that g ((i, n)) = s−1

n g ((i, n− 1)) sn.
Then we get

g ((i, n)) sm = s−1n g ((i, n− 1)) snsm
= s−1n g ((i, n− 1)) smsn
= s−1n smg ((i, n− 1)) sn by induction hypothesis
= sms

−1
n g ((i, n− 1)) sn

= smg ((i, n)).

Similarly g ((i, n)) commutes with sm−1, sm−2, . . . , si+2, sn−2, sn−3, . . . , sm+2, and g
(
(1,m)

)
.

It is done by just replacing sm by each of the previous elements.
Let us now show that g ((i, n)) commutes with sn−1. We have that

g ((i, n)) sn−1 = (si+1 . . . sn−2sn−1)sn(s−1n−1s
−1
n−2 . . . s

−1
i+1)sn−1

= (si+1 . . . sn−2sn−1)sn(s−1n−1s
−1
n−2sn−1s

−1
n−3 . . . s

−1
i+1)

= (si+1 . . . sn−2sn−1)sn(sn−2s
−1
n−1s

−1
n−2 . . . s

−1
i+1)

= {(si+1 . . . sn−2sn−1sn−2)sn(s−1n−1s
−1
n−2 . . . s

−1
i+1)

= (si+1 . . . sn−3sn−1sn−2sn−1)sn(s−1n−1s
−1
n−2 . . . s

−1
i+1)

= sn−1g ((i, n)).
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Finally, we show that g ((i, n)) commutes with g ((i+ 1, n− 1)). Since

g ((i+ 1, n− 1)) = s
s−1
n−2s

−1
n−3...s

−1
i+2

n−1 ,

we get g ((i+ 1, n− 1)) = s−1n−1g ((i+ 1, n− 2)) sn−1. We obtain

g ((i+ 1, n− 1)) g ((i, n)) = s−1n−1g ((i+ 1, n− 2)) sn−1g ((i, n))

= s−1n−1g ((i+ 1, n− 2)) g ((i, n))sn−1
by the previous case

= s−1n−1g ((i+ 1, n− 2)) s−1n g ((i, n− 1)) snsn−1
= s−1n−1s

−1
n g ((i+ 1, n− 2)) g ((i, n− 1))snsn−1

= s−1
n−1s

−1
n g ((i, n− 1)) g ((i+ 1, n− 2)) snsn−1

by induction hypothesis
= s−1n−1s

−1
n g ((i, n− 1)) sng ((i+ 1, n− 2)) sn−1

= s−1n−1g ((i, n))g ((i+ 1, n− 2)) sn−1

= g ((i, n)) s−1n−1g ((i+ 1, n− 2)) sn−1
= g ((i, n)) g ((i+ 1, n− 1)).

(5) Where i = m and j = n−1, we need to check that g (sm) g ((m,n)) g (sm) = g ((m,n)) g (sm) g ((m,n))
and that g ((m,n)) commutes with all the images by g of the elements of T that correspond to
the reflections in the string from item (5) in Lemma 4.6:

sm+2 . . . sn−2sn−1(1, n− 1)s2 . . . sm−1.

This is shown by following the same arguments as in (4).

(6) Where i 6= m and j = n, we need to check that sn commutes with g
(
(1,m)

)
and

g
(
(i,m+ 1)

)
This is straightforward to show.

(7) Where i = m and j = n, the image by g of the copies of the reflections in the decomposition
in item (7) of Lemma 4.6 are only elements of S, so there is nothing to check.

Lemma A.2. Suppose that w0 = w(i, j), with 1 ≤ i < m, m + 1 ≤ j < n, so that we are
in the situation of Equation 2. Let t1t2 . . . tn−1 be the reduced decomposition of w0 described in
Lemma 4.7. Then we can deduce from the relations of the presentation of G given in Theorem 5.1
that g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2), and that g (tn−1) commutes with each of
the elements g (tk) with k < n− 2.

Proof. We consider the three different possible decompositions of w0 that are described in Lemma 4.7.
In each case we do not need to consider the relations between g(tn) and g(tk) if both elements are
within the set S.

(1) Where i 6= m and j 6= n−2, n−1, n, we need to check that g (sn) commutes with g
(
(1,m)

)
,

g
(
(i, j + 1)

)
, and g

(
(i+ 1, j)

)
.

The fact that g (sn) = sn commutes with g
(
(1,m)

)
is done in Lemma A.1(1). We have that

g
(
(i, j + 1)

)
= s

sm+2sm+3...sj+1s
−1
m s−1

m−1...s
−1
i+1

1 , and g
(
(i+ 1, j)

)
= s

sm+2sm+3...sjs
−1
m s−1

m−1...s
−1
i+2

1

that both obviously commute with sn.

(2) Where i 6= m and j = n− 2, we need to check that g (sn) = sn commutes with g
(
(1,m)

)
,

g
(
(i+ 1, n− 2)

)
, and check that g

(
(i, n− 1)

)
g (sn) g

(
(i, n− 1)

)
= g (sn) g

(
(i, n− 1)

)
g (sn).

The fact that sn commutes with g
(
(1,m)

)
and g

(
(i+ 1, n− 2)

)
is done in Lemma A.2(1).

For the last relation, we have that
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g
(
(i, n− 1)

)
sng

(
(i, n− 1)

)
= s−1n−1g

(
(i, n− 2)

)
sn−1sns

−1
n−1g

(
(i, n− 2)

)
sn−1

= s−1n−1g
(
(i, n− 2)

)
s−1n sn−1sng

(
(i, n− 2)

)
sn−1

= s−1n−1s
−1
n g

(
(i, n− 2)

)
sn−1g

(
(i, n− 2)

)
snsn−1

= s−1n−1s
−1
n sn−1g

(
(i, n− 2)

)
sn−1snsn−1

by induction hypothesis
= sns

−1
n−1s

−1
n g

(
(i, n− 2)

)
snsn−1sn

= sns
−1
n−1g

(
(i, n− 2)

)
s−1n snsn−1sn

= sng
(
(i, n− 1)

)
sn.

(3) Where i 6= m and j = n− 1, we need to check that sig
(
(i, n)

)
si = g

(
(i, n)

)
sig
(
(i, n)

)
and that g

(
(i, n)

)
commutes with the images by g of elements that correspond to the reflections

in the string from item (3) in Lemma 4.7:

sm+2 . . . sn−2sn−1(i+ 1, n− 1)si+2 . . . sm−1sm(1,m)s2 . . . si−1.

First, we have

sig
(
(i, n)

)
si = sis

−1
n g

(
(i, n− 1)

)
snsi

= s−1n sig
(
(i, n− 1)

)
sisn

= s−1n g
(
(i, n− 1)

)
sig
(
(i, n− 1)

)
sn by induction hypothesis

= s−1n g
(
(i, n− 1)

)
snsis

−1
n g

(
(i, n− 1)

)
sn

= g
(
(i, n)

)
sig
(
(i, n)

)
.

Since s2, . . . , si−2, si−1, si+2, . . . , sm−1, sm, sm+2, . . . , sn−3, sn−2 commute with sn, then they
commute with g

(
(i, n)

)
= s−1n g

(
(i, n− 1)

)
sn by applying the induction hypothesis. Because

g
(
(1,m)

)
commutes with sn, we also get that g

(
(i, n)

)
commutes with g

(
(1,m)

)
by applying

the same argument. Now, we prove that g
(
(i, n)

)
commutes with sn−1. Actually, we have

g
(
(i, n)

)
sn−1 = s−1n s−1n−1g

(
(i, n− 2)

)
sn−1snsn−1

= s−1n s−1n−1g
(
(i, n− 2)

)
snsn−1sn

= s−1n s−1n−1sng
(
(i, n− 2)

)
sn−1sn

= sn−1s
−1
n s−1n−1g

(
(i, n− 2)

)
sn−1sn

= sn−1s
−1
n g

(
(i, n− 1)

)
sn

= sn−1g
(
(i, n)

)
.

Finally, we show that g
(
(i, n)

)
commutes with g

(
(i+ 1, n− 1)

)
. We have that g

(
(i, n)

)
g
(
(i+ 1, n− 1)

)
is equal to

s−1n g
(
(i, n− 1)

)
sns

−1
n−1g

(
(i+ 1, n− 2)

)
sn−1 =

s−1n s−1n−1g
(
(i, n− 2)

)
sn−1sns

−1
n−1g

(
(i+ 1, n− 2)

)
sn−1 =

s−1n s−1n−1g
(
(i, n− 2)

)
s−1n sn−1sng

(
(i+ 1, n− 2)

)
sn−1 =

s−1n s−1n−1s
−1
n g

(
(i, n− 2)

)
sn−1g

(
(i+ 1, n− 2)

)
snsn−1 =

s−1n−1s
−1
n s−1n−1g

(
(i, n− 2)

)
sn−1g

(
(i+ 1, n− 2)

)
snsn−1 =

s−1n−1s
−1
n g

(
(i, n− 1)

)
g
(
(i+ 1, n− 2)

)
snsn−1 = by induction hypothesis

s−1n−1s
−1
n g

(
(i+ 1, n− 2)

)
g
(
(i, n− 1)

)
snsn−1 =

s−1n−1g
(
(i+ 1, n− 2)

)
s−1n g

(
(i, n− 1)

)
snsn−1 =

s−1n−1g
(
(i+ 1, n− 2)

)
g
(
(i, n)

)
sn−1 = by the previous case

s−1n−1g
(
(i+ 1, n− 2)

)
sn−1g

(
(i, n)

)
=

g
(
(i+ 1, n− 1)

)
g
(
(i, n)

)
.
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Lemma A.3. Suppose that w0 = w(m, j), with m+ 1 ≤ j < n, so that we are in the situation of
Equation 3. Let t1t2 . . . tn−1 be the reduced decomposition of w0 described in Lemma 4.8. Then we
can deduce from the relations of the presentation ofG given in Theorem 5.1 that g (tn−1) g (tn−2) g (tn−1) =
g (tn−2) g (tn−1) g (tn−2), and that g (tn−1) commutes with each of the elements g (tk) with k <
n− 2.

Proof. We consider the three cases of Lemma 4.8.

(1) Where j < n− 2, we need to check that sn commutes with g ((1, j)) and g
(
(m, j + 1)

)
.

This is readily checked since

g ((1, j)) = s
s−1
j−1s

−1
j−2...s

−1
2

j and g
(
(m, j + 1)

)
= s

sm+2sm+3...sj+1

1 .

(2) Where j = n−2, we need to check that sn commutes with g ((1, n− 2)) and g
(
(m,n− 1)

)
.

The first check is straightforward. For the second, we have that g
(
(m,n− 1)

)
= s−1n−1g

(
(m,n− 2)

)
sn−1

and one shows that

g
(
(m,n− 1)

)
sng

(
(m,n− 1)

)
= sng

(
(m,n− 1)

)
sn

similarly to the case g
(
(i, n− 1)

)
sng

(
(i, n− 1)

)
= sng

(
(i, n− 1)

)
sn in the proof of Lemma

A.2(1).

(3) Where j = n−1, we have that g ((m,n)) = s
sm+2sm+3...sn

1 = s−1n g
(
(m,n− 1)

)
sn. All the

commuting relations between g ((m,n)) and sm−1, sm−2, . . . , s2 are obvious. We are left to prove
that g ((m,n)) smg ((m,n)) = smg ((m,n)) sm, and g ((m,n)) commutes with g ((1, n− 1)),
sn−1, sn−2, . . . , sm+2. This is done similarly to the proof of Lemma A.2(3).

The next lemma is readily checked.

Lemma A.4. Suppose that w0 = w(i, n), with 1 ≤ i ≤ m, so that we are in the situation of
Equation 4 or Equation 5. An identical result to the previous lemmas holds in this situation.

This finishes the situation where w0 is of type I. The next two lemmas are for types II and III,
respectively.

Lemma A.5. Suppose that w0 = w(i, j) or w0 = w(i, j) with 1 ≤ i < j ≤ m, so that we are
in the situation of one of Equations 6-8. Let t1t2 . . . tn−1 be the reduced decomposition of w0 as
described in Section 4.3. Then we can deduce from the relations of the presentation of G that
g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2), and that g (tn−1) commutes with each of the
elements g (tk) with k < n− 2.

Proof. In the case of this lemma, we have that g (tn−1) = sn and g (tn−2) = sn−1, so the braid
relation snsn−1sn = sn−1snsn−1 is clearly a consequence of the relations of G. The commuting
relations are also obvious since in the situation of Equations 6-8, the indices i, j are such that
1 ≤ i < j ≤ m, so that they are far away from n (we have i, j < n − 2). Hence sn obviously
commutes with the image by g of the elements ti corresponding to the reflections in the reduced
decomposition of w0 described in Section 4.3.

Lemma A.6. Suppose that w0 = w(i, j) or w0 = w(i, j) with m + 1 ≤ i < j ≤ n, so that we
are in the situation of one of Equations 9–11. Let t1t2 . . . tn−1 be the reduced decomposition of w0

as described in Section 4.3. Then we can deduce from the relations of the presentation of G that
g (tn−1) g (tn−2) g (tn−1) = g (tn−2) g (tn−1) g (tn−2), and that g (tn−1) commutes with each of the
elements g (tk) with k < n− 2, except for Equation 11 (with i = n− 1) where we need to show one
additional non-commuting relation.

Proof. The argument of the proof is identical to the situation of Equations 1–5 treated in Lem-
mas A.1–A.4, which is appropriate to leave as an exercise.
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