
Sofic groups: graph products and graphs of

groups

Laura Ciobanu, Derek F. Holt and Sarah Rees

Warwick, 21st June 2013

Abstract

We prove that graph products of sofic groups are sofic, as are graphs

of groups for which vertex groups are sofic and edge groups are amenable.

2010 Mathematics Subject Classification: 20F65, 37B05.

Key words: sofic, graph products, free and direct products, groups of graphs.

1 Introduction

We prove the following results.

Theorem 1.1. A graph product of sofic groups is sofic.

Theorem 1.2. The fundamental group of a graph of groups is sofic if each
vertex group is sofic and each edge group is amenable.

Theorem 1.1 generalises Theorem 1 of [3], and our proof is based on ideas used
in the proof of that theorem. Theorem 1.2 is an extension of the result that free
products of sofic groups amalgamated over amenable subgroups are sofic, proved
independently in [4, Theorem 1] and [7, Corollary 2.3]; most of the argument
needed to extend the result is already found in [1, Corollary 3.6].

The term sofic groups is attributed to Weiss [12], and applied to a definition due
to Gromov [6]; this is a class of groups which, together with the related class
of hyperlinear groups, has inspired much recent study, through its connections
to a variety of different mathematical areas. A very useful introduction to sofic
groups is provided by [8]. There are many open questions, including the question
of whether all groups are sofic.

A number of quite distinct, but equivalent, definitions exist for sofic groups, and
are proved equivalent in [8]. The definition in [12] for finitely generated groups
involves finite subsets of the Cayley graph of the group, and is essentially the
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same as the definition in [6] of the Cayley graph being initially subamenable. An
alternative and equivalent definition of [8] defines a group to be sofic if it embeds
as a subgroup in an ultraproduct of symmetric groups. Another (equivalent)
definition, found in [3], is phrased in terms of quasi-actions. We shall work with
a variation of that definition, given below as Definition 1.4; we phrase it in terms
of (what we call) special quasi-actions. That this is equivalent to the definition
of [3] (and hence to the others) follows from [3, Lemma 2.1].

For a finite set A, let S(A) be the group of all permutations of A. For ǫ > 0,
we say that two elements f1, f2 of S(A) are ǫ-similar if the number of elements
a ∈ A for which f1(a) 6= f2(a) is at most ǫ|A|. Note that for ǫ ≥ 1 this condition
is always satisfied.

Definition 1.3. Suppose that G is a group, ǫ > 0 a real number and F ⊆ G

a finite subset of G. A special (F, ǫ)-quasi-action of G on a finite set A is a
function φ : G→ S(A) with the following properties:

(a) φ(1) = 1;

(b) ∀g ∈ G, φ(g)−1 = φ(g−1);

(c) for g ∈ F \ {1}, φ(g) has no fixed points;

(d) for g1, g2 ∈ F the map φ(g1g2) is ǫ-similar to φ(g1)φ(g2).

For a ∈ A, g ∈ G, we write aφ(g) for the image of a under φ(g).

Definition 1.4. A group G is sofic if, for each number ǫ ∈ (0, 1) and any finite
subset F ⊆ G, G admits a special (F, ǫ)-quasi-action.

It is immediate from the definition that a group is sofic precisely if every one of
its finitely generated subgroups is sofic. We note at this stage also the following
elementary result, which will be useful to us later.

Lemma 1.5. Let φi be special (F, ǫ)-quasi-actions of G on Ai for 1 ≤ i ≤
n, let A = A1 × · · · × An, and define φ : G → S(A) by (a1, . . . , an)

φ(g) =

(a
φ1(g)
1 , . . . , a

φn(g)
n ). Then φ is a special (F, nǫ)-quasi-action.

Proof. The conditions (a), (b) and (c) of the definition are straightforward to
check for φ. The equality (a1, . . . , an)

φ(g1)φ(g2) = (a1, . . . , an)
φ(g1g2) holds when-

ever a
φi(g1)φi(g2)
i = a

φi(g1g2)
i for each ai, which is the case for at least (1− ǫ)n|A|

elements (a1, . . . , an) ∈ A. The result now follows, since (1 − ǫ)n ≥ 1 − nǫ for
all n ≥ 1.

This article contains two further sections; Section 2 contains the proof of The-
orem 1.1 and Section 3 the proof of Theorem 1.2.

2 Proof of the graph product theorem

Let Γ be a simple graph and, for each vertex v of Γ, let Gv be a group. The
graph product of the groups Gv with respect to Γ is defined to be the quotient of
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their free product by the normal closure of the relators [gv, gw] for all gv ∈ Gv,
gw ∈ Gw for which {v, w} is an edge of Γ.

Graph products were introduced by Green in her PhD thesis [5], and their
basic properties are established there. For a graph product of vertex groups
G1, . . . , Gn with respect to a finite graph Γ with vertices 1, . . . , n, and for J ⊆
{1, . . . , n}, we define GJ := 〈Gj | j ∈ J〉. By [5, Proposition 3.31], GJ is
isomorphic to the graph product of Gj (j ∈ J) on the full subgraph of Γ with
vertex set J . Note that G∅ is the trivial group.

Green only considered graph products of finitely many vertex groups, but the
definition applies equally well to graphs with infinite vertex sets I. Since any
relation in a group is a consequence of finitely many defining relations, the
property that, for any J ⊆ I, GJ is isomorphic to the graph product of Gj
(j ∈ J) on the full subgraph of Γ with vertex set J , extends to graph products
with infinitely many vertex groups. Hence, since a group is sofic if and only if
all of its finitely generated subgroups are sofic, it suffices to prove Theorem 1.1
for graph products of finitely many groups, so we shall assume from now on
that the graph Γ is finite.

Any non-identity element in a graph product can be written as a product g1 · · · gl
for some l > 1, where each gi is a non-trivial element of a vertex group Gji .
By [5, Theorem 3.9], we can get from any such expression of minimal length
to any other by swapping the order in the expression of elements gi, gi+1 from
commuting vertex groups. Hence every minimal length expression for an element
g has the same length l, which we call the syllable length of g, and involves the
same set {g1, g2, . . . gl} of vertex group elements, with the same multiplicities,
the syllables of g. Whenever g1 · · · gl is a minimal length expression for g, we
call each product g1 · · · gi a left divisor of g, and each product gi+1 · · · gn a right
divisor of g, for 0 ≤ i ≤ n.

We also note that, for any finite subset of a graph product of groups Gi, there is
a bound N on the syllable lengths of its elements, and there are finite subsets Fi
of the vertex groups Gi that contain all the syllables of those elements. Hence
Theorem 1.1 follows from the following proposition.

Proposition 2.1. There is a function f : N → N with the following property.
Let G1, . . . , Gn be sofic groups, and G their graph product with respect to a
finite graph Γ. Let ǫ > 0 be given, and for each i = 1, . . . n, let Fi be a finite
subset of Gi, Ai a finite set, and suppose that ψi : Gi → S(Ai) is a special
(Fi, ǫ)-quasi-action of Gi on Ai.

Then, for any N ∈ N, G has a special (F, f(n)ǫ)-quasi-action φ on a finite
set C, where F is the set of elements of G of syllable length at most N for
which each syllable is in some Fi, such that the following additional properties
hold:

(1) whenever x, y are in distinct vertex groups, φ(xy) = φ(x)φ(y);

(2) C admits equivalence relations ∼1, . . . ,∼n such that, for each c ∈ C,
g ∈ F and J ⊆ {1, . . . , n},

cφ(g) ∼J c ⇐⇒ g ∈ GJ
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(where ∼J is the join of those equivalence relations ∼j for which j ∈ J).

Note that, by definition, a ∼J b if and only if there is a sequence a = c1, . . . , cm =
b of elements with ci ∼ji ci+1 for some ji ∈ J . In particular, x ∼∅ y ⇐⇒ x = y.

Note that the conditions (1) and (2) imposed on the special quasi-action φ

are necessary for the inductive proof of the proposition, rather than to deduce
the theorem. Condition (1) ensures in particular that φ(x)φ(y) = φ(y)φ(x)
whenever x, y are from commuting vertex groups.

Proof. The proof is by induction on n. Suppose first that n = 1. Then G = G1

and F = F1 (for any value of N ∈ N). We put F := F1 and C := A1, and
define the equivalence relation ∼1 by c ∼1 d for all c, d ∈ C. Then φ is a special
(F, ǫ)-quasi-action on C, and the additional property (1) holds vacuously. To
see that the additional property (2) also holds, note that there are only two
possibilities for J : J = {1} and J = ∅. If J = {1} then G = GJ , so the left and
right hand sides of the equivalence in (2) are true for all g ∈ G. If J = ∅ then,
by the definition of a special (F, ǫ)-quasi-action, both the left and right hand
sides of the equivalence are true if and only if g = 1. So the property (2) holds,
and the statement of the proposition is true with f(n) = 1.

So now we proceed to prove the inductive step. We shall prove that the result
holds with f(n) = n(nf(n− 1) + 1).

Write I = {1, 2, . . . , n}, and for each k ∈ I, Ik = I \ {k}. For each k ∈ I,
let Hk := GIk be the subgroup of G that is the graph product of the groups
Gi for i 6= k with respect to the appropriate subgraph of Γ. By the induction
hypothesis, we may assume that, for ǫ′ := f(n−1)ǫ, and FHk

:= F ∩Hk, Hk has
a special (FHk

, ǫ′)-quasi-action θk on a set Dk admitting equivalence relations
≃ki , for each i 6= k, such that

(1) θk(xy) = θk(x)θk(y) for x, y in distinct vertex groups of Hk; and

(2) for d ∈ Dk, h ∈ FHk
, and J ⊆ Ik, d

θk(h) ≃J d ⇐⇒ h ∈ GJ .

For each k ∈ I, we shall build a set Ck related to Dk, admitting equivalence
relations ∼ki for each i ∈ I, and then construct a special quasi-action φk of G
on Ck that satisfies Condition (1) and more. We shall then construct φ and the
equivalence relations ∼1, . . . ,∼n on the set C := C1 ×C2 × · · · ×Cn in terms of
the special quasi-actions φk and the equivalence relations ∼ki , using Lemma 1.5.

For k ∈ I, let Lk ⊆ Ik be the set of vertices joined in Γ to k. Let ≃Lk
be the

join of the equivalence relations ≃ki for i ∈ Lk, and let πk be the projection from
Dk to its set of equivalence classes under ≃Lk

(for which the image of d ∈ Dk

is its equivalence class).

Now, using ideas from [3, Theorem 1] we choose a finite group Vk, with gener-
ating set πk(Dk)×Ak, for which all relators among the generators have length
greater than N , and we let Ck := Dk ×Ak × Vk.

We define equivalence relations ∼ki on Ck, for i 6= k, by the rules

(d, a, v) ∼ki (d′, a′, v′) ⇐⇒ d ≃ki d
′, a = a′, v = v′.
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Then we define ∼kk on Ck by specifying its equivalence classes; for d ∈ Dk, v ∈
Vk; the class αk(d, v) is the subset {(d, a, v ◦ (πk(d), a)) : a ∈ Ak} of Ck. Multi-
plication ◦ within the third component is the group multiplication of Vk.

We define a special quasi-action φk of G on Ck as a composite of natural exten-
sions to Ck of the special quasi-actions θk, ψk of Hk and Gk on Dk, Ak.

For h ∈ Hk, we define

(d, a, v)φk(h) = (dθk(h), a, v).

Then, for g ∈ Gk, we define

(d, a, v)φk(g) = (d, aψk(g), v ◦ (πk(d), a)
−1 ◦ (πk(d), a

ψk(g))).

Now it follows, essentially from [5, lemma 3.20], that each element g ∈ G has
a unique expression as a product g = x1y1 · · ·xmym, with each xi ∈ Hk, each
yi ∈ Gk, xi nontrivial for i > 1, yi nontrivial for i < m, and such that, for i > 1,
xi has no non-trivial left divisor in the subgroup GLk

; we call this expression
the normal form for g. We note that the yi’s are syllables, the xi’s products of
syllables and the number of terms at most the syllable length of g. We use that
expression for g to extend to G the definitions of φk on Hk and Gk, that is, for
g ∈ G, φk(g) := φk(x1)φk(y1) · · ·φk(xm)φk(ym).

We need now the following lemma, whose proof we defer.

Lemma 2.2. Let ǫ′′ := (nf(n − 1) + 1)ǫ. Then, for each k, φk is a special
(F, ǫ′′)-quasi-action of G on Ck, such that

(1) whenever x, y are in distinct vertex groups, φk(xy) = φk(x)φk(y),

(2′) for each c ∈ Ck, g ∈ F , we have g ∈ GJ ⇒ cφk(g) ∼kJ c for all J ⊆ I,
and cφk(g) ∼kJ c⇒ g ∈ GJ for all J ⊆ Ik.

Now we define a map φ : G→ S(C), whereC := C1×· · ·×Cn, by (c1, . . . , cn)φ(g) =

(c
φ1(g)
1 , . . . , c

φn(g)
n ). It follows from Lemma 1.5 that this is a (F, f(n)ǫ)-quasi-

action with f(n) = n(nf(n−1)+1). Condition (1) of the proposition is inherited
from the maps φk.

We define equivalence relations∼1,∼2, . . . ,∼n on C by (c1, . . . , cn) ∼j (c
′
1, . . . , c

′
n)

if and only if ck ∼kj c
′
k for 1 ≤ k ≤ n. We need now to verify Condition (2).

Let J ⊆ I. The fact that g ∈ GJ implies that cφ(g) ∼J c for all c ∈ C is
inherited from the maps φk. If J = I, then G = GJ and the converse statement
is immediate. Otherwise we have J ⊆ Ik for some k with 1 ≤ k ≤ n. If g 6∈ GJ ,

and c = (c1, . . . , cn) ∈ C, then c
φk(g)
k 6∼kJ ck and hence cφ(g) 6∼J c.

So the proof of the proposition will be complete once the proof of Lemma 2.2
has been provided.

Proof of Lemma 2.2: Note that it is clear that the restriction of φk to Hk is a
special (FHk

, ǫ′)-quasi-action for Hk, since θk is. And certainly that quasi-action
preserves each of the ∼ki equivalence classes with i 6= k. And it is clear that the
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restriction of φk to Gk is a special (F ∩ Gk, ǫ)-quasi-action for Gk, since ψk is.
That quasi-action preserves the ∼kk equivalence classes, since both (d, a, v) and
(d, a, v)φk(g) are in αk(d, v ◦ (πk(d), a)

−1).

The equation (d, a, v)φk(1G) = (d, a, v) follows immediately from (d, a, v)φk(h) =
(dθk(h), a, v), for h ∈ Hk, and hence Condition (a) of Definition 1.3 is verified
for φk.

We shall verify the remaining conditions in the order (c), (1), (b), (d), (2′).

First we introduce some notation. We need to consider φk(g) for a general
element g in the graph product, written in normal form as x1y1 · · ·xmym. We
write x for the group product x1 · · ·xm, then y for the group product y1 · · · ym,
and x[i], y[i] for the products x1 · · ·xi, y1, · · · yi, where x[0] = y[0] = 1.

We see then that

(d, a, v)φk(g) = (d, a, v)φk(x1y1···xmym) = (dθk(x[m]), aψk(y[m]), v ◦ u),

where u =

m∏

i=1

(πk(d
θk(x[i])), aψk(y[i−1]))−1 ◦ (πk(d

θk(x[i])), aψk(y[i])).

unless ym is the identity, in which case the product for u is from i = 1 to m− 1.

Our next step is to establish Condition (c) of Definition 1.3 for φk. Let g be a
non-trivial element of F , with normal form x1y1 · · ·xmym. So 2m ≤ N and, for
each i, xi ∈ FHk

and yi ∈ Fk. Suppose first that u, in the above expression,
is not the empty word. Since ψk is a special quasi-action, Condition (c) for
ψk implies that aψk(y[i−1]) 6= aψk(y[i]) for each i. Since xi+1 6∈ GLk

, it follows
from the induction hypothesis that θk(xi+1) cannot map any element ofDk to an
element in the same≃Lk

equivalence class, that is, πk(d
θk(x[i])) 6= πk(d

θk(x[i+1])).
So no generator in the word of length 2m representing u can freely cancel with
the generator either before it or after it. The fact that V admits no short relators
now ensures that u is nontrivial. In that case certainly (d, a, v)φk(g) 6= (d, a, v).

So now suppose that u is empty. Then m = 1, y1 is trivial, and g = x1.
So x = x1 is a non-identity element of FHk

, and hence dθk(x) 6= d. So again
(d, a, v)φk(g) 6= (d, a, v). Hence we have shown that the map φk from G to S(Ck)
allows no non-identity element of length less than N in F to fix any element of
Ck, and so Condition (c) of Definition 1.3 is verified for φk.

In order to establish Condition (1) of the Lemma for φk, we suppose first that
x ∈ GLk

, and y ∈ Gk. By definition φk(xy) = φk(x)φk(y), and

(d, a, v)φk(x)φk(y) = (dθk(x), aψk(y), v ◦ (πk(d
θk(x)), a)−1 ◦ (πk(d

θk(x)), aψk(y)))

while

(d, a, v)φk(y)φk(x) = (d, aψk(y), v ◦ (πk(d), a)
−1) ◦ (πk(d), a

ψk(y)))φk(x)

= (dθk(x), aψk(y), v ◦ (πk(d), a)
−1 ◦ (πk(d), a

ψk(y))).

Then since d ≃Lk
dθk(x), we have πk(d) = πk(d

θk(x)), and so

(d, a, v)φk(x)φk(y) = (d, a, v)φk(y)φk(x),
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that is, for x ∈ GLk
, y ∈ Hk, φk(xy) = φk(x)φk(y) = φk(y)φk(x).

Now suppose that x, y are in distinct vertex groups, Gi, Gj . If i, j 6= k then
Condition (1) follows immediately by induction applied to Hk. If j = k, or if
i = k and Gi, Gj do not commute, then xy is in normal form, and Condition
(1) follows from the definition of φk. Finally if i = k and Gi, Gj commute, then
x ∈ GLk

, y ∈ Hk, and we can deduce Condition (1) for φk from the result above.

Next suppose that g = x1y1 · · ·xmym ∈ G. We compare φk(g)
−1 and φk(g

−1).
We have g−1 = y−1m x−1m · · · y−11 x−11 . The expression for g−1 is not necessar-
ily in normal form, because some of the x−1i could have left divisors in GLk

,
but we can transform it into normal form by splitting any such x−1i into sylla-
bles and then applying commuting relations to move left divisors of x−1i in
GLk

past y−1i . By the results of the preceding two paragraphs, if we ap-
ply the corresponding transformations to φk(y

−1
m )φk(x

−1
m ) · · ·φk(y

−1
1 )φk(x

−1
1 ),

then we do not change the resulting permutation. Hence we have φk(g
−1) =

φk(y
−1
m )φk(x

−1
m ) · · ·φk(y

−1
1 )φk(x1)

−1. It follows from Condition (b) of Defini-
tion 1.3 that φk(y

−1
i ) is inverse to φk(yi) and from the induction hypothesis on

Hk that φk(x
−1
i ) is inverse to φk(xi). Hence φk(g

−1) = φk(g)
−1, which verifies

Condition (b) of Definition 1.3 for φk.

We proceed now to verify Condition (d) of Definition 1.3 for φk; that is, to
show that for all g1, g2 ∈ F , φk(g1g2) is ǫ′′-similar to φk(g1)φk(g2). Let g1 =
x1y1 · · ·xmym, g2 = x′1y

′
1 · · ·x

′
py
′
p be the normal forms of g1, g2 ∈ F . In the

following discussion, we refer to an element of Hk or of Gk as a block, and to a
product of blocks as an expression. The normal form for g1g2 is derived from
the concatenation x1y1 · · ·xmymx′1y

′
1 · · ·x

′
py
′
p by a sequence of moves, each of

which is one of four types:

(a) deletion of a block that is equal to the identity;

(b) cancellation (that is, merger of two adjacent mutually inverse blocks that
are either both in Hk or both in Gk);

(c) expression of a block in H as a product of a left divisor in GLk
and a right

divisor, and moving the left divisor to the left, past a block in Gk;

(d) merger of two adjacent blocks that are either both in Hk or both in Gk,
and whose product is not the identity, to give a new block from that same
subgroup.

Note that in (c) the left and right divisors of a block in Hk are simply sub-
blocks, whose concatenation is a permutation of the original block; that is, the
(multi)set of syllables of the block in Hk is the union of the (multi)sets of syl-
lables of those left and right divisors. By contrast, a move of type (d) will
normally change the (multi)set of syllables in an expression. Starting with the
permutation

φ(x1)φ(y1) · · ·φ(xm)φ(ym)φ(x′1)φ(y
′
1) · · ·φ(x

′
p)φ(y

′
p),

we study the sequence of composites of permutations of Ck defined by the var-
ious expressions that arise when we apply the corresponding operations to this
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expression of images during this rewrite process, and keep track of the propor-
tion of elements of Ck on which they differ. We note that, as a consequence of
what we have proved so far, two expressions that differ only on moves of types
(a), (b) and (c) correspond to composites of permutations that have the same
effect on all points of C. Hence we only need to concern ourselves with moves
of type (d).

Suppose that a move converts an expression w to an expression w′. Let σ, σ′ be
the permutations corresponding to the two expressions. If the move merges two
blocks from Gk, then the permutations σ and σ′ differ on the same proportion
of elements of Ck as do permutations for the quasi-action of Gk on the set Ak,
that is, on at most ǫ|Ck| of the elements, by the hypothesis.

If the move merges two blocks fromHk, then the permutations σ and σ′ differ on
the same proportion of elements of Ck as do permutations for the quasi-action
of Hk on the set Dk, that is, on at most f(n − 1)ǫ|Ck| of the elements, by the
induction hypothesis. Notice however that if the two blocks z1, z2 being merged
are left and right divisors of z1z2 (or, equivalently, if the syllable length of z1z2
is the sum of the syllable lengths of z1 and z2), then our induction hypothesis
on H ensures that φk(z1z2) = φk(z1)φk(z2). We shall call such mergers non-
reducing, and other mergers, for which this equality is not guaranteed to hold,
reducing.

Condition (d) can now be now established by application of the following lemma.

Lemma 2.3. During the rewrite process, we perform at most n reducing mergers
of blocks of Hk and at most one reducing merger of blocks of Gk.

Proof. We may assume that m, p > 0 (since otherwise one of g1, g2 is the
identity) and split the proof into three cases (1) 1 6= ym and x′1 6∈ GLk

; (2)
ym = 1; and (3) 1 6= ym and x1 ∈ GLk

.

We deal with Case 1 first, proving by induction on m that in this case the
product can be rewritten using at most |Lk| mergers, all of which are within
Hk. Using that result we then deal with the remaining two cases together, also
using induction on m.

Case 1. 1 6= ym and x′1 6∈ GLk
.

Let x′1 = z1z2, where z1 is the longest left divisor of x′1 in GLk
. Suppose that

z1 ∈ GL′ for some L′ ⊆ Lk. We prove by induction on m that this product can
be rewritten using at most |L′| (≤ |Lk|) Hk-mergers and no Gk-mergers.

If m = 1 then there can be at most one Hk-merger x1x
′
1, so the result is clear.

So suppose that m > 1; then ym−1 6= 1, and xm is nontrivial with no left divisor
in GL. If z1 commutes with xm, then the claim follows by induction applied
to the product (x1y1 · · ·xm−1ym−1)(z1xmymz2y′1 · · ·x

′
py
′
p). Otherwise, we can

write z1 = z11z12, where z11 (which may be trivial) is the longest left divisor
of z1 that commutes with xm. So z11 ∈ GL′′ with |L′′| < |L′|. We can then
perform the rewriting by performing an Hk-merger xmz12 (if necessary) and, by
induction, at most |L′′| further Hk-mergers resulting from moving z11 further
to the left. This completes the proof of the claim, and of the lemma in Case 1.
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So now we may assume that m, p > 0, and that we are in Case 2 or 3.

Case 2. ym = 1.

If m = 1, then there is at most one Hk-merger x1x
′
1, and so the result holds.

So suppose that m > 1 and hence that ym−1 6= 1, and xm is nontrivial with no
left divisor in GLk

.

If xmx
′
1 6∈ GLk

, then we perform an Hk-merger (if necessary) on xmx
′
1, and

now observe that the product (x1y1 · · ·xm−1ym−1)(xmx
′
1y
′
1 · · ·x

′
py
′
p) satisfies the

conditions of Case 1, and so can be rewritten using at most |Lk| further Hk-
mergers and no Gk-mergers. So in this case too, the lemma is proved.

If xmx
′
1 ∈ GLk

then, since xm has no left divisor in GLk
, the product xmx

′
1 can

be evaluated by writing xm and x′1 as products of syllables and then performing
commuting and cancellation moves only so we can rewrite xmx

′
1 as z ∈ GLk

without performing any mergers, to arrive at the product

(x1y1 · · ·xm−1ym−1)(zy
′
1 · · ·x

′
py
′
p),

which satisfies the conditions of Case 3 for m − 1. The lemma now follows by
induction applied to that product.

Case 3. 1 6= ym and x′1 ∈ GLk
.

If ymy
′
1 6= 1, then we perform the Gk-merger ymy

′
1, and the Hk-merger xmx

′
1

(which cannot be in GLk
, since xm 6∈ GLk

, x′1 ∈ GLk
). Then we can apply the

result of Case 1 to the product (x1y1 · · ·xm−1ym−1)(xmx′1ymy
′
1 · · ·x

′
py
′
p), and

the proof is complete.

If ymy
′
1 = 1 then the result is clear if p = 1 and otherwise, since x′2 has no left

divisor in GL, the merger x′1x
′
2 is non-reducing, so the result follows by applying

Case 2 to the product (x1y1 · · ·xm−1ym−1xm)(x′1x
′
2y
′
2 · · ·x

′
py
′
p).

This completes the proof of Condition (d), and hence we see that φk is a special
(F, ǫ′′)-quasi-action, with ǫ′′ = (nf(n− 1) + 1)ǫ.

It remains to verify Condition (2′). We have shown already that, for each i ∈ I,
the action of φk(Gi) on C preserves each of the ∼ki -equivalence classes, from
which it follows immediately that g ∈ GJ with J ⊆ I implies cφk(g) ∼kJ c.

Now suppose that J ⊆ Ik, c = (d, a, v) ∈ Ck, g ∈ F , and that cφk(g) ∼kJ c. Since
k 6∈ J , it is immediate from the definition of ∼kj for j ∈ J that

(d, a, v) ∼kJ (d′, a′, v′) ⇐⇒ d ≃J d
′, a = a′, v = v′.

So now, arguing as in our earlier proof of Condition (c) of Definition 1.3 for
φk that, for 1 6= g ∈ F , (dθk(g), a, v) 6= (d, a, v) we find that, for g ∈ F ,
(dθk(g), a, v) ∼J (d, a, v) if and only if g ∈ Hk and dθk(g) ≃J d. By our inductive
hypothesis, this is true if and only if g ∈ GJ . Hence Condition (2′) holds. �
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3 Graphs of groups

In this section we prove Theorem 1.2.

We recall the definition of a graph of groups, which arises from the work of Bass
and Serre [11, 10]

Definition 3.1. A graph of groups G consists of

(1) a connected graph Γ (in which loops are allowed, but no multiple edges),
with vertex set V , edge set E,

(2) a collection of vertex groups Gv : v ∈ V and edge groups Ge : e ∈ E,

(3) for each edge e = {v1, v2} of Γ, monomorphisms θ1e : Ge → Gv1 and
θ2e : Ge → Gv2 .

The fundamental group π1(G) of a graph of groups G can defined in various
different (but equivalent) ways. The following definition is essentially [2, Defi-
nition I.3.4]. The definition is given in terms of a selected spanning tree T of
Γ, but (up to isomorphism) the resulting group is independent of this choice.
The associated fundamental group π1(G, T ) is then the group generated by the
groups Gv : v ∈ V together with generators te, one for each (oriented) edge in
E), given the following relations.

(1) all the relations of the groups Gv,

(2) t−1e θ1e(g)te = θ2e(g), for each e ∈ E, g ∈ Ge,

(3) te = 1 for each edge e of T .

From this description it is not hard to see that π1(G, T ) is isomorphic to a
multiple HNN extension, with stable letters te for e 6∈ E(T ), of the amalgamated
product of the groups Gv in which θ1e(g) and θ2e(g) are identified for all e ∈
E(T ), g ∈ Ge. Independent results of Elek and Szabo ([4, Theorem 1]) and
Paunescu ([7, Corollary 2.3]) already prove that the amalgamated product of
two sofic groups over an amenable subgroup is sofic. Hence Theorem 1.2 follows
immediately by combining that result with

Proposition 3.2. An HNN extension of a sofic group H over an amenable
subgroup K is sofic.

We deduce Proposition 3.2 as a corollary of the amalgamated product result. We
note that the argument to do this was already provided by Collins and Dykema
in order to deduce their result [1, Corollary 3.6] as a corollary of their result [1,
Theorem 3.4], that is to deduce the same result as above in the situation where
the associated subgroups (in both amalgamated products and HNN extensions)
are monotileably amenable. The argument of [1] goes through without any
modification, when monotileability of the associated subgroup is dropped, to
deduce the Proposition from the results of [4, 7]. But we include the argument
here for completeness.

Proof. Let G be an HNN extension of H overK, as in the proposition, and let L
be the subgroup t−1Kt. Define Hi = t−iHti, Ki = t−iKti, Li = t−iLti for each
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i ∈ Z, and define S := 〈Hi | i ∈ Z〉. Then G can be expressed as an extension of
S by Z. Since Z is amenable, and by [3, Theorem 1(3)] an extension of a sofic
group by an amenable group is sofic, in order to prove G sofic it is enough to
prove S sofic.

Now S can be expressed as an iterated amalgamated product of the (countably
many)His, with amalgamation over subgroups isomorphic toK. More precisely,
S is the fundamental group of the graph of groups associated with the graph
of the integers, where Hi is the vertex group of the vertex i, each edge group is
isomorphic to K, and the copy of K associated with edge {i, i+1} maps to the
subgroup Li of Hi, and the subgroup Ki+1 of Hi+1, as in Figure 1.

· · ·Hi−1
Li−1←֓ →֒Ki

Hi

Li←֓ →֒Ki+1

Hi+1
Li+1←֓ →֒Ki+2

Hi+2 · · ·

Figure 1: The graph of groups H

To prove S sofic we now need to verify soficity for each of its finitely generated
subgroups. So let M be such a subgroup. Then for some k, l, all the generators
of M are within vertex subgroups Hi for k ≤ i ≤ l, that is, M is a subgroup of
the amalgamated product

Hj ∗Lj=Kj+1
Hj+1 ∗Lj+1=Kj+2

∗ · · · ∗Ll−1=Kl
Hl.

Since this is sofic, by [4, 7], so is M .
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