Philipp Edelmann
collaborators:
Tami Rogers, Rathish Ratnasingam (Newcastle)
Conny Aerts, Dominic Bowman, May Gade Pedersen (KU Leuven)
Fritz Röpke, Leo Horst (HITS Heidelberg)
Rogers+ (2013)
source: NASA
Gresho & Chan (1990); Liska & Wendroff (2003)
(Miczek+, 2015)
$$ \vec{F}_{i+1/2} = \frac{1}{2} \left( \vec{F}(\vec{U}^L_{i+1/2}) + \vec{F}(\vec{U}^R_{i+1/2}) - (\color{red}{P^{-1}}|\color{red}{P}A|)_\text{roe}(\vec{U}^R_{i+1/2} - \vec{U}^L_{i+1/2}) \right) $$ $$ P_\vec{V} = \begin{pmatrix} 1 & n_x \frac{\rho\delta\Mr}c{} & n_y \frac{\rho\delta\Mr}c{} & n_z \frac{\rho\delta\Mr}c{} & 0 & 0\\ 0 & 1 & 0 & 0 & -n_x\frac{\delta}{\rho c \Mr} & 0\\ 0 & 0 & 1 & 0 & -n_y\frac{\delta}{\rho c \Mr} & 0\\ 0 & 0 & 0 & 1 & -n_z\frac{\delta}{\rho c \Mr} & 0\\ 0 & n_x \rho c \delta \Mr & n_y \rho c \delta \Mr & n_z \rho c \delta \Mr & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} $$ $$\delta = \frac{1}{\min(1, \max(M,M_\text{cut}))} - 1$$Barsukow+ (2017)
Horst+ (in prep.)
strong scaling on Pleiades at NASA Ames
Edelmann+ (2019)
Bowman et al. (2019)
Horst+ (in prep.)
credit: Robert Andrassy (HITS)