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Introduction



Motivation: famous problems in group theory

e Milnor's Problem = growth of a group.

e General Burnside Problem = finiteness properties of a group.
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Some facts (no spoiler: see Alex’s talk) about growth of groups

e Free groups of finite rank k > 1: exponential growth.

e Fundamental group 71(M) of a closed negatively curved Riemannian
manifold: exponential growth.

e Finite groups: polynomial growth (of degree 0).

(Gromov, 1981) A group is virtually nilpotent if and only if it has
polynomial growth.

Milnor's question (1960):

Are there groups of intermediate growth between polynomial and

exponential?
Grigorchuk’s answer (1980):

Yes, the first ... Grigorchuk group.
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the order of a group may be not finite, while the order of every operation
it contains is finite.
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About the General Burnside Problem

A still undecided point in the theory of discontinuous groups is whether
the order of a group may be not finite, while the order of every operation
it contains is finite.

W. BURNSIDE (1902)

In modern terminology the general Burnside problem asks:

can a finitely generated periodic group be finite?
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Are finitely generated periodic groups finite?

e Yes, for nilpotent groups.

Yes, finitely generated periodic subgroups of the general linear group
of degree n > 1 over the complex field.

e Yes, ... for many other classes of groups.

e Counterexample: the first Grigorchuk group.
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Seriously: the regular rooted tree 7,
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Regular rooted trees

e The tree is infinite.

e The root is a distinguished (fixed) vertex.

e Regular: the number of descendants is the same at every level.
e A vertex is a word in the alphabet X = {1,...,d}.

11 12 ¢ -+ 1d 21 22 6 -+ 2 dl d2 e -+ dd

e X" denotes the nth level of the tree.



Automorphisms of rooted trees

Automorphisms of 74

Bijections of the vertices that preserve incidence.
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The set Aut T4 of all automorphisms of 7, is a group with respect to
composition between functions.
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The set Aut T4 of all automorphisms of 7, is a group with respect to

composition between functions.

Sometimes we write T for T4, and, consequently, Aut7 for Aut 7,.
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A subgroup of Aut7: the stabilizer

n-th level

e The nth level stabilizer st(n) fixes all vertices up to level n.
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A subgroup of Aut7: the stabilizer

n-th level

e The nth level stabilizer st(n) fixes all vertices up to level n.

o If H<AutT, we define sty(n) = H Nst(n).
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The stabilizer

e Stabilizers are normal subgroups of the given group.
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The stabilizer

e Stabilizers are normal subgroups of the given group.

e There is a chain of subgroups of Aut7T
Aut7 Dst(1) Dst(2) 2 ---Dst(n) D ...

where [,y st(n) = 1.
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The stabilizer

e Stabilizers are normal subgroups of the given group.

e There is a chain of subgroups of Aut7T

Aut7 Dst(1) Dst(2) 2 ---Dst(n) D ...

where (), .y st(n) = 1.

e Hence AutT is a residually finite group (i.e. a group in which the

neN

intersection of all its normal subgroups of finite index is trivial).
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Describing elements of Aut7

An automorphism f € Aut 7Ty can be represented by writing in each
vertex v a permutation o, € Sym(d) which represents the action of f on
the descendants of v.
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Describing elements of Aut7

An automorphism f € Aut 7, can be represented by writing in each
vertex v a permutation o, € Sym(d) which represents the action of f on
the descendants of v.

We say that o, € Sym(d) is the label of f at the vertex v. The set of all
labels is the portrait of f.

14



Describing elements of Aut7

The simplest type are rooted automorphisms: given o € Sym(d), they
simply permute the d subtrees hanging from the root according to o.

ap

We denote with e the identity element of Sym(d).
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Example of a rooted automorphism

Let 73 be the ternary tree, and a the rooted automorphism corresponding
to the cycle o = (1 2 3).
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Example of a rooted automorphism

Let 73 be the ternary tree, and a the rooted automorphism corresponding
to the cycle o = (1 2 3).

KA

Note: sometimes we will identify a with o.
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Some facts about Aut7: |

We have Aut 7 = st(1) x Sym(d).
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g
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Some facts about Aut7: Il

We define the isomorphism
P st(l) — Aut T x Lo At T
g— (glv"'vgd)
for every g € st(1).
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Some facts about Aut7: Il

We define the isomorphism
P st(l) — Aut T x Lo At T
gr— (glv"'vgd)

for every g € st(1).

Above, we denoted with g; the section of g at the vertex i, that is the
action of g on the subtree 7; (which is identified with 7") that hangs
from the vertex i.

Digression: this implies that Aut7 contains products
Aut7T X -+ X AutT. 18



| + Il = Describing elements of Aut7

e Any g € Aut7,4 can be seen as

g=ho, o€Sym(d), hest(l)ZAutTyx.9. xAutTy
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| + Il = Describing elements of Aut7

e Any g € Aut7,4 can be seen as
g=ho, o€Sym(d), hest(l)ZAutTyx.9. xAutTy

In other words, every f € Aut T4 can be written as

where f; € Aut T4 and a is rooted corresponding to some permutation

o € Sym(d).
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Let f € Aut Ty with f = (f,f, ..., fs)a, where f; € AutTy and a is
rooted corresponding to 0. If f =f, =-.- = f; =1, then f is rooted.
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Let f € Aut Ty with f = (f,f, ..., fs)a, where f; € AutTy and a is
rooted corresponding to 0. If f =f, =-.- = f; =1, then f is rooted.
Do you remember?
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Let f € Aut Ty with f = (f,f, ..., fs)a, where f; € AutTy and a is
rooted corresponding to 0. If f =f, =-.- = f; =1, then f is rooted.
Do you remember?

20



Example: General Case

Let f € Aut Ty with f = (f1,f,...,7,)a, where f; € AutTy and a'is
rooted corresponding to o.
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Example (another!)

If 73 is the binary tree and a is rooted corresponding to (1 2), let
b=(1,b)a.
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Exercise

If 77 is the 7-adic tree and a is rooted corresponding to (123456 7), let

b= (a,a ! a*1,1,1,b)a.
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Exercise

If 77 is the 7-adic tree and a is rooted corresponding to (123456 7), let
b= (a,a ! a*1,1,1,b)a.

How does b act on 777

24



Branch groups




Introduction

e Branch groups were introduced by Grigorchuk in 1997.
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Introduction

e Branch groups were introduced by Grigorchuk in 1997.

e Recall that in the full group of automorphisms we have
&
st(n) ~ Aut7 x -+ x Aut T,

since ¢, : st(n) — AutT X I Aut T is an isomorphism.
o If G < AutT, we have

W stg(n) — Ya(ste(n)),

where ,(stg(n)) need not be a direct product.

e The question is: given G < AutT, can we find for every n € N a
subgroup (eventually of finite index) of stg(n) which is a direct
product?

25



Rigid stabilizers

The rigid stabilizer of the vertex u is

rstg(u) = {g € G : g fixes all vertices outside 7, }

n-th level

A
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Rigid stabilizers

The rigid stabilizer of the vertex u is

rstg(u) = {g € G : g fixes all vertices outside 7, }

n-th level

A

The rigid stabilizer of the nth level is rstg(n) = [],cxn rste(u).
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About the “question”

e If G is the whole Aut 7 then the rigid stabilizer coincides with the
nth level stabilizer.
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About the “question”

e If G is the whole Aut 7 then the rigid stabilizer coincides with the
nth level stabilizer.

e And if G < AutT?

e Bad news: this is not usually the case for arbitrary subgroups of
AutT.

e Good news: in some cases, there exist “nice” rigid stabilizers.

e Informally speaking: the subgroup v, (rstg(n)) is the largest
subgroup of ¥, (stg(n)) which is a “geometric” direct product.
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Branch groups

Let G < AutT a spherically transitive group (a group that acts
transitively on each level of T).
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Branch groups

Let G < AutT a spherically transitive group (a group that acts
transitively on each level of 7). Digression: It is true that a spherically
transitive group cannot be finite? Think about it :)

e We say that G is a branch group if for all n > 1, the index of the
rigid nth level stabilizer in G is finite. In other words, for all n > 1,

|G : rstg(n)| < oco.
e We say that G is a weakly branch group if all of its rigid vertex
stabilizers are nontrivial for every vertex of the tree.
e Branch — weakly branch.

e These groups try to approximate the behaviour of the full group
Aut T, where rst(n) = st(n) is as large as possible.

e The most important families of subgroups of Aut7 consist almost
entirely of (weakly) branch groups.

e The first Grigorchuk group is a branch group.
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More definitions: Self-similar groups

Let G < AutT.

e A group G is said to be self-similar if taken g = (g1,...,84)0 € G
we have g; € G forany i = {1,...,d}.
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More definitions: Self-similar groups

Let G < AutT.
e A group G is said to be self-similar if taken g = (g1,...,84)0 € G
we have g; € G forany i = {1,...,d}.
e Example: Aut7 is self-similar, the first Grigorchuk is self-similar.

e Non-example: The group G = (a, b), where a = (b,c)o and ¢ ¢ G,
then G is not self-similar.
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Regular branch groups

Let G be a self-similar group. We say that G is a regular branch if there
exists a subgroup K of stg(1) of finite index such that

P(K) D K x.9. x K.
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Regular branch groups

Let G be a self-similar group. We say that G is a regular branch if there
exists a subgroup K of stg(1) of finite index such that

P(K) D K x.9. x K.
More precisely we have this situation:

G Gx.9.xG

stg(1) — ¥(stg(1))
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Regular branch groups

e We say that G is a weakly regular branch group if K has infinite
index in G.

e If we want to emphasize the subgroup K, we say that G is (weakly)
regular branch over K.
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Regular branch groups

e We say that G is a weakly regular branch group if K has infinite
index in G.

e If we want to emphasize the subgroup K, we say that G is (weakly)
regular branch over K.

e Regular branch — branch.
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Next lecture




Examples of (weakly) branch groups

Next week we will present the following groups of automorphisms of
rooted trees together with their main properties:

The Grigorchuk groups
The GGS-groups

e The Basilica group

The Hanoi Tower group

32



| am sure | was too quick, so there is still time . ...
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The first Grigorchuk group (finally!)

[=<{(a,b,c,d

a=(1,1)(12) b=(a,c) c=(ad) d=(1,b)
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Thank you :)
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