Free groups via graphs, part 2

Alan D. Logan a.logan@hw.ac.uk

Maxwell Institute, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

Last week.

- Maps of graphs \leftrightarrow subgroups of free groups.
- Number of generators, subgroup membership problem, normality, index, intersection, malnormality...
- Immersions "are" subgroups.
- Finite coverings correspond to finite index subgroups.
- However, coverings are useless for infinite-index subgroups!

This week.

- Foldings take a subgroup and produce an immersion.
- Immersions are brilliant for infinite-index subgroups!

Folding (formal)

 $f: \Gamma \to \Delta$ a graph, $e_1, e_2 \in E\Gamma$ such that:

- 2 $f(e_1) = f(e_2)$

then

- $\mathbf{0}$ f folds e_1 and e_2 ,
- 2 f factors through the graph $\Gamma/[e_1=e_2]$ obtained by identifying $\tau(e_1)$ with $\tau(e_2)$ and e_1 with e_2 .

Therefore, if Γ is a finite graph then f factors as

$$\underbrace{\Gamma = \Gamma_0 \to \Gamma_1 \to \cdots \to \Gamma_n}_{\text{folds}} \underbrace{\xrightarrow{f'}}_{\text{immersion}} \Delta$$

The immersion $f': \Gamma_n \to \Delta$ is unique.

Note. Folding maps are π_1 -surjective.

Foldings *correspond* to subgroups

Theorem 4.

Let Δ be a connected graph, $v \in V\Delta$ a vertex, and $H \leq \pi_1(\Delta, v)$ a finitely generated subgroup. Then there exists an immersion $f: \Gamma \to \Delta$ where Γ is connected, $u \in V\Gamma$ a vertex with f(u) = v, and $f\pi_1(\Gamma, u) = H$.

Proof.

Proof is constructive/algorithmic:

- **1** Input: a finite generating set $\{\alpha_1, \ldots, \alpha_n\}$ for H.
- **2** Form the map of graphs corresponding to the directed graph with central vertex w and loops p_1, \ldots, p_n , where p_i has label α_i .
- 3 Fold.
- 4 The resulting map of graphs is an immersion, with image H. (Image is H as folds are π_1 -surjective.)

Example of folding

Application 1: preliminaries to M. Hall's theorem

Let Γ be a graph, $v \in V$ a vertex, $T \subset \Gamma$ a spanning tree of Γ . Clearly, for each edge $e_i \in \Gamma \setminus T$ there exist reduced paths $p_i, q_i \subset T$ such that $p_i e_i q_i$ is a loop at v.

Theorem 5.

The set $[p_ie_iq_i]$ forms a basis for $\pi_1(\Gamma, v)$.

Application 1: more preliminaries to M. Hall's theorem

As the set $[p_i e_i q_i]$ forms a basis for $\pi_1(\Gamma, \nu)$, we have:

Corollary 6.

 $\pi_1(\Gamma, v)$ has rank $|E\Gamma| - |ET| = |E\Gamma| - |V\Gamma| + 1$.

Proof.

obv. because | ET |= |VT -1 = |VT -1 =

Corollary 7 (Subgraphs "are" free factors).

Let Σ be a subgraph of Γ , and let $v \in V\Sigma \cap V\Gamma$. Then $\pi_1(\Sigma, v)$ is a free factor of $\pi_1(\Gamma, v)$.

Proof.

Extra edges in [= extra generators

Application 1: M. Hall's theorem

Theorem 8 (M. Hall's theorem).

Let F be a f.g. free group, H a f.g. subgroup. Then there exists $K \leq F$ with finite index such that K = K' * H.

Pullbacks of immersions represent intersection

Pullback:
$$\Gamma_3 \subseteq \Gamma_1 \times \Gamma_2$$
 with $V\Gamma_3 = \{(u_1, u_2) \mid \underline{f_1(u_1) = f_2(u_2)}\} \& E\Gamma_3 = \{(e_1, e_2) \mid f_1(e_1) = f_2(e_2)\}.$

Theorem 9.

Let $f_i: \Gamma_i \to \Delta$, i = 1, 2, be immersions and let

$$\begin{array}{ccc}
\Gamma_3 & \xrightarrow{g_1} & \Gamma_1 \\
g_2 \downarrow & & \downarrow f_1 \\
\Gamma_2 & \xrightarrow{f_2} & \Delta
\end{array}$$

gila > F, fargets search
Component, gilory)= 2.

be their pullback diagram. Let $v_1 \in \Gamma_1$, $v_2 \in \Gamma_2$ be such that $f_1(v_1) = w = f_2(v_2)$; let v_3 be the corresponding vertex in Γ_3 .

Define
$$\underline{f_3} = \underline{f_1g_1} = \underline{f_2g_2} : \Gamma_3 \to \Delta$$
, and define

$$S_i = f_2 g_2 : \Gamma_3 \to \Delta$$
, and define $S_i = f_i \pi_1(\Gamma_i, v_i)$ $i = 1, 2, 3$.

(These are subgroups of $\pi_1(\Delta, w)$.) Then

$$S_3=S_1\cap S_2$$
.

Application 2: Howson's theorem

Theorem 10 (Howson's theorem).

Let H, K be f.g. subgroups of a free group F. Then $H \cap K$ is finitely generated (and a free basis of $H \cap K$ can be determines by an easy algorithm).

Proof.

- **1** Use the <u>folding</u> algorithm to find immersions $f_1 : \Gamma_1 \to \Delta$ and $f_2 : \Gamma_2 \to \Delta$ representing H and K respectively.
- **2** Consider the pullback map $f_3: \Gamma_3 \to \Delta$.
- 3 Then $H \cap K = f_3\pi_1(\Gamma_3, \nu_3)$ is finitely generated as Γ_3 is a finite graph.
- 4 Construction of pullback is algorithmic.
- **6** A basis *B* for $\pi_1(\Gamma_3, v_3)$ is found via Theorem 5.
- **6** $f_3(B)$ is a basis for $H \cap K$.

Application 3: On the Hanna Neumann Conjecture

Hanna Neumann conjecture/Friedman-Mineyev theorem

$$rank(H \cap K) - 1 \le (rank(H) - 1)(rank(K) - 1)$$

$$rk(H \cap K) \le (2 - 1)(rk(k) - 1) + 1 = rk(k)$$
Theorem 11 (Taylor 1002)

Theorem 11 (Tardos, 1992).

Let $H, K \leq F$ with rank(H) = 2. Then: $rank(H \cap K) < rank(K)$

Proof.

The branching number of Γ is:

The branching number of Γ is: $b(\Gamma) = \#\{\text{vertices of degree } \geq 3\} + \#\{\text{vertices of degree } 4\}.$

For Γ connected, rank $(\Gamma) = b(\Gamma)/2 + 1$.

If Γ is not a tree, then $core(\Gamma)$ is the minimal subgraph of Γ containing every loop in Γ . So prove:

Let $f_i: \Gamma_i \to \Delta$, i = 1, 2, immersions of connected graphs,

$$\operatorname{core}(\Gamma_i) = \Gamma_i \text{ and } b(\Delta) = b(\Gamma_1) = 2.$$
 Then

$$b(\operatorname{core}(\Gamma_1 \times \Gamma_2)) \leq b(\Gamma_2).$$

Summary

- Maps of graphs ↔ subgroups of free groups.
- Number of generators, subgroup membership problem, normality, index, intersection, malnormality...
- Immersions "are" correspond to subgroups (via foldings).
- Finite coverings correspond to finite index subgroups.

Easy proofs of interesting theorems:

- M. Hall's theorem: f.g. subgroups are free factors of finite index subgroups.
- Howson's theorem: intersections of f.g. subgroups are f.g.

Applications to free groups.

- Karen Vogtmann Automorphisms of free groups and outer space. Geom. Dedicata 94 (2002): 1–31
- Mladen Bestvina & Michael Handel Train tracks and automorphisms of free groups. *Ann. Math. (2)* 135.1 (1992): 1–51
 - Igor Mineyev Groups, graphs, and the Hanna Neumann conjecture. J. Topol. Anal. 4.1 (2012): 1–12
- Joel Friedman Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture *Mem. Amer. Math. Soc.* 233.1100 (2015)
- Laura Ciobanu & Alan D. Logan The Post Correspondence Problem and equalisers for certain free group and monoid morphisms 47th International Colloquium on Automata, Languages and Programming (ICALP2020) 168 (2020) 120:1-120:16.

Applications to other groups.

- Mark Feighn & Michael Handel Mapping tori of free group automorphisms are coherent. Ann. Math. (2) 149.3 (1999): 1061–1077
- Daniel T. Wise The residual finiteness of positive one-relator groups. *Comment. Math. Helv.* 76.2 (2001): 314–338.
- groups. Comment. Math. Helv. 76.2 (2001): 314–338.

 Som M. Con allows the free polygons of finite groups. Invent. Math. 149.3 (2002): 579–617
 - Martin Bridson & Henry Wilton The triviality problem for profinite completions. *Invent. Math.* 202.2 (2015): 839–874.
 - Alan D. Logan Every group is the outer automorphism group of an HNN-extension of a fixed triangle group Adv. Math. 353)

 (2019) 116–152.

 (2019) M = 1 VEAT |

Generalisations to other groups.

Ilya Kapovich & Paul Schupp Genericity, the Arzhantseva–Ol'shanskii method and the isomorphism problem for one-relator groups. *Math. Ann.* 331.1 (2005): 1–19

Larsen Louder & Henry Wilton Negative immersions for one-relator groups. *Math. Res. Lett., to appear*

Olga Kharlampovich & Alexei Miasnikov & Pascal Weil Stallings graphs for quasi-convex subgroups. *J. Algebra* 488 (2017) 442–483