
INTRODUCTION

Proof?

Many results of lower level mathematics are given without
proof.

1+1 = 2.
The sum of the angles in any triangle is 180 degrees.
The value of π is 3.14159 . . . .
The value of sin and cos does not depend on the triangle.
For any angle θ , sin2

θ +cos2θ = 1.
The area of a circle of radius r is πr2.

Can you explain why these are true?
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PRINCIPIA MATHEMATICA

A 3-volume work on the foundations of mathematics, by A N
Whitehead and Bertrand Russell, published 1910, 1912, 1913.

Extract from Volume I, page 379:
Principia_Mathematica_theorem_54-43.png (PNG Image, 3000×1250 pixels) - Scaled (44%) http://upload.wikimedia.org/wikipedia/en/f/f5/Principia_Mathematica_theorem_54-43.png

1 of 1 22/06/2011 13:09

The proof that 1+1 = 2 is completed in Volume II, page 86, with
the comment, “The above proposition is occasionally useful.”
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1089

Take any three-digit integer (not a palindrome like 232).

732

Reverse it, and subtract the smaller from the larger.
732−237 = 495

Reverse and add (writing 73=073, for example).
495+594 = 1089

Experiments suggest that answer is always 1089.
To be sure, we need a proof.
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Proof.

A number with digits abc is 100a+10b+c.

(100a+10b+c)− (100c+10b+a) = 99a−99c = 99(a−c),

a multiple of 99.

These 3-digit multiples of 99 are

198,297,396,495,594,693,792,891.

All look like xyz where x +z = 9 and y = 9.

Finally,
(100x +10y +z)+(100z +10y +x) = 900+(90+90)+9

= 1089.
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WHY PROOF?

How to shrink wrap 6 cans of beer to get the smallest volume?

[You are not allowed to stack them on top of each other.]

Arranging them in a line gives the smallest volume.

C C C C C C

Not true for 7 cans. This is better ...

Exercise. Check this.
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Hint.
It is enough to find area on top. Assume cans have radius=1.

Blue area =
√

3− π

2 Red area = 1
2(2×2−π)
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SAUSAGE PROBLEM

How to shrink wrap 10 snooker balls to get smallest volume?

Answer. Arrange them in a line, to get a sausage shaped
wrapping.

For 50 balls, the solution is also a sausage.
For 56 balls, the solution is also a sausage.

Not true for 57 balls!

These examples illustrate the need for careful proof to be
sure that a statement is always true.
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ONE MORE EXAMPLE ...

Circle of diameter 1 Circumference = π

Red curve has length 4
Continue in this way to get π = 4?
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COMMON EQUIVALENCES

Equivalence Name
p←→ q⇐⇒ (p −→ q)∧ (q −→ q) Equivalence law
p −→ q⇐⇒¬p∨q Implication law
¬¬p⇐⇒ p Double Negation law
p∧p⇐⇒ p and p∨p⇐⇒ p Idempotent laws
p∧q⇐⇒ q∧p and p∨q⇐⇒ q∨p Commutative laws
(p∧q)∧ r ⇐⇒ p∧ (q∧ r) Associative law I
(p∨q)∨ r ⇐⇒ p∨ (q∨ r) Associative law II
(p∧q)∨ r ⇐⇒ (p∨ r)∧ (q∨ r) Distributative law I
(p∨q)∧ r ⇐⇒ (p∧ r)∨ (q∧ r) Distributativ law II
¬(p∧q)⇐⇒¬p∨¬q De Morgan’s law I
¬(p∨q)⇐⇒¬p∧¬q De Morgan’s law II
p∧ (p∨q)⇐⇒ p Absorbtion law I
p∨ (p∧q)⇐⇒ p Absorbtion law I
p −→ q⇐⇒¬p −→¬q Contrapositive law
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COMMON RULES OF INFERENCE

Rule of Inference Name

p
}
=⇒ q Modus Ponens

p −→ q

¬q
}
=⇒¬p Modus Tollens

p −→ q

p −→ q
}
=⇒ p −→ r Transitivity

q −→ r

p∧q =⇒ q Simplification

p =⇒ p∨q Addition
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4.INDUCTION

Proof by induction is a method of proving that a sequence of
statements are all true.

Induction can be used to prove for example that, for all integers
n ≥ 1,

1+3+5+ · · ·+(2n−1) = n2,

or that, for all integers n ≥ 1,

n!≤ nn.
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In the first case above the task is to prove that the entries in the
second and third columns of the table below are equal.

n sum of first n odd numbers n2

1 1 1×1
2 1+3 = 4 2×2
3 1+3+5 = 9 3×3
4 1+3+5+7 = 16 4×4
5 1+3+5+7+9 = 25 5×5
...

...
...

100 1+ · · ·+199 10000
...

...
...

k 1+ · · ·+(2k −1) k2

...
...

...
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THE GENERAL CASE

In both cases, a predicate P(n) is given, and induction is used
to prove

∀n ∈ N P(n),

or equivalently
{n ∈ N |P(n)}= N

In the first case

P(n) is 1+3+5+ · · ·+(2n−1) = n2

and in the second case P(n) is

P(n) is n!≤ nn.
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THE IDEA

Recall that the set of natural numbers N is the set {1,2, · · ·} of
positive integers.

Induction is based on a fundamental property of N:

THEOREM 4.1

A subset S of N which satisfies both
1 1 ∈ S and
2 for all n ∈ N, if n ∈ S then n+1 ∈ S;

is equal to N.

[This follows from an axiom for N, called “Well-Ordering”. More
details will be covered in MAS1702.]

Using Theorem 4.1, to check that a given set S is equal to N, it
is enough to verify that both 4.1.1 and 4.1.2 above hold;
which is what is done in a proof by induction.
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THE PRINCIPLE OF INDUCTION

In the Theorem below P(n) is a predicate defined for all
integers n ≥ 1.

For example P(n) might be, “the sum of the first n odd positive
integers equals n2”, as in the first example above,

or it could be “n!≤ nn”, as in the second example.

THEOREM 4.2

Let P(n) be a predicate defined for all integers n ≥ 1. Suppose
that
(1) P(1) is true, and

(2) For arbitrary k ∈ N,
P(k) =⇒ P(k +1).

Then P(n) is true for all n ∈ N.
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PROOF

This follows directly from Theorem 4.1:

taking S = {n ∈ N |P(n)}
4.2.1 implies 1 ∈ S and
since k is arbitrary, 4.2.2, implies that, for all n ∈ N,
n ∈ S =⇒ n+1 ∈ S.

From Theorem 4.1, it follows that S = N, so P(n) is true for all
n ∈ N.
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EXAMPLE 4.3

Prove by induction that 1+2+ · · ·+n = n(n+1)
2 , for all integers

n ≥ 1.

In this case P(n) is 1+2+ · · ·+n = n(n+1)
2 .

The first step is to show that P(1) is true.
P(1) is 1 = (1×2)/2, so is true.

The next step is to show that, for an arbitrary k , if P(k) is true
then P(k +1) is true.

P(k) is 1+2+ · · ·+k = k(k+1)
2 :

it’s obtained by replacing n by k throughout P(n).

We assume 1+2+ · · ·+k = k(k+1)
2 and must show that

P(k +1) is true: that is

1+2+ · · ·+(k +1) =
(k +1)((k +1)+1)

2
.
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P(k +1) is true because
The left side equals 1+3+ · · ·+k +(k +1)

= k(k+1)
2 +(k +1), (as P(k) is true

= k2+k+2(k+1)
2

= k2+3k+2
2

= (k+1)(k+2)
2 = (k+1)((k+1)+1)

2 .
Therefore P(k +1) holds.

Conclusion. By induction, P(n) holds for all n ≥ 1.
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EXAMPLE 4.4

Prove by induction that

1+3+5+ · · ·+(2n−1) = n2

for all n ≥ 1.

Solution. P(n) is the statement

1+3+5+ · · ·+(2n−1) = n2.

Proof by induction takes the following form.

Show that P(1) is true. This is the case n = 1.

In this example when n = 1 we have the proposition 1 = 12.

Since this is true the first part of the proof is complete.
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The inductive hypothesis (IH)
Assume that P(k) is true. In the example P(k) is

1+3+ · · ·+(2k −1) = k2,

where k ≥ 1.

This is obtained by replacing every n in P(n) with k .
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The inductive step
Show that P(k +1) holds: in this case that

1+3+ · · ·+(2(k +1)−1) = (k +1)2.

This is true because
The left side equals 1+3+ · · ·+(2k −1)+(2(k +1)−1)

= k2 +(2(k +1)−1)
= k2 +2k +1
= (k +1)2.

Conclusion. By induction, P(n) holds for all n ≥ 1.
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EXAMPLE 4.5

Prove by induction that n!≤ nn, for all integers n ≥ 1.

Solution.
P(n) is n!≤ nn.
Step 1. If n = 1 then n! = 1 and nn = 1.
So P(1) holds.

Step 2.
The IH: Assume that P(k) holds, for some k .

That is k !≤ kk .

Inductive step:
Show that P(k +1) holds. That is, show that
(k +1)!≤ (k +1)(k+1).
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SOLUTION, CONT.

(k +1)! = (k !)(k +1)

≤ kk (k +1) using k !≤ kk

≤ (k +1)k (k +1)*

= (k +1)(k+1).

Thus (k +1)!≤ (k +1)(k+1).

We have shown that P(k)⇒ P(k +1).

Conclusion: By induction, n!≤ nn, for all n ≥ 1.

93/98



SOLUTION, CONT.

(k +1)! = (k !)(k +1)

≤ kk (k +1) using k !≤ kk

≤ (k +1)k (k +1)*

= (k +1)(k+1).

Thus (k +1)!≤ (k +1)(k+1).

We have shown that P(k)⇒ P(k +1).

Conclusion: By induction, n!≤ nn, for all n ≥ 1.

94/98



SOLUTION, CONT.

(k +1)! = (k !)(k +1)

≤ kk (k +1) using k !≤ kk

≤ (k +1)k (k +1)*

= (k +1)(k+1).

Thus (k +1)!≤ (k +1)(k+1).

We have shown that P(k)⇒ P(k +1).

Conclusion: By induction, n!≤ nn, for all n ≥ 1.

95/98



SOLUTION, CONT.

(k +1)! = (k !)(k +1)

≤ kk (k +1) using k !≤ kk

≤ (k +1)k (k +1)*

= (k +1)(k+1).

Thus (k +1)!≤ (k +1)(k+1).

We have shown that P(k)⇒ P(k +1).

Conclusion: By induction, n!≤ nn, for all n ≥ 1.

96/98



SOLUTION, CONT.

(k +1)! = (k !)(k +1)

≤ kk (k +1) using k !≤ kk

≤ (k +1)k (k +1)*

= (k +1)(k+1).

Thus (k +1)!≤ (k +1)(k+1).

We have shown that P(k)⇒ P(k +1).

Conclusion: By induction, n!≤ nn, for all n ≥ 1.

97/98



SOLUTION, CONT.

(k +1)! = (k !)(k +1)

≤ kk (k +1) using k !≤ kk

≤ (k +1)k (k +1)*

= (k +1)(k+1).

Thus (k +1)!≤ (k +1)(k+1).

We have shown that P(k)⇒ P(k +1).

Conclusion: By induction, n!≤ nn, for all n ≥ 1.

98/98



Recap. PROOF BY INDUCTION
Theorem 4.2. Let P(n) be a predicate, defined for all n ∈ N.
Suppose that

P(1) is true, and
P(k) =⇒ P(k +1), for arbitrary k ∈ N.

Then P(n) is true for all n ∈ N.
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REMARKS

In proof by induction we make the assumption that P(k)
holds for an arbitrary k ≥ 1 and then prove that P(k +1)
also holds. For the proof to be correct we must be sure this
works for all possible values of k (which is what is meant
by “arbitrary”). If it fails for just one value of k then the
proof does not work.

Induction is a powerful method of proof, but sometimes
does not give insight into why a result is true.
Can we understand better why Example 4.4 is true?
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Example 4.4 says: 1+3+5+ · · ·+(2n−1) = n2, for all n ≥ 1.

Let s = 1+3+ · · ·+(2n−3)+(2n−1) (n terms).

Write it backwards.

Then s = (2n−1)+(2n−3)+ · · ·+3+1.

Add: 2s = 2n+2n+ . . .2n+2n = 2(n+n+ . . .n+n) = 2n2

So s = n2.

This proof gives more insight.

On the other hand, the proof by induction in Example 4.5 does
shed light on why the result holds.
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SUMMATION NOTATION

Note: to save space, write

1+3+5+ · · ·+(2n−1) =
n

∑
j=1

(2j−1)

in which case P(n) would appear as

n

∑
j=1

(2j−1) = n2

This notation is used in exercises.
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Example. For all n ≥ 1, ∑
n
j=1(2j−1) = n2. [Repeated!]

P(n) is ∑
n
j=1(2j−1) = n2.

First Step: P(1) is ∑
1
j=1(2j−1) = 12 i.e. 1 = 1. True so P(1)

holds.

Assume P(k) holds: ∑
k
j=1(2j−1) = k2.

Must show P(k +1) holds: ∑
k+1
j=1 (2j−1) = (k +1)2.

k+1

∑
j=1

(2j−1) =
k

∑
j=1

(2j−1)+(2(k +1)−1)

= k2 +2k +1 using IH

= (k +1)2.

Therefore ∑
k+1
j=1 (2j−1) = (k +1)2, so P(k +1) holds.

Therefore P(n) holds, for all n ≥ 1.
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EXAMPLE 4.6

Prove by induction that, for all n ∈ N,

12 +22 +32 + · · ·+n2 =
n(n+1)(2n+1)

6

Call this equation P(n).

P(1) is true since 12 = 1(1+1)(2+1)
6 .

Assume P(k) is true. That is

12 +22 +32 + · · ·+k2 =
k(k +1)(2k +1)

6
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Must show P(k +1) holds:

12 +22 +32 + · · ·+(k +1)2 =
(k +1)((k +1)+1)(2(k +1)+1)

6

The left side of P(k +1) is

12 +22 +32 + · · ·+k2︸ ︷︷ ︸+(k +1)2 =
k(k +1)(2k +1)

6
+(k +1)2

=
k(k +1)(2k +1)+6(k +1)2

6

which simplifies to
(k +1)(k +2)(2k +3)

6
.

This is the right side of P(k +1). So P(k +1) is true.

So P(n) is true for all n ∈ N.
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24

12 +22 +32 + · · ·+242 = 4900 = 702

In 1875, the French mathematician Édouard Lucas challenged
his readers to prove this:
A square pyramid of cannon balls contains a square number of

cannon balls only when it has 24 cannon balls along its base.

In 1875, Édouard Lucas challenged his readers to prove this:

A square pyramid of cannon balls contains a square
number of cannon balls only when it has 24 cannon
balls along its base.

12 + 22 + · · · + 242 = 702
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In other words, the only solution of

12 +22 + · · ·+n2 = m2

where m,n are integers greater than 1 is n = 24.

The first proof was given in 1918 by G. N. Watson.

This looks like a curiosity, but the solution leads to a very dense
packing of spheres in 24 dimensions. It is also used in physics:
bosonic string theory in 26 dimensions.
Key words: Leech lattice, Monster group.
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Why is 24-dimensional space special?

In 2-dimensions the distance from (1,2) to (0,0) is√
12 +22 =

√
5.

In 3-dimensions the distance from (1,2,3) to (0,0,0) is√
12 +22 +32 =

√
14.

In 24-dimensions the distance from (1,2,3, . . . ,24) to
(0,0,0, . . . ,0) is the integer√

12 +22 +32 + · · ·+242 = 70.

This only happens in 24-dimensions.
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EXAMPLE 4.7
An infinite sequence x1,x2,x3, . . . of integers is defined by the
rules x1 = 2 and xn+1 = xn +2(n+1), for all n ≥ 1. Show by
induction that xn = n(n+1), for all n ∈ N.

P(n) is : xn = n(n+1), for n ∈ N.

P(1) is x1 = 1(1+1), which is true.

Assume P(k) holds: xk = k(k +1).

Must show P(k +1) holds.

xk+1 = xk +2(k +1) = k(k +1)+2(k +1) = (k +2)(k +1).

So xk+1 = ((k +1)+1)(k +1), i.e. P(k +1) is true.

Therefore P(n) holds for all n ∈ N.
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RECAP: PROOF BY INDUCTION

Theorem 3.2. Let P(n) be a predicate, defined for all n ∈ N.
Suppose that

(1) P(1) is true, and

(2) P(k) =⇒ P(k +1), for k ∈ N.
Then P(n) is true for all n ∈ N.

Idea: P(1) true, k=1, P(1) =⇒ P(2)
P(2) true, k=2, P(2) =⇒ P(3)
P(3) true, k=3, P(3) =⇒ P(4)
P(4) true, k=4, P(4) =⇒ P(5)
P(5) true, k=5, P(5) =⇒ P(6)
•
•
•

P(n) true, for all n ∈ N.
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CHANGE OF STARTING POINT

It is possible to start induction at some point other than n = 1.

In this case, use the following version of the Principle of
Induction.

Let s ∈ Z. Assume that P(n) is a predicate, defined for all n ≥ s.
Assume further

(1′) that P(s) is true and
(2′) that if P(k) is true then P(k +1) is true, for an arbitrary

k ≥ s.

Then P(n) is true for all n ≥ s.
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EXAMPLE 4.8
Show that 2n > n3, for all n ≥ 10.

Note that 29 = 512 < 729 = 93, so the result does not hold
when n = 9.

P(10) is true, since 210 = 1024 > 1000 = 103.

Assume P(k), where k ≥ 10. So 2k > k3.

Must prove P(k +1): 2k+1 > (k +1)3.
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The left side of P(k +1) is 2k+1

and, by P(k),

2k+1 = 2 ·2k > 2k3.

The right side of P(k +1) is

(k +1)3 = k3 +3k2 +3k +1.

Must prove: 2k3 > k3 +3k2 +3k +1.

That is k3 > 3k2 +3k +1.

Since k ≥ 10,

k3 = k ·k2 ≥ 10k2 = 3k2 +7k2 ≥ 3k2 +7(10k)
= 3k2 +3k +67k > 3k2 +3k +1.

So P(k +1) holds.

Conclusion: P(n) holds for all n ≥ 10.
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FIBONACCI NUMBERS

The Fibonacci numbers are the elements of the sequence
f1, f2, f3, . . . generated by the rules

f1 = 1
f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.

The first few Fibonacci numbers are

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, . . .

The sequence is named after the Italian Fibonacci, who
introduced the sequence in 1202 AD, although the it had been
described earlier by Indian musicians (Virahanka, 700 AD). The
sequence appears in many places in mathematics as well as in
biology: DNA, trees, leaves, cones.
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21 anticlockwise spirals. 34 clockwise.
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MORE FIBONACCI NUMBERS IN NATURE

primrose, buttercup 8
corn marigold, cineria 13
black eyed Susan, chicory 21
daisies 13, 21, 34
pine cone spirals 8, 13
sunflower spirals 21,34,55,. . . 233.
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EXAMPLE 4.9

If we take every third Fibonacci number we obtain a new
sequence of numbers,

f3, f6, f9, f12, . . .

with values

2,8,34,144,610,2584,10946,46368,196418, . . .

Prove, by induction that f3n is even, for all n ≥ 1.
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P(n) is the statement that f3n is even.

P(1) is true since f3 = 2.
Assume P(k) is true : so f3k = 2q, for some q ∈ Z.

Must prove P(k +1): that is f3(k+1) is even.

f3(k+1) = f3k+3 = f3k+2 + f3k+1

= (f3k+1 + f3k )+ f3k+1

= 2f3k+1 +2q.

So f3(k+1) is even. i.e. P(k +1) is true.

By induction, P(n) holds for all n ≥ 1.
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A GEOMETRIC EXAMPLE OF INDUCTION

EXAMPLE 4.10
Choose n points on a circle and connect them in order to
produce a polygon. Show, by induction, that the interior angles
add to 180(n−2) degrees, for n ≥ 3.

•

••
•

•
• •

Let P(n) be the statement about interior angles.
P(3) is true: the angles of a triangle add to 180 degrees.
Assume that P(k) is true: the interior angles a polygon with k
vertices add to 180(k −2) degrees.
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A polygon with k +1 vertices is obtained from a polygon with k
vertices, by adding an extra vertex.

•

•
•

•

•

•
•

1

2
3

4

k −1

k
k +1

This increases the sum of the interior angles by 180 degrees,
giving 180(k −1) degrees. Therefore P(k +1) is true.

So P(n) is true for all n ≥ 3.
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OBJECTIVES

You should now be able to:
(I) understand the principle of proof by induction;

(II) carry out proof by induction, both starting with the integer 1
and starting with an integer other than 1.
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