Introduction

Proof?

Many results of lower level mathematics are given without proof.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.
- The sum of the angles in any triangle is 180 degrees.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.
- The sum of the angles in any triangle is 180 degrees.
- The value of π is $3.14159 \ldots$.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.
- The sum of the angles in any triangle is 180 degrees.
- The value of π is $3.14159 \ldots$.
- The value of \sin and cos does not depend on the triangle.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.
- The sum of the angles in any triangle is 180 degrees.
- The value of π is $3.14159 \ldots$.
- The value of \sin and \cos does not depend on the triangle.
- For any angle $\theta, \sin ^{2} \theta+\cos ^{2} \theta=1$.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.
- The sum of the angles in any triangle is 180 degrees.
- The value of π is $3.14159 \ldots$.
- The value of \sin and \cos does not depend on the triangle.
- For any angle $\theta, \sin ^{2} \theta+\cos ^{2} \theta=1$.
- The area of a circle of radius r is πr^{2}.

Introduction

Proof?

Many results of lower level mathematics are given without proof.

- $1+1=2$.
- The sum of the angles in any triangle is 180 degrees.
- The value of π is $3.14159 \ldots$.
- The value of \sin and \cos does not depend on the triangle.
- For any angle $\theta, \sin ^{2} \theta+\cos ^{2} \theta=1$.
- The area of a circle of radius r is πr^{2}.

Can you explain why these are true?

Principia Mathematica

A 3-volume work on the foundations of mathematics, by A N Whitehead and Bertrand Russell, published 1910, 1912, 1913.

Principia Mathematica

A 3 －volume work on the foundations of mathematics，by A N Whitehead and Bertrand Russell，published 1910，1912， 1913.

Extract from Volume I，page 379：
＊5443．ト：$. \alpha, \beta \in 1 . J: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2$
Dem．

$$
\begin{align*}
& \text { ト. } * 54 \cdot 26 . \text { วト: } . \alpha=\iota^{\prime} x . \beta=\iota^{\prime} y . \text { Ј: } \alpha \cup \beta \in 2 . \equiv . x \neq y . \\
& \text { [*51•231] } \quad \equiv . \iota^{\prime} x \cap \iota^{\prime} y=\Lambda \text {. } \\
& \text { [*13•12] } \tag{1}\\
& \equiv . \alpha \cap \beta=\Lambda \\
& \text { ト.(1).*11•11•35.) } \\
& \text { ト: }\left(\begin{array}{rl}
(H, y) . \alpha=\iota^{‘} x . \beta=\iota^{‘} y . J: \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta=\Lambda
\end{array}\right. \tag{2}\\
& \text { ト.(2).*11.54.*52.1. Јト. Prop }
\end{align*}
$$

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

Principia Mathematica

A 3 －volume work on the foundations of mathematics，by A N Whitehead and Bertrand Russell，published 1910，1912， 1913.

Extract from Volume I，page 379：
＊5443．ト：$\alpha, \beta \in 1 . \supset: \alpha \cap \beta=\Lambda . \equiv . \alpha \cup \beta \in 2$
Dem．

$$
\begin{align*}
& \text { [*51•231] } \quad \equiv . \iota^{\prime} x \cap \iota^{\prime} y=\Lambda \text {. } \\
& \text { [*13•12] } \tag{1}\\
& \equiv . \alpha \cap \beta=\Lambda \\
& \text { ト.(1).*11•11.35.) }
\end{align*}
$$

$$
\begin{align*}
& \text { ト.(2).*11.54.*52.1. Јト. Prop } \tag{2}
\end{align*}
$$

From this proposition it will follow，when arithmetical addition has been defined，that $1+1=2$ ．

The proof that $1+1=2$ is completed in Volume II，page 86，with the comment，＂The above proposition is occasionally useful．＂

1089

- Take any three-digit integer (not a palindrome like 232).

1089

- Take any three-digit integer (not a palindrome like 232). 732

1089

- Take any three-digit integer (not a palindrome like 232). 732
- Reverse it, and subtract the smaller from the larger.

1089

- Take any three-digit integer (not a palindrome like 232). 732
- Reverse it, and subtract the smaller from the larger.

$$
732-237=495
$$

1089

- Take any three-digit integer (not a palindrome like 232). 732
- Reverse it, and subtract the smaller from the larger.

$$
732-237=495
$$

- Reverse and add (writing 73=073, for example).

1089

- Take any three-digit integer (not a palindrome like 232). 732
- Reverse it, and subtract the smaller from the larger.

$$
732-237=495
$$

- Reverse and add (writing 73=073, for example).

$$
495+594=1089
$$

1089

- Take any three-digit integer (not a palindrome like 232). 732
- Reverse it, and subtract the smaller from the larger.

$$
732-237=495
$$

- Reverse and add (writing 73=073, for example).

$$
495+594=1089
$$

Experiments suggest that answer is always 1089.

1089

- Take any three-digit integer (not a palindrome like 232). 732
- Reverse it, and subtract the smaller from the larger.

$$
732-237=495
$$

- Reverse and add (writing 73=073, for example).

$$
495+594=1089
$$

Experiments suggest that answer is always 1089.
To be sure, we need a proof.

Proof.

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)$

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c$

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$,

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$, a multiple of 99 .

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$, a multiple of 99 .

These 3-digit multiples of 99 are
$198,297,396,495,594,693,792,891$.

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$, a multiple of 99 .

These 3-digit multiples of 99 are
198, 297,396, 495, 594, 693, 792, 891.
All look like $x y z$ where $x+z=9$ and $y=9$.

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$, a multiple of 99 .

These 3-digit multiples of 99 are
$198,297,396,495,594,693,792,891$.
All look like $x y z$ where $x+z=9$ and $y=9$.
Finally,
$(100 x+10 y+z)+(100 z+10 y+x)$

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$, a multiple of 99 .

These 3-digit multiples of 99 are 198, 297, 396, 495, 594, 693, 792, 891.

All look like $x y z$ where $x+z=9$ and $y=9$.
Finally,
$(100 x+10 y+z)+(100 z+10 y+x)=900+(90+90)+9$

Proof.

A number with digits $a b c$ is $100 a+10 b+c$.
$(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c=99(a-c)$, a multiple of 99 .

These 3-digit multiples of 99 are 198,297,396, 495, 594, 693, 792, 891.

All look like $x y z$ where $x+z=9$ and $y=9$.
Finally,
$(100 x+10 y+z)+(100 z+10 y+x)=900+(90+90)+9$
$=1089$.

Why proof?

How to shrink wrap 6 cans of beer to get the smallest volume?

Why proof?

How to shrink wrap 6 cans of beer to get the smallest volume?
[You are not allowed to stack them on top of each other.]

Why proof?

How to shrink wrap 6 cans of beer to get the smallest volume?
[You are not allowed to stack them on top of each other.]
Arranging them in a line gives the smallest volume.

Why proof?

How to shrink wrap 6 cans of beer to get the smallest volume?
[You are not allowed to stack them on top of each other.]
Arranging them in a line gives the smallest volume.

Not true for 7 cans.

Why proof?

How to shrink wrap 6 cans of beer to get the smallest volume?
[You are not allowed to stack them on top of each other.]
Arranging them in a line gives the smallest volume.

Not true for 7 cans. This is better ...

Why proof?

How to shrink wrap 6 cans of beer to get the smallest volume?
[You are not allowed to stack them on top of each other.]
Arranging them in a line gives the smallest volume.

Not true for 7 cans. This is better ...

Exercise. Check this.

Hint.

It is enough to find area on top. Assume cans have radius=1.

Hint.

It is enough to find area on top. Assume cans have radius=1.

Blue area $=\sqrt{3}-\frac{\pi}{2}$

Red area $=\frac{1}{2}(2 \times 2-\pi)$

SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?

SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?
Answer. Arrange them in a line, to get a sausage shaped wrapping.

SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?
Answer. Arrange them in a line, to get a sausage shaped wrapping.

For 50 balls, the solution is also a sausage.

SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?
Answer. Arrange them in a line, to get a sausage shaped wrapping.

For 50 balls, the solution is also a sausage.
For 56 balls, the solution is also a sausage.

SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?
Answer. Arrange them in a line, to get a sausage shaped wrapping.

For 50 balls, the solution is also a sausage.
For 56 balls, the solution is also a sausage.
Not true for 57 balls!

SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?
Answer. Arrange them in a line, to get a sausage shaped wrapping.

For 50 balls, the solution is also a sausage.
For 56 balls, the solution is also a sausage.
Not true for 57 balls!
These examples illustrate the need for careful proof to be sure that a statement is always true.

ONE MORE EXAMPLE ...

π

One more example ...

π

Circle of diameter 1
Circumference $=\pi$

ONE MORE EXAMPLE ...

π

Circle of diameter 1
Circumference $=\pi$

Red curve has length 4

ONE MORE EXAMPLE ...

π

Circle of diameter 1
Circumference $=\pi$

Red curve has length 4

ONE MORE EXAMPLE ...

π

Circle of diameter 1
Circumference $=\pi$

Red curve has length 4

ONE MORE EXAMPLE ...

π

Circle of diameter 1
Circumference $=\pi$

Red curve has length 4

One more example ...

π

Circle of diameter 1
Circumference $=\pi$

Continue in this way to get $\pi=4$?

Common Equivalences

Equivalence
$p \longleftrightarrow q \Longleftrightarrow(p \longrightarrow q) \wedge(q \longrightarrow q)$
$p \longrightarrow q \Longleftrightarrow \neg p \vee q$
$\neg \neg p \Longleftrightarrow p$
$p \wedge p \Longleftrightarrow p$ and $p \vee p \Longleftrightarrow p$
$p \wedge q \Longleftrightarrow q \wedge p$ and $p \vee q \Longleftrightarrow q \vee p$
$(p \wedge q) \wedge r \Longleftrightarrow p \wedge(q \wedge r)$
$(p \vee q) \vee r \Longleftrightarrow p \vee(q \vee r)$
$(p \wedge q) \vee r \Longleftrightarrow(p \vee r) \wedge(q \vee r)$
$(p \vee q) \wedge r \Longleftrightarrow(p \wedge r) \vee(q \wedge r)$
$\neg(p \wedge q) \Longleftrightarrow \neg p \vee \neg q$
$\neg(p \vee q) \Longleftrightarrow \neg \wedge \wedge \neg$
$p \wedge(p \vee q) \Longleftrightarrow p$
$p \vee(p \wedge q) \Longleftrightarrow p$
$p \longrightarrow q \Longleftrightarrow \neg p \longrightarrow \neg q$

Name

Equivalence law Implication law
Double Negation law Idempotent laws
Commutative laws
Associative law I
Associative law II
Distributative law I
Distributativ law II
De Morgan's law I
De Morgan's law II
Absorbtion law I
Absorbtion law I
Contrapositive law

Common rules of Inference

Rule of Inference	Name
$\left.\begin{array}{l} p \\ p \longrightarrow q \end{array}\right\} \Longrightarrow q$	Modus Ponens
$\left.\begin{array}{l} \neg q \\ p \longrightarrow q \end{array}\right\} \Longrightarrow \neg p$	Modus Tollens
$\left.\begin{array}{l} p \longrightarrow q \\ q \longrightarrow r \end{array}\right\} \Longrightarrow p \longrightarrow r$	Transitivity
$p \wedge q \Longrightarrow q$	Simplification
$p \Longrightarrow p \vee q$	Addition

4.Induction

Proof by induction is a method of proving that a sequence of statements are all true.

4.Induction

Proof by induction is a method of proving that a sequence of statements are all true.

Induction can be used to prove for example that, for all integers $n \geq 1$,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

or that, for all integers $n \geq 1$,

$$
n!\leq n^{n} .
$$

In the first case above the task is to prove that the entries in the second and third columns of the table below are equal.

n	sum of first n odd numbers	n^{2}
1	1	1×1
2	$1+3=4$	2×2
3	$1+3+5=9$	3×3
4	$1+3+5+7=16$	4×4
5	$1+3+5+7+9=25$	5×5
\vdots	\vdots	\vdots
100	$1+\cdots+199$	10000
\vdots	\vdots	\vdots
k	$1+\cdots+(2 k-1)$	k^{2}
\vdots	\vdots	\vdots

The general case

In both cases, a predicate $P(n)$ is given, and induction is used to prove

$$
\forall n \in \mathbb{N} P(n)
$$

or equivalently

$$
\{n \in \mathbb{N} \mid P(n)\}=\mathbb{N}
$$

In the first case

$$
P(n) \text { is } 1+3+5+\cdots+(2 n-1)=n^{2}
$$

and in the second case $P(n)$ is

$$
P(n) \text { is } n!\leq n^{n} \text {. }
$$

The idea

Recall that the set of natural numbers \mathbb{N} is the set $\{1,2, \cdots\}$ of positive integers.

Induction is based on a fundamental property of \mathbb{N} :

Theorem 4.1

A subset S of \mathbb{N} which satisfies both
(1) $1 \in S$ and
(2) for all $n \in \mathbb{N}$, if $n \in S$ then $n+1 \in S$; is equal to \mathbb{N}.
[This follows from an axiom for \mathbb{N}, called "Well-Ordering". More details will be covered in MAS1702.]

THE IDEA

Recall that the set of natural numbers \mathbb{N} is the set $\{1,2, \cdots\}$ of positive integers.

Induction is based on a fundamental property of \mathbb{N} :

Theorem 4.1

A subset S of \mathbb{N} which satisfies both
(1) $1 \in S$ and
(2) for all $n \in \mathbb{N}$, if $n \in S$ then $n+1 \in S$;
is equal to \mathbb{N}.
[This follows from an axiom for \mathbb{N}, called "Well-Ordering". More details will be covered in MAS1702.]

Using Theorem 4.1, to check that a given set S is equal to \mathbb{N}, it is enough to verify that both 4.1.1 and 4.1.2 above hold; which is what is done in a proof by induction.

The Principle of Induction

In the Theorem below $P(n)$ is a predicate defined for all integers $n \geq 1$.

For example $P(n)$ might be, "the sum of the first n odd positive integers equals $n^{2 \prime}$, as in the first example above,
or it could be " $n!\leq n^{n "}$, as in the second example.

The Principle of Induction

In the Theorem below $P(n)$ is a predicate defined for all integers $n \geq 1$.

For example $P(n)$ might be, "the sum of the first n odd positive integers equals $n^{2 \prime}$, as in the first example above,
or it could be " $n!\leq n^{n "}$, as in the second example.

Theorem 4.2

Let $P(n)$ be a predicate defined for all integers $n \geq 1$. Suppose that
(1) $P(1)$ is true, and
(2) For arbitrary $k \in \mathbb{N}$,

$$
P(k) \Longrightarrow P(k+1) .
$$

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Proof

This follows directly from Theorem 4.1:

Proof

This follows directly from Theorem 4.1:
taking $S=\{n \in \mathbb{N} \mid P(n)\}$
4.2.1 implies $1 \in S$ and

Proof

This follows directly from Theorem 4.1:
taking $S=\{n \in \mathbb{N} \mid P(n)\}$
4.2.1 implies $1 \in S$ and since k is arbitrary, 4.2.2, implies that, for all $n \in \mathbb{N}$, $n \in S \Longrightarrow n+1 \in S$.

Proof

This follows directly from Theorem 4.1:
taking $S=\{n \in \mathbb{N} \mid P(n)\}$
4.2.1 implies $1 \in S$ and since k is arbitrary, 4.2.2, implies that, for all $n \in \mathbb{N}$, $n \in S \Longrightarrow n+1 \in S$.

From Theorem 4.1, it follows that $S=\mathbb{N}$, so $P(n)$ is true for all $n \in \mathbb{N}$.

EXAMPLE 4.3

Prove by induction that $1+2+\cdots+n=\frac{n(n+1)}{2}$, for all integers $n \geq 1$.
In this case $P(n)$ is $1+2+\cdots+n=\frac{n(n+1)}{2}$.
The first step is to show that $P(1)$ is true.
$P(1)$ is $1=(1 \times 2) / 2$, so is true.

EXAMPLE 4.3

Prove by induction that $1+2+\cdots+n=\frac{n(n+1)}{2}$, for all integers $n \geq 1$.
In this case $P(n)$ is $1+2+\cdots+n=\frac{n(n+1)}{2}$.
The first step is to show that $P(1)$ is true.
$P(1)$ is $1=(1 \times 2) / 2$, so is true.
The next step is to show that, for an arbitrary k, if $P(k)$ is true then $P(k+1)$ is true.

EXAMPLE 4.3
Prove by induction that $1+2+\cdots+n=\frac{n(n+1)}{2}$, for all integers $n \geq 1$.
In this case $P(n)$ is $1+2+\cdots+n=\frac{n(n+1)}{2}$.
The first step is to show that $P(1)$ is true.
$P(1)$ is $1=(1 \times 2) / 2$, so is true.
The next step is to show that, for an arbitrary k, if $P(k)$ is true then $P(k+1)$ is true.
$P(k)$ is $1+2+\cdots+k=\frac{k(k+1)}{2}$:
it's obtained by replacing n by k throughout $P(n)$.
We assume $1+2+\cdots+k=\frac{k(k+1)}{2}$ and must show that $P(k+1)$ is true: that is

$$
1+2+\cdots+(k+1)=\frac{(k+1)((k+1)+1)}{2}
$$

$P(k+1)$ is true because
The left side equals $1+3+\cdots+k+(k+1)$
$P(k+1)$ is true because
The left side equals $1+3+\cdots+k+(k+1)$

$$
=\frac{k(k+1)}{2}+(k+1), \text { (as } P(k) \text { is true }
$$

$P(k+1)$ is true because
The left side equals $1+3+\cdots+k+(k+1)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1),(\text { as } P(k) \text { is true } \\
& =\frac{k^{2}+k+2(k+1)}{2}
\end{aligned}
$$

$P(k+1)$ is true because
The left side equals $1+3+\cdots+k+(k+1)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1),(\text { as } P(k) \text { is true } \\
& =\frac{k^{2}+k+2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2}
\end{aligned}
$$

$P(k+1)$ is true because
The left side equals $1+3+\cdots+k+(k+1)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1),(\text { as } P(k) \text { is true } \\
& =\frac{k^{2}+k+2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2} .
\end{aligned}
$$

Therefore $P(k+1)$ holds.
$P(k+1)$ is true because
The left side equals $1+3+\cdots+k+(k+1)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1),(\text { as } P(k) \text { is true } \\
& =\frac{k^{2}+k+2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2} .
\end{aligned}
$$

Therefore $P(k+1)$ holds.
Conclusion. By induction, $P(n)$ holds for all $n \geq 1$.

EXAMPLE 4.4
Prove by induction that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all $n \geq 1$.

EXAMPLE 4.4
Prove by induction that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all $n \geq 1$.
Solution. $P(n)$ is the statement

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

EXAMPLE 4.4
Prove by induction that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all $n \geq 1$.
Solution. $P(n)$ is the statement

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Proof by induction takes the following form.
Show that $P(1)$ is true. This is the case $n=1$.

EXAMPLE 4.4
Prove by induction that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all $n \geq 1$.
Solution. $P(n)$ is the statement

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Proof by induction takes the following form.
Show that $P(1)$ is true. This is the case $n=1$.
In this example when $n=1$ we have the proposition $1=1^{2}$.

EXAMPLE 4.4
Prove by induction that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all $n \geq 1$.
Solution. $P(n)$ is the statement

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

Proof by induction takes the following form.
Show that $P(1)$ is true. This is the case $n=1$.
In this example when $n=1$ we have the proposition $1=1^{2}$.
Since this is true the first part of the proof is complete.

The inductive hypothesis (IH)
Assume that $P(k)$ is true. In the example $P(k)$ is

$$
1+3+\cdots+(2 k-1)=k^{2}
$$

where $k \geq 1$.

The inductive hypothesis (IH)
Assume that $P(k)$ is true. In the example $P(k)$ is

$$
1+3+\cdots+(2 k-1)=k^{2}
$$

where $k \geq 1$.
This is obtained by replacing every n in $P(n)$ with k.

The inductive step
Show that $P(k+1)$ holds: in this case that

$$
1+3+\cdots+(2(k+1)-1)=(k+1)^{2}
$$

The inductive step

Show that $P(k+1)$ holds: in this case that

$$
1+3+\cdots+(2(k+1)-1)=(k+1)^{2} .
$$

This is true because
The left side equals $1+3+\cdots+(2 k-1)+(2(k+1)-1)$

The inductive step

Show that $P(k+1)$ holds: in this case that

$$
1+3+\cdots+(2(k+1)-1)=(k+1)^{2} .
$$

This is true because
The left side equals $1+3+\cdots+(2 k-1)+(2(k+1)-1)$

$$
=k^{2}+(2(k+1)-1)
$$

The inductive step

Show that $P(k+1)$ holds: in this case that

$$
1+3+\cdots+(2(k+1)-1)=(k+1)^{2} .
$$

This is true because
The left side equals $1+3+\cdots+(2 k-1)+(2(k+1)-1)$

$$
\begin{aligned}
& =k^{2}+(2(k+1)-1) \\
& =k^{2}+2 k+1
\end{aligned}
$$

The inductive step

Show that $P(k+1)$ holds: in this case that

$$
1+3+\cdots+(2(k+1)-1)=(k+1)^{2} .
$$

This is true because
The left side equals $1+3+\cdots+(2 k-1)+(2(k+1)-1)$

$$
\begin{aligned}
& =k^{2}+(2(k+1)-1) \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2} .
\end{aligned}
$$

The inductive step

Show that $P(k+1)$ holds: in this case that

$$
1+3+\cdots+(2(k+1)-1)=(k+1)^{2} .
$$

This is true because
The left side equals $1+3+\cdots+(2 k-1)+(2(k+1)-1)$

$$
\begin{aligned}
& =k^{2}+(2(k+1)-1) \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2} .
\end{aligned}
$$

Conclusion. By induction, $P(n)$ holds for all $n \geq 1$.

EXAMPLE 4.5
Prove by induction that $n!\leq n^{n}$, for all integers $n \geq 1$.

EXAMPLE 4.5
Prove by induction that $n!\leq n^{n}$, for all integers $n \geq 1$.
Solution.
$P(n)$ is $n!\leq n^{n}$.
Step 1. If $n=1$ then $n!=1$ and $n^{n}=1$.
So $P(1)$ holds.

EXAMPLE 4.5
Prove by induction that $n!\leq n^{n}$, for all integers $n \geq 1$.
Solution.
$P(n)$ is $n!\leq n^{n}$.
Step 1. If $n=1$ then $n!=1$ and $n^{n}=1$.
So $P(1)$ holds.
Step 2.
The IH: Assume that $P(k)$ holds, for some k.

EXAMPLE 4.5
Prove by induction that $n!\leq n^{n}$, for all integers $n \geq 1$.
Solution.
$P(n)$ is $n!\leq n^{n}$.
Step 1. If $n=1$ then $n!=1$ and $n^{n}=1$.
So $P(1)$ holds.
Step 2.
The IH: Assume that $P(k)$ holds, for some k.
That is $k!\leq k^{k}$.

EXAMPLE 4.5
Prove by induction that $n!\leq n^{n}$, for all integers $n \geq 1$.
Solution.
$P(n)$ is $n!\leq n^{n}$.
Step 1. If $n=1$ then $n!=1$ and $n^{n}=1$.
So $P(1)$ holds.
Step 2.
The IH: Assume that $P(k)$ holds, for some k.
That is $k!\leq k^{k}$.
Inductive step:
Show that $P(k+1)$ holds. That is, show that $(k+1)!\leq(k+1)^{(k+1)}$.

SOLUTION, CONT.

$$
\begin{aligned}
(k+1)! & =(k!)(k+1) \\
& \leq k^{k}(k+1) \text { using } k!\leq k^{k} \\
& \leq(k+1)^{k}(k+1)^{*} \\
& =(k+1)^{(k+1)} .
\end{aligned}
$$

Thus $(k+1)!\leq(k+1)^{(k+1)}$.
We have shown that $P(k) \Rightarrow P(k+1)$.
Conclusion: By induction, $n!\leq n^{n}$, for all $n \geq 1$.

SOLUTION, CONT.

$$
\begin{aligned}
(k+1)! & =(k!)(k+1) \\
& \leq(k+1)^{k}(k+1)^{*} \\
& =(k+1)^{(k+1)} .
\end{aligned}
$$

Thus $(k+1)!\leq(k+1)^{(k+1)}$.
We have shown that $P(k) \Rightarrow P(k+1)$.
Conclusion: By induction, $n!\leq n^{n}$, for all $n \geq 1$.

SOLUTION, CONT.

$$
\begin{aligned}
(k+1)! & =(k!)(k+1) \\
& \leq k^{k}(k+1) \text { using } k!\leq k^{k} \\
& \leq(k+1)^{k}(k+1)^{*} \\
& =(k+1)^{(k+1)} .
\end{aligned}
$$

SOLUTION, CONT.

$$
\begin{aligned}
(k+1)! & =(k!)(k+1) \\
& \leq k^{k}(k+1) \text { using } k!\leq k^{k} \\
& \leq(k+1)^{k}(k+1)^{*} \\
& =(k+1)^{(k+1)} .
\end{aligned}
$$

Thus $(k+1)!\leq(k+1)^{(k+1)}$.

SOLUTION, CONT.

$$
\begin{aligned}
(k+1)! & =(k!)(k+1) \\
& \leq k^{k}(k+1) \text { using } k!\leq k^{k} \\
& \leq(k+1)^{k}(k+1)^{*} \\
& =(k+1)^{(k+1)} .
\end{aligned}
$$

Thus $(k+1)!\leq(k+1)^{(k+1)}$.
We have shown that $P(k) \Rightarrow P(k+1)$.

SOLUTION, CONT.

$$
\begin{aligned}
(k+1)! & =(k!)(k+1) \\
& \leq k^{k}(k+1) \text { using } k!\leq k^{k} \\
& \leq(k+1)^{k}(k+1)^{*} \\
& =(k+1)^{(k+1)} .
\end{aligned}
$$

Thus $(k+1)!\leq(k+1)^{(k+1)}$.
We have shown that $P(k) \Rightarrow P(k+1)$.
Conclusion: By induction, $n!\leq n^{n}$, for all $n \geq 1$.

Recap. $\mathbb{P R O O F} \mathbb{B} \mathbb{Y} \mathbb{I N D U C T I O N}$

Theorem 4.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$.
Suppose that
$P(1)$ is true, and
$P(k) \Longrightarrow P(k+1)$, for arbitrary $k \in \mathbb{N}$.
Then $P(n)$ is true for all $n \in \mathbb{N}$.

REMARKS

- In proof by induction we make the assumption that $P(k)$ holds for an arbitrary $k \geq 1$ and then prove that $P(k+1)$ also holds. For the proof to be correct we must be sure this works for all possible values of k (which is what is meant by "arbitrary"). If it fails for just one value of k then the proof does not work.

REMARKS

- In proof by induction we make the assumption that $P(k)$ holds for an arbitrary $k \geq 1$ and then prove that $P(k+1)$ also holds. For the proof to be correct we must be sure this works for all possible values of k (which is what is meant by "arbitrary"). If it fails for just one value of k then the proof does not work.
- Induction is a powerful method of proof, but sometimes does not give insight into why a result is true.

REMARKS

- In proof by induction we make the assumption that $P(k)$ holds for an arbitrary $k \geq 1$ and then prove that $P(k+1)$ also holds. For the proof to be correct we must be sure this works for all possible values of k (which is what is meant by "arbitrary"). If it fails for just one value of k then the proof does not work.
- Induction is a powerful method of proof, but sometimes does not give insight into why a result is true. Can we understand better why Example 4.4 is true?

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.
Then $s=(2 n-1)+(2 n-3)+\cdots+3+1$.

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.
Then $s=(2 n-1)+(2 n-3)+\cdots+3+1$.
Add: $2 s=2 n+2 n+\ldots 2 n+2 n$

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.
Then $s=(2 n-1)+(2 n-3)+\cdots+3+1$.
Add: $2 s=2 n+2 n+\ldots 2 n+2 n=2(n+n+\ldots n+n)=2 n^{2}$

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.
Then $s=(2 n-1)+(2 n-3)+\cdots+3+1$.
Add: $2 s=2 n+2 n+\ldots 2 n+2 n=2(n+n+\ldots n+n)=2 n^{2}$ So $s=n^{2}$.

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.
Then $s=(2 n-1)+(2 n-3)+\cdots+3+1$.
Add: $2 s=2 n+2 n+\ldots 2 n+2 n=2(n+n+\ldots n+n)=2 n^{2}$ So $s=n^{2}$.

This proof gives more insight.

Example 4.4 says: $1+3+5+\cdots+(2 n-1)=n^{2}$, for all $n \geq 1$.
Let $s=1+3+\cdots+(2 n-3)+(2 n-1) \quad(n$ terms $)$.
Write it backwards.
Then $s=(2 n-1)+(2 n-3)+\cdots+3+1$.
Add: $2 s=2 n+2 n+\ldots 2 n+2 n=2(n+n+\ldots n+n)=2 n^{2}$
So $s=n^{2}$.
This proof gives more insight.
On the other hand, the proof by induction in Example 4.5 does shed light on why the result holds.

SUMMATION NOTATION

Note: to save space, write

$$
1+3+5+\cdots+(2 n-1)=\sum_{j=1}^{n}(2 j-1)
$$

Summation notation

Note: to save space, write

$$
1+3+5+\cdots+(2 n-1)=\sum_{j=1}^{n}(2 j-1)
$$

in which case $P(n)$ would appear as

$$
\sum_{j=1}^{n}(2 j-1)=n^{2}
$$

Summation notation

Note: to save space, write

$$
1+3+5+\cdots+(2 n-1)=\sum_{j=1}^{n}(2 j-1)
$$

in which case $P(n)$ would appear as

$$
\sum_{j=1}^{n}(2 j-1)=n^{2}
$$

This notation is used in exercises.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True so $P(1)$ holds.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True so $P(1)$ holds.
Assume $P(k)$ holds: $\sum_{j=1}^{k}(2 j-1)=k^{2}$.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True so $P(1)$ holds.
Assume $P(k)$ holds: $\sum_{j=1}^{k}(2 j-1)=k^{2}$.
Must show $P(k+1)$ holds: $\sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}$.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True so $P(1)$ holds.

Assume $P(k)$ holds: $\sum_{j=1}^{k}(2 j-1)=k^{2}$.
Must show $P(k+1)$ holds: $\sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}$.

$$
\begin{aligned}
\sum_{j=1}^{k+1}(2 j-1) & =\sum_{j=1}^{k}(2 j-1)+(2(k+1)-1) \\
& =k^{2}+2 k+1 \text { using IH } \\
& =(k+1)^{2} .
\end{aligned}
$$

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True so $P(1)$ holds.

Assume $P(k)$ holds: $\sum_{j=1}^{k}(2 j-1)=k^{2}$.
Must show $P(k+1)$ holds: $\sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}$.

$$
\begin{aligned}
\sum_{j=1}^{k+1}(2 j-1) & =\sum_{j=1}^{k}(2 j-1)+(2(k+1)-1) \\
& =k^{2}+2 k+1 \text { using IH } \\
& =(k+1)^{2} .
\end{aligned}
$$

Therefore $\sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}$, so $P(k+1)$ holds.

Example. For all $n \geq 1, \quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
[Repeated!]
$P(n)$ is $\quad \sum_{j=1}^{n}(2 j-1)=n^{2}$.
First Step: $P(1)$ is $\sum_{j=1}^{1}(2 j-1)=1^{2}$ i.e. $1=1$. True so $P(1)$ holds.
Assume $P(k)$ holds: $\sum_{j=1}^{k}(2 j-1)=k^{2}$.
Must show $P(k+1)$ holds: $\sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}$.

$$
\begin{aligned}
\sum_{j=1}^{k+1}(2 j-1) & =\sum_{j=1}^{k}(2 j-1)+(2(k+1)-1) \\
& =k^{2}+2 k+1 \text { using IH } \\
& =(k+1)^{2} .
\end{aligned}
$$

Therefore $\sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}$, so $P(k+1)$ holds.
Therefore $P(n)$ holds, for all $n \geq 1$.

EXAMPLE 4.6
Prove by induction that, for all $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

EXAMPLE 4.6
Prove by induction that, for all $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Call this equation $P(n)$.

EXAMPLE 4.6
Prove by induction that, for all $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Call this equation $P(n)$.
$P(1)$ is true since $1^{2}=\frac{1(1+1)(2+1)}{6}$.

EXAMPLE 4.6
Prove by induction that, for all $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Call this equation $P(n)$.
$P(1)$ is true since $1^{2}=\frac{1(1+1)(2+1)}{6}$.
Assume $P(k)$ is true.

EXAMPLE 4.6
Prove by induction that, for all $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Call this equation $P(n)$.
$P(1)$ is true since $1^{2}=\frac{1(1+1)(2+1)}{6}$.
Assume $P(k)$ is true. That is

$$
1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

The left side of $P(k+1)$ is

$$
\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2}
$$

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

The left side of $P(k+1)$ is

$$
\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}
$$

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

The left side of $P(k+1)$ is

$$
\begin{aligned}
\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}
\end{aligned}
$$

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

The left side of $P(k+1)$ is

$$
\begin{aligned}
\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}
\end{aligned}
$$

which simplifies to $\frac{(k+1)(k+2)(2 k+3)}{6}$.

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

The left side of $P(k+1)$ is

$$
\begin{aligned}
\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}
\end{aligned}
$$

which simplifies to

$$
\frac{(k+1)(k+2)(2 k+3)}{6}
$$

This is the right side of $P(k+1)$. So $P(k+1)$ is true.

Must show $P(k+1)$ holds:

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

The left side of $P(k+1)$ is

$$
\begin{aligned}
\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}
\end{aligned}
$$

which simplifies to

$$
\frac{(k+1)(k+2)(2 k+3)}{6}
$$

This is the right side of $P(k+1)$. So $P(k+1)$ is true.
So $P(n)$ is true for all $n \in \mathbb{N}$.

$$
1^{2}+2^{2}+3^{2}+\cdots+24^{2}=4900=70^{2}
$$

In 1875, the French mathematician Édouard Lucas challenged his readers to prove this:
A square pyramid of cannon balls contains a square number of cannon balls only when it has 24 cannon balls along its base.

In other words, the only solution of

$$
1^{2}+2^{2}+\cdots+n^{2}=m^{2}
$$

where m, n are integers greater than 1 is $n=24$.

In other words, the only solution of

$$
1^{2}+2^{2}+\cdots+n^{2}=m^{2}
$$

where m, n are integers greater than 1 is $n=24$.

The first proof was given in 1918 by G. N. Watson.
This looks like a curiosity, but the solution leads to a very dense packing of spheres in 24 dimensions. It is also used in physics: bosonic string theory in 26 dimensions. Key words: Leech lattice, Monster group.

Why is 24-dimensional space special?

Why is 24-dimensional space special?

In 2-dimensions the distance from $(1,2)$ to $(0,0)$ is

$$
\sqrt{1^{2}+2^{2}}=\sqrt{5}
$$

Why is 24-dimensional space special?

In 2-dimensions the distance from $(1,2)$ to $(0,0)$ is

$$
\sqrt{1^{2}+2^{2}}=\sqrt{5}
$$

In 3-dimensions the distance from $(1,2,3)$ to $(0,0,0)$ is

$$
\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
$$

Why is 24-dimensional space special?

In 2-dimensions the distance from $(1,2)$ to $(0,0)$ is

$$
\sqrt{1^{2}+2^{2}}=\sqrt{5}
$$

In 3-dimensions the distance from $(1,2,3)$ to $(0,0,0)$ is

$$
\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
$$

In 24-dimensions the distance from $(1,2,3, \ldots, 24)$ to $(0,0,0, \ldots, 0)$ is the integer

$$
\sqrt{1^{2}+2^{2}+3^{2}+\cdots+24^{2}}=70
$$

Why is 24-dimensional space special?

In 2-dimensions the distance from $(1,2)$ to $(0,0)$ is

$$
\sqrt{1^{2}+2^{2}}=\sqrt{5}
$$

In 3-dimensions the distance from $(1,2,3)$ to $(0,0,0)$ is

$$
\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
$$

In 24-dimensions the distance from $(1,2,3, \ldots, 24)$ to $(0,0,0, \ldots, 0)$ is the integer

$$
\sqrt{1^{2}+2^{2}+3^{2}+\cdots+24^{2}}=70
$$

This only happens in 24-dimensions.

EXAMPLE 4.7

An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.

EXAMPLE 4.7

An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.

EXAMPLE 4.7

An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is: $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.

EXAMPLE 4.7

An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.

EXAMPLE 4.7
An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.
Must show $P(k+1)$ holds.

EXAMPLE 4.7
An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.
Must show $P(k+1)$ holds.
$x_{k+1}=x_{k}+2(k+1)$

EXAMPLE 4.7
An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.
Must show $P(k+1)$ holds.
$x_{k+1}=x_{k}+2(k+1)=k(k+1)+2(k+1)$

EXAMPLE 4.7
An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.
Must show $P(k+1)$ holds.
$x_{k+1}=x_{k}+2(k+1)=k(k+1)+2(k+1)=(k+2)(k+1)$.

EXAMPLE 4.7
An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.
Must show $P(k+1)$ holds.
$x_{k+1}=x_{k}+2(k+1)=k(k+1)+2(k+1)=(k+2)(k+1)$.
So $x_{k+1}=((k+1)+1)(k+1)$, i.e. $P(k+1)$ is true.

EXAMPLE 4.7
An infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of integers is defined by the rules $x_{1}=2$ and $x_{n+1}=x_{n}+2(n+1)$, for all $n \geq 1$. Show by induction that $x_{n}=n(n+1)$, for all $n \in \mathbb{N}$.
$P(n)$ is : $\quad x_{n}=n(n+1)$, for $n \in \mathbb{N}$.
$P(1)$ is $x_{1}=1(1+1)$, which is true.
Assume $P(k)$ holds: $x_{k}=k(k+1)$.
Must show $P(k+1)$ holds.
$x_{k+1}=x_{k}+2(k+1)=k(k+1)+2(k+1)=(k+2)(k+1)$.
So $x_{k+1}=((k+1)+1)(k+1)$, i.e. $P(k+1)$ is true.
Therefore $P(n)$ holds for all $n \in \mathbb{N}$.

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$ $P(2)$ true, $\mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$
$P(2)$ true, $\mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$
$P(3)$ true, $\mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$
$P(2)$ true, $\mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$
$P(3)$ true, $\mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$
$P(4)$ true, $\mathrm{k}=4, \quad P(4) \Longrightarrow P(5)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$ $P(2)$ true, $\mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$ $P(3)$ true, $\quad \mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$
$P(4)$ true, $\mathrm{k}=4, \quad P(4) \Longrightarrow P(5)$
$P(5)$ true, $\mathrm{k}=5, \quad P(5) \Longrightarrow P(6)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$ $P(2)$ true, $\quad \mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$ $P(3)$ true, $\quad \mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$ $P(4)$ true, $\mathrm{k}=4, \quad P(4) \Longrightarrow P(5)$ $P(5)$ true, $\mathrm{k}=5, \quad P(5) \Longrightarrow P(6)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$ $P(2)$ true, $\quad \mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$ $P(3)$ true, $\quad \mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$ $P(4)$ true, $\mathrm{k}=4, \quad P(4) \Longrightarrow P(5)$ $P(5)$ true, $\mathrm{k}=5, \quad P(5) \Longrightarrow P(6)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$ $P(2)$ true, $\quad \mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$ $P(3)$ true, $\quad \mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$ $P(4)$ true, $\mathrm{k}=4, \quad P(4) \Longrightarrow P(5)$ $P(5)$ true, $\mathrm{k}=5, \quad P(5) \Longrightarrow P(6)$

Recap: Proof by Induction

Theorem 3.2. Let $P(n)$ be a predicate, defined for all $n \in \mathbb{N}$. Suppose that
(1) $P(1)$ is true, and
(2) $P(k) \Longrightarrow P(k+1)$, for $k \in \mathbb{N}$.

Then $P(n)$ is true for all $n \in \mathbb{N}$.
Idea: $\quad P(1)$ true, $\mathrm{k}=1, \quad P(1) \Longrightarrow P(2)$ $P(2)$ true, $\quad \mathrm{k}=2, \quad P(2) \Longrightarrow P(3)$ $P(3)$ true, $\quad \mathrm{k}=3, \quad P(3) \Longrightarrow P(4)$ $P(4)$ true, $\quad \mathrm{k}=4, \quad P(4) \Longrightarrow P(5)$ $P(5)$ true, $\mathrm{k}=5, \quad P(5) \Longrightarrow P(6)$
$P(n)$ true, for all $n \in \mathbb{N}$.

Change of starting point

It is possible to start induction at some point other than $n=1$.

Change of starting point

It is possible to start induction at some point other than $n=1$. In this case, use the following version of the Principle of Induction.

Change of starting point

It is possible to start induction at some point other than $n=1$. In this case, use the following version of the Principle of Induction.

Let $s \in \mathbb{Z}$. Assume that $P(n)$ is a predicate, defined for all $n \geq s$.

Change of starting point

It is possible to start induction at some point other than $n=1$. In this case, use the following version of the Principle of Induction.

Let $s \in \mathbb{Z}$. Assume that $P(n)$ is a predicate, defined for all $n \geq s$. Assume further
(1') that $P(s)$ is true

Change of starting point

It is possible to start induction at some point other than $n=1$. In this case, use the following version of the Principle of Induction.

Let $s \in \mathbb{Z}$. Assume that $P(n)$ is a predicate, defined for all $n \geq s$. Assume further
(1') that $P(s)$ is true and
(2') that if $P(k)$ is true then $P(k+1)$ is true, for an arbitrary $k \geq s$.

Change of starting point

It is possible to start induction at some point other than $n=1$. In this case, use the following version of the Principle of Induction.

Let $s \in \mathbb{Z}$. Assume that $P(n)$ is a predicate, defined for all $n \geq s$. Assume further
(1) that $P(s)$ is true and
(2') that if $P(k)$ is true then $P(k+1)$ is true, for an arbitrary $k \geq s$.
Then $P(n)$ is true for all $n \geq s$.

EXAMPLE 4.8
Show that $2^{n}>n^{3}$, for all $n \geq 10$.

EXAMPLE 4.8
Show that $2^{n}>n^{3}$, for all $n \geq 10$.
Note that $2^{9}=512<729=9^{3}$, so the result does not hold when $n=9$.

EXAMPLE 4.8
Show that $2^{n}>n^{3}$, for all $n \geq 10$.
Note that $2^{9}=512<729=9^{3}$, so the result does not hold when $n=9$.
$P(10)$ is true, since $2^{10}=1024>1000=10^{3}$.

EXAMPLE 4.8
Show that $2^{n}>n^{3}$, for all $n \geq 10$.
Note that $2^{9}=512<729=9^{3}$, so the result does not hold when $n=9$.
$P(10)$ is true, since $2^{10}=1024>1000=10^{3}$.
Assume $P(k)$, where $k \geq 10$. So $2^{k}>k^{3}$.

EXAMPLE 4.8
Show that $2^{n}>n^{3}$, for all $n \geq 10$.
Note that $2^{9}=512<729=9^{3}$, so the result does not hold when $n=9$.
$P(10)$ is true, since $2^{10}=1024>1000=10^{3}$.
Assume $P(k)$, where $k \geq 10$. So $2^{k}>k^{3}$.
Must prove $P(k+1)$: $2^{k+1}>(k+1)^{3}$.

The left side of $P(k+1)$ is 2^{k+1}

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1 .
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

Must prove:
That is

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1 .
$$

$$
k^{3}>3 k^{2}+3 k+1 .
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

Must prove: $2 k^{3}>k^{3}+3 k^{2}+3 k+1$. $k^{3}>3 k^{2}+3 k+1$.

Since $k \geq 10$,

$$
k^{3}=k \cdot k^{2} \geq 10 k^{2}
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1 .
$$

$$
k^{3}>3 k^{2}+3 k+1
$$

Since $k \geq 10$,

$$
k^{3}=k \cdot k^{2} \geq 10 k^{2}=3 k^{2}+7 k^{2}
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1 .
$$

$$
k^{3}>3 k^{2}+3 k+1
$$

Since $k \geq 10$,

$$
k^{3}=k \cdot k^{2} \geq 10 k^{2}=3 k^{2}+7 k^{2} \geq 3 k^{2}+7(10 k)
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1 .
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1 .
$$

$$
k^{3}>3 k^{2}+3 k+1
$$

Since $k \geq 10$,

$$
\begin{aligned}
k^{3}=k \cdot k^{2} & \geq 10 k^{2}=3 k^{2}+7 k^{2} \geq 3 k^{2}+7(10 k) \\
& =3 k^{2}+3 k+67 k
\end{aligned}
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1
$$

$$
k^{3}>3 k^{2}+3 k+1
$$

Since $k \geq 10$,

$$
\begin{aligned}
k^{3}=k \cdot k^{2} & \geq 10 k^{2}=3 k^{2}+7 k^{2} \geq 3 k^{2}+7(10 k) \\
& =3 k^{2}+3 k+67 k>3 k^{2}+3 k+1
\end{aligned}
$$

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1
$$

That is

$$
k^{3}>3 k^{2}+3 k+1
$$

Since $k \geq 10$,

$$
\begin{aligned}
k^{3}=k \cdot k^{2} & \geq 10 k^{2}=3 k^{2}+7 k^{2} \geq 3 k^{2}+7(10 k) \\
& =3 k^{2}+3 k+67 k>3 k^{2}+3 k+1
\end{aligned}
$$

So $P(k+1)$ holds.

The left side of $P(k+1)$ is 2^{k+1} and, by $P(k)$,

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{3} .
$$

The right side of $P(k+1)$ is

$$
(k+1)^{3}=k^{3}+3 k^{2}+3 k+1
$$

Must prove:

$$
2 k^{3}>k^{3}+3 k^{2}+3 k+1
$$

That is

$$
k^{3}>3 k^{2}+3 k+1
$$

Since $k \geq 10$,

$$
\begin{aligned}
k^{3}=k \cdot k^{2} & \geq 10 k^{2}=3 k^{2}+7 k^{2} \geq 3 k^{2}+7(10 k) \\
& =3 k^{2}+3 k+67 k>3 k^{2}+3 k+1
\end{aligned}
$$

So $P(k+1)$ holds.
Conclusion: $P(n)$ holds for all $n \geq 10$.

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

The first few Fibonacci numbers are
1,1,

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

The first few Fibonacci numbers are
1,1,2,

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

The first few Fibonacci numbers are
1, 1,2,3,

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2 .
\end{aligned}
$$

The first few Fibonacci numbers are
1, 1,2,3,5,

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

The first few Fibonacci numbers are
$1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots$

Fibonacci numbers

The Fibonacci numbers are the elements of the sequence $f_{1}, f_{2}, f_{3}, \ldots$ generated by the rules

$$
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n+1} & =f_{n}+f_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

The first few Fibonacci numbers are

$$
1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots
$$

The sequence is named after the Italian Fibonacci, who introduced the sequence in 1202 AD, although the it had been described earlier by Indian musicians (Virahanka, 700 AD). The sequence appears in many places in mathematics as well as in biology: DNA, trees, leaves, cones.

21 anticlockwise spirals.

21 anticlockwise spirals. 34 clockwise.

More Fibonacci numbers in nature

- primrose, buttercup
- corn marigold, cineria

8

- black eyed Susan, chicory
- daisies
- pine cone spirals
- sunflower spirals

EXAMPLE 4.9

If we take every third Fibonacci number we obtain a new sequence of numbers,

$$
f_{3}, f_{6}, f_{9}, f_{12}, \ldots
$$

with values
$2,8,34,144,610,2584,10946,46368,196418, \ldots$

EXAMPLE 4.9

If we take every third Fibonacci number we obtain a new sequence of numbers,

$$
f_{3}, f_{6}, f_{9}, f_{12}, \ldots
$$

with values

$$
2,8,34,144,610,2584,10946,46368,196418, \ldots
$$

Prove, by induction that $f_{3 n}$ is even, for all $n \geq 1$.
$P(n)$ is the statement that $f_{3 n}$ is even.
$P(n)$ is the statement that $f_{3 n}$ is even. $P(1)$ is true since $f_{3}=2$.
$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true
$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.
$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.

$$
f_{3(k+1)}=f_{3 k+3}
$$

$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.

$$
f_{3(k+1)}=f_{3 k+3}=f_{3 k+2}+f_{3 k+1}
$$

$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.

$$
\begin{aligned}
f_{3(k+1)}=f_{3 k+3} & =f_{3 k+2}+f_{3 k+1} \\
& =\left(f_{3 k+1}+f_{3 k}\right)+f_{3 k+1}
\end{aligned}
$$

$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.

$$
\begin{aligned}
f_{3(k+1)}=f_{3 k+3} & =f_{3 k+2}+f_{3 k+1} \\
& =\left(f_{3 k+1}+f_{3 k}\right)+f_{3 k+1} \\
& =2 f_{3 k+1}+2 q
\end{aligned}
$$

$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.

$$
\begin{aligned}
f_{3(k+1)}=f_{3 k+3} & =f_{3 k+2}+f_{3 k+1} \\
& =\left(f_{3 k+1}+f_{3 k}\right)+f_{3 k+1} \\
& =2 f_{3 k+1}+2 q .
\end{aligned}
$$

So $f_{3(k+1)}$ is even. i.e. $P(k+1)$ is true.
$P(n)$ is the statement that $f_{3 n}$ is even.
$P(1)$ is true since $f_{3}=2$.
Assume $P(k)$ is true : so $f_{3 k}=2 q$, for some $q \in \mathbb{Z}$.
Must prove $P(k+1)$: that is $f_{3(k+1)}$ is even.

$$
\begin{aligned}
f_{3(k+1)}=f_{3 k+3} & =f_{3 k+2}+f_{3 k+1} \\
& =\left(f_{3 k+1}+f_{3 k}\right)+f_{3 k+1} \\
& =2 f_{3 k+1}+2 q
\end{aligned}
$$

So $f_{3(k+1)}$ is even. i.e. $P(k+1)$ is true.
By induction, $P(n)$ holds for all $n \geq 1$.

A GEOMETRIC EXAMPLE OF INDUCTION

EXAMPLE 4.10

Choose n points on a circle and connect them in order to produce a polygon. Show, by induction, that the interior angles add to $180(n-2)$ degrees, for $n \geq 3$.

A GEOMETRIC EXAMPLE OF INDUCTION

EXAMPLE 4.10
Choose n points on a circle and connect them in order to produce a polygon. Show, by induction, that the interior angles add to $180(n-2)$ degrees, for $n \geq 3$.

Let $P(n)$ be the statement about interior angles.

A GEOMETRIC EXAMPLE OF INDUCTION

EXAMPLE 4.10
Choose n points on a circle and connect them in order to produce a polygon. Show, by induction, that the interior angles add to $180(n-2)$ degrees, for $n \geq 3$.

Let $P(n)$ be the statement about interior angles.
$P(3)$ is true: the angles of a triangle add to 180 degrees.

A GEOMETRIC EXAMPLE OF INDUCTION

EXAMPLE 4.10
Choose n points on a circle and connect them in order to produce a polygon. Show, by induction, that the interior angles add to $180(n-2)$ degrees, for $n \geq 3$.

Let $P(n)$ be the statement about interior angles.
$P(3)$ is true: the angles of a triangle add to 180 degrees.
Assume that $P(k)$ is true: the interior angles a polygon with k vertices add to $180(k-2)$ degrees.

A polygon with $k+1$ vertices is obtained from a polygon with k vertices, by adding an extra vertex.

A polygon with $k+1$ vertices is obtained from a polygon with k vertices, by adding an extra vertex.

A polygon with $k+1$ vertices is obtained from a polygon with k vertices, by adding an extra vertex.

This increases the sum of the interior angles by 180 degrees, giving $180(k-1)$ degrees. Therefore $P(k+1)$ is true.

A polygon with $k+1$ vertices is obtained from a polygon with k vertices, by adding an extra vertex.

This increases the sum of the interior angles by 180 degrees, giving $180(k-1)$ degrees. Therefore $P(k+1)$ is true.
So $P(n)$ is true for all $n \geq 3$.

Objectives

You should now be able to:
(I) understand the principle of proof by induction;
(iI) carry out proof by induction, both starting with the integer 1 and starting with an integer other than 1.

