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Abstract

We consider a knot to be an embedding of the unit circle in R3. Knots are equivalent if one
can be continuously deformed to obtain the other. The classical problem in knot theory is deciding
whether two knots are equivalent. This problem requires a knot invariant. A knot invariant is
a function which is preserved under equivalence of knots. We aim to define a significant knot
invariant known as the Jones Polynomial. To obtain the original definition of the Jones Polynomial
we study braids and aim to understand their relation to knots. In the final sections we study some
applications of the Jones Polynomial.
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1 Introduction

We consider a knot K to be a knotted loop of string. We can deform the knot without breaking the
string such that the resulting knot is equivalent to the original. The classical problem of knot theory
is whether two knots are equivalent. To study knots effectively we work with planar projections
known as knot diagrams. We present these ideas formally in Section 2. We apply the ideas presented
throughout the report to the trefoil knot diagram and it’s mirror image in Figure 1.1. Considering
these knots there appears to be no way of continuously deforming one into the other. However this
is not enough to prove they are distinct. In order to prove two knots are distinct we require the
idea of a knot invariant; a function which is preserved under equivalence of knots. It is a difficult
problem to define powerful knot invariants which are efficient to compute. The focus of the report is
the Jones polynomial; a breakthrough knot invariant discovered using a representation of the braid
group Bn.

Figure 1.1: The trefoil knot and the mirror image of the trefoil knot diagrams respectively

Braids can be considered intuitively as n strands woven between n end points. The set of n stranded
braids form a group Bn. Section 3 is concerned with understanding the relation between knots and
braids. By Alexander’s Theorem 3.2.3 it can be shown every knot K gives rise to a braid β via the
closure of the braid β ∼= K. By Markov’s Theorem 3.3.1 there are three modifications which can be
applied to a braid under which their closures remain equivalent. Therefore a function on the braid
group is a knot invariant if it is invariant under a series of Markov moves. This allows us to use
braids to define knot invariants. The aim is to represent the braid as an element of an algebraic
structure which is similar but more restricted than the braid group.

In the case of the Jones polynomial we introduce the Temperley-Lieb algebras T Ln. In Section
4 we aim to show there is a diagrammatic interpretation of T Ln using simple n-diagrams. We can
view these diagrams as braids in which the crossings have been resolved.

Section 5 is concerned with constructing the Jones polynomial VK(X). We construct a repre-
sentation ρn of the braid group on the Temperley-Lieb algebra

ρn : Bn → T Ln

We then compose this with the Markov trace tr

tr ◦ ρn : Bn → T Ln → C[X,X−1] (1.1)

which assigns to each braid β a Laurent polynomial. We introduce a factor τn−1 as a convention
that ensures the Jones polynomial of the unknot is one. We introduce a factor of (−X3)−w(β) where
the writhe w(β) is the number of crossings of the braid. This ensures that the function is preserved
under a series of Markov moves. This results in Theorem 5.4.2 that the Jones Polynomial

VK(X) = (−X3)−w(β)tr(ρn(β))τ
n−1 where τ = (−X2 −X−2)

is a knot invariant.
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Section 6 presents four applications of the Jones polynomial. We will study two alternative
methods of computing the Jones polynomial of a knot; via skein relations and via the Kauffman
bracket ⟨K⟩. In particular we will prove in Theorem 6.2.3 that

VK(X) = (−X3)−w(β)⟨K⟩

We will then consider how effective the Jones polynomial is at solving the problem of whether
two knot diagrams are equivalent. It is not a complete invariant which means two knot diagrams
having equal Jones polynomials does not imply equivalence. A more specific problem that arises
is whether a knot is equivalent to the unknot. Whether the Jones polynomial detects the unknot
remains an open problem in knot theory. A strength of the Jones polynomial is the ability to
distinguish whether a knot is equivalent to it’s mirror image. In particular we aim to apply the
Jones polynomial to distinguish the knot diagrams in Figure 1.1.

Section 7 is concerned with the HOMFLY polynomial PK(z,m). The HOMFLY polynomial
extends the Jones polynomial. We construct the HOMFLY polynomial in a similar way to the
Jones polynomial. In this case we introduce the Hecke algebras Hn. The Hecke algebras have a
structure similar to Bn. This allows us to define a representation φm of the braid group on the
Hecke algebra and compose this with the Markov trace Tr to give

Tr ◦ φm : Bn → Hn → C[z±1,m±1]

which assigns each braid β a Laurent polynomial in two variables. It remains to find the necessary
conditions such that the function is preserved under a series of Markov moves. We will prove in
Theorem 7.18 that the Jones polynomial can be obtained from the HOMFLY polynomial via the
specific change of variables

PK(z = X2 −X−2,m = −X−4) = VK(X)

1.1 History of Knot Theory

The mathematical theory of knots was studied originally in the late 18th century by Carl F. Gauss.
Gauss’ notebooks contain sketches of knots and present a method of coding them using braided
strands. The development of this theory since the 19th century is closely associated with advances in
chemistry and physics. The most prominent of these was Lord Kelvin during the late 19th century.
Kelvin developed the ‘vortex atom theory’ which proposed that atoms were knotted filaments in a
substance called ether. This is detailed in the book [PBI+23].

Kelvin’s theory motivated the physicist P. Tait to understand knots. Tait believed that in
producing a table which classified knots by their number of crossings he would in fact be creating a
table of the elements. In collaboration with T. Kirkman and C. Little by 1900 an extensive table of
knots with up to 10 crossings had been produced. In 1973 a duplication in the table was found by
Kenneth A. Perko. This demonstrates that deciding whether two knots are equivalent is in general
a hard problem.

Figure 1.2: Perko pair of knots proven to be equivalent [KAP74]
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Progress in understanding equivalence of knots was not made until Jules H. Poincaré developed
algebraic topology. As a result the first knot invariant polynomial was discovered by topologist
James W. Alexander in 1919. This remained the only known knot invariant polynomial until the
Spring of 1984 when Vaughan Jones discovered the Jones polynomial. Whilst studying operator
algebras Jones unexpectedly noticed the expressions resembled topological relations within the
braid group. Jones discussed his ideas with Joan S. Birman, a specialistic in the theory of braids.
From these discussions Jones was able to generate the new knot invariant. The Jones polynomial
was a more powerful knot invariant and caused a significant amount of interest in knot theory
to develop. By the Autumn of 1984 six mathematicians contributed to the discovery of the the
HOMFLY polynomial which comprises both the Alexander and Jones polynomials. In 1985, Louis
H. Kauffman announced a knot invariant which he discovered to be a recursive formula for the Jones
polynomial. The method of constructing the Jones polynomial revealed connections between knot
theory and other disciplines such as quantum groups, statistical mechanics and algebraic topology.

2 Knots and Links

To study knots effectively we must ensure we are considering knots which correspond to the intuitive
notion of a knotted loop of string of which the ends are joined together. We define these ideas
formally in this section using the standard topology on Rn. The material is from Chapters 1-2 of
the book [JM19].

A function is an embedding if it is a homeomorphism onto its image.

Definition 2.0.1. A knot is an embedding of the unit circle S1 in R3.

Definition 2.0.2. A link is a disjoint embedding of n copies of S1 into R3. Each copy of S1 in the
link is called a component of the link.

As an abuse of terminology we often use the term knot to refer to both knots and links. The
study of knot theory also refers to the study of links.

2.1 Equivalence

Intuitively, if we can continuously deform the knotted string without passing it through itself we
obtain a knot equivalent to the original. We cannot break the string in this process. Unlike an
actual loop of string we are able to extend and shrink the string in order to continuously deform
the knot. We consider up to ambient isotopy as we are considering also up to isotopy the space in
which the knot occupies. All knots in this report will be assumed to be tame.

Definition 2.1.1. Two knotsK andK ′ are ambient isotopic if there is a family of homeomorphisms
ht : R3 → R3 for t ∈ [0, 1] sending a point of the knot x ∈ K to ht(x) such that ho = idR3 ,
h1(K) = K ′ and (x, t) → (ht(x), t) defines a homeomorphism from R3 × [0, 1] to itself.

Definition 2.1.2. A link is said to be tame if it is ambient isotopic to a set of simple closed polygons
in R3. Otherwise, the knot is said to be wild.

Definition 2.1.3. Two knots K and K ′ are equivalent if they are ambient isotopic. We denote this
K ∼= K ′. An isotopy class is an equivalence class of the set of knots modulo ambient isotopy.
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Imagine the trefoil knot K which is gradually deformed in Figure 2.1 from the left. The top
section of the string in the first diagram has been pushed to occupy the bottom space of the knot
in the third diagram. The string has then been deformed to give a maximum and minimum in the
centre. As these deformations are continuous the knot will remain equivalent to the trefoil knot.

Figure 2.1: The trefoil knot K (left) and deformed trefoil knot K ′ (right) such that K ∼= K ′

To effectively study knots through diagrams as demonstrated in Figure 2.1 we need to ensure
we have captured the entire structure of the knot in the two dimensional diagram. The following
projection map does this by ensuring all crossings are visible in the plane.

Definition 2.1.4. A projection p : R3 → R2 of a knot K is said to be regular if

(i) All multiple points of the projection are double points.

(ii) There are only finitely many double points.

(iii) No double point contains the image of a vertex.

We have the following theorem which allows us to study all knots in such a way.

Theorem 2.1.5. [CF63, Theorem 3.1] Every knot up to ambient isotopy admits a regular projection.

We omit the proof which can be found in Section 3 of [CF63]. The idea behind the proof is that
if the projection of a knot is non-regular using Definition 2.1.1 we are able to continuously deform
the knot in R3 until the projection becomes regular.

Definition 2.1.6. A knot diagram is the image of a regular projection of a knot or a link on which
an over or under crossing has been assigned to each double point.

This is demonstrated in Figure 2.1 where the over crossing is a continuous line and the under
crossing is implied by a small gap in the diagram to illustrate that this section of the string is no
longer visible at this point.

Definition 2.1.7. A knot is equivalent to the unknot if it admits a knot diagram with no crossings.

2.2 Reidemeister Moves

We understand that continuously deforming the knot in three dimensional space preserves equiv-
alence. We would like to capture this process in a knot diagram. There are local changes in a
knot diagram which preserve equivalence known as planar isotopy and Reidemeister moves. It is a
fundamental theorem of knot theory that two knot diagrams K and K ′ are equivalent if and only
if a series of these changes can be applied locally throughout the knot diagram K to obtain K ′ and
vice versa.

Planar isotopy corresponds to the string being stretched and deformed continuously but has no
effect on the number of crossings of a knot diagram.
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Definition 2.2.1. Planar isotopy consists of the local changes, where the angles and lengths may
vary, in a knot diagram given by

I II III

Definition 2.2.2. The Reidemeister moves consist of the following local changes in a knot diagram

RI RII RIII

Theorem 2.2.3. [Reidemeister Theorem] [JM19, Theorem 1.3] Two knots are equivalent if and
only if their diagrams are related by a finite sequence of Reidemeister moves and planar isotopy.

2.3 Knot and Link Invariants

We now understand how we can deform a knot diagram such that equivalence is preserved. We might
believe we are unable to obtain one knot diagram from the other through a series of Reidemeister
moves. However this is not enough to declare that the knot diagrams are not equivalent as there may
exist a series of Reidemeister moves which we have not considered. The problem therefore requires
a knot invariant; a function which is preserved under equivalence of knots. The aim is to define
a knot invariant such that the codomain is a set in which it is more accessible for understanding
whether two elements are equivalent.

Definition 2.3.1. A knot invariant f is a function on the set of isotopy classes of knots. That is
for a set S

f :
{ knots

isotopy

}
→ S (2.1)

In other words a knot invariant has the property that if two knots K and K ′ are equivalent then
f(K) = f(K ′). Alternatively, stated as the contrapositive,

f(K) ̸= f(K ′) ⇒ K ̸∼= K ′

However a knot invariant does not necessarily recognise equivalence of knots. If a knot invariant
g detects equivalence for all knots

g(K) = g(K ′) ⇒ K ∼= K ′

then g is known as a complete knot invariant. Although complete invariants are known they can
not be efficiently calculated.
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3 Braids

The aim of the report is to derive a significant knot invariant known as the Jones polynomial. In
order to do this we turn to the study of braids. The set of n stranded braids form a group Bn.
This allows us to present braids algebraically. In particular braids allow us to study the structure
of a knot through an ordered sequence of generators which correspond to crossings. The aim in this
section is to understand the relationship between knots and braids. This will allow us to use braids
to define knot invariants.

An intuitive way to consider a braid is as a woven structure of n strands. The strands are
anchored at n start positions and n end positions. A strand i is woven without going back on itself
such that it travels from the starting position i to some end position s(i). The material is from
Section 1 of the book [KT08].

Definition 3.0.1. An n-stranded braid is a set β ⊂ [0, 1] × R2 formed by n disjoint topological
intervals called the strands of β such that the projection [0, 1] × R2 → [0, 1] maps each string
homeomorphically onto [0,1] and

β ∩ ({0} × R2) = {(0, 1, 0), (0, 2, 0), ..., (0, n, 0)}

β ∩ ({1} × R2) = {(1, 1, 0), (1, 2, 0), ..., (1, n, 0)}

x = 0 x = 1
1

2

3

4

Figure 3.1: A 4-stranded braid

Figure 3.1 highlights that each of the n strands must intersect the boundaries x×R2 for x ∈ [0, 1]
at one point. This corresponds to the restriction that the strand cannot go back on itself.

We consider braids β and β′ to be ambient isotopic if the strands of β can be continuously
deformed to yield β′. This implies that the endpoints of each strand must remain the same. We
define this formally as follows.

Definition 3.0.2. Two braids β and β′ are isotopic if there is a family of homeomorphisms hs :
β → [0, 1] × R2 for s ∈ [0, 1] sending a point of the braid b ∈ β to hs(b) such that h0 = idβ,
h1(β) = β′ and (b, s) → (hs(b), s) defines a homeomorphism from [0, 1]× R2 × [0, 1] to itself.

We aim to study braids as diagrams. The following axioms ensure that the entire structure
of the braid is captured in the braid diagram. To construct the braid diagram in Figure 3.1 the
strands are projected onto the plane [0, 1] × R. By continuously deforming the strands to satisfy
Definition 3.0.3 it can be seen that every braid up to isotopy produces a braid diagram.
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Definition 3.0.3. A braid diagram on an n stranded braid β is a set β ⊂ [0, 1]×R consisting of n
strands which are topological intervals such that

(i) The projection [0, 1]× R → [0, 1] maps each strand homeomorphically onto [0,1].

(ii) Every point of {0, 1} × {1, 2, ..., n} is the endpoint of a unique strand.

(iii) Every point of [0, 1]× R belongs to at most two strands.

(iv) At every intersection of strands one strand is defined as an over and one an under crossing.

Theorem 3.0.4. [KT08, Theorem 1.6] Two braids are equivalent if and only if their braid diagrams
are related by a finite sequence of Reidemeister moves RII, RIII and planar isotopy.

Due to the restriction of the braid strand not going back on itself the Reidemeister move RI is
not included in Theorem 3.0.4.

3.1 Artin Braid Group

We are able to consider the braid as a sequence of crossings. Let σi corresponds to the ith strand
passing over the (i+ 1)th strand. Let σi

−1 correspond to the ith strand passing under the (i+ 1)th

strand. These crossings become the generators of the Artin Braid Group Bn.

Definition 3.1.1. The Artin Braid Group Bn is defined

Bn = ⟨σ1, ..., σn−1 | σiσi+1σi = σi+1σiσi+1 , σiσj = σjσi for |i− j| > 1⟩ (3.1)

with composition of braids σiσj defined horizontally with σi on the left and σj on the right such
that the strands meeting at positions {1, ..., i, ..., j, ...n} are glued as follows

σi =

i

i+1

j+1

j

i

i+1

j+1

j

, σj =

i

i+1

j+1

j

i

i+1

j+1

j

, σiσj =

i

i+1

j+1

j

i

i+1

j+1

j

The inverse of a generator σ−1
i such that σiσi

−1 = IBn = σ−1
i σi for all i ∈ {1, ..., n− 1} is given by

the mirror image as follows

σi =

i

i+1

i

i+1 , σ−1
i =

i

i+1

i

i+1 , σiσ
−1
i =

i

i+1

i

i+1

The elementary braids are those having just one crossing σi. Any braid can be viewed as a
composition of elementary braids. With manipulation of strands as required it may be assumed
each crossing of a braid happens at a different horizontal level. An example using the braid given
in Figure 3.1 is given in Figure 3.2. The braid is written in the order of which the crossings are
composed;

β ∼= σα1
i1
σα2
i2

· · · σαm
im

(3.2)
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1

2

4

3

1

2

4

3

Figure 3.2: A braid diagram as the composition of elementary braids σ3σ1σ
−1
2

The Symmetric Group Sn admits a presentation

Sn = ⟨δ, ..., δn−1 | δ21 = I, δiδi+1δi = δi+1δiδi+1, δiδj = δjδi for |i− j| > 1⟩ (3.3)

where δi is the transposition (i, i+1) and group composition is defined as the usual permutation
composition. If σi

2 = 1 is added to the presentation in Definition 3.1.1 then the presentation of Sn

is achieved. The difference is that the elements of the braid group Bn have over and under paths
specified at each crossing. This is shown in Figure 3.3.

Every n-stranded braid determines a permutation on n elements. As shown in Figure 3.1 each
strand of β connects a point (i, 0, 0) to a point (s(i), 0, 1) for {i, s(i)} ⊂ {1, 2, ..., n}. The sequence

(s(1), s(2), ..., s(n))

is the underlying permutation of the braid.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 3.3: The underlying permutation diagram and a corresponding braid diagram respectively

The map ϕ : Bn→Sn is a therefore a surjective group homomorphism given by

ϕ(σi) = δi

Figure 3.4 illustrates an elementary braid in B2 composed with itself. Despite each strand
returning to the starting position the strands are woven in place and therefore cannot be stretched
out to the identity. The identity would not be achieved through further compositions therefore the
braid has infinite order. Figure 3.4 illustrates a comparison to the underlying permutation element
in S2. Composing the permutation with itself results in the identity (1)(2). The difference is that
we have removed the over or under restriction at each crossing.

∈ B2

∈ S2

1

2

1

2

1

2

Figure 3.4: A braid β ∈ B2 of infinite order compared to the underlying permutation of β
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3.2 Alexander’s Theorem

In order to use braids to define knot invariants we must understand the relation between knots and
braids. Extending each strand of the braid from the ith end position and connecting it to the ith
starting position forms the closure of the braid β. Therefore every braid gives rise to a knot via

β ∼= K

The reverse direction is less clear to see as knots do not usually present themselves in the form
of the closure of a braid. As we are considering knot diagrams up to equivalence we are able to
apply a series of Reidemeister moves to achieve this form. Slicing the closure of the braid at the
endpoints obtains the corresponding braid. It is Alexander’s Theorem 3.2.3 that this is possible for
every knot. Notice there are many different sequences of Reidemeister moves which can be applied
to the knot to form the closure of a braid. This implies for each knot K there are non-equivalent
braids βj1 , βj2 , ..., βjm such that

K ∼= βj1
∼= βj2

∼= ... ∼= βjm

Definition 3.2.1. Let β ∈ Bn. The closure β of a braid β is formed by connecting each starting
point i with the endpoint i by non-crossing strands for all i ∈ {1, ..., n}.

Proposition 3.2.2. Every braid β gives rise to a knot K.

Proof. This follows immediately from taking the closure β of a braid β which produces a knot K
such that K ∼= β. ■

Theorem 3.2.3 (Alexander’s Theorem). [JM19, Theorem 4.12] Every knot is ambient isotopic
to the closure of a braid.

Proof. Let K be a knot. We aim to construct the knot diagram of K surrounding a point • such
that the string travels clockwise around this point. We can then push all the crossings to one side
using Reidemeister’s Theorem 2.2.3.

Suppose a is a section of the string travelling anticlockwise around the point. This is illustrated
in Figure 3.5 where c denotes an arbitrary part of K. We aim to continuously deform this section
of the string so that it travels clockwise around the point. It is sufficient to consider the following
two cases.

Suppose a contains no crossings. Then we can apply a series of Reidemeister moves to extend
the arc to surround • travelling now in a clockwise direction. This is shown in I of Figure 3.5.

Suppose a contains one crossing. Then extend the arc to surround • as shown in II or III of
Figure 3.5 depending on whether the crossing is over or under respectively.

If a contains more than one crossing then we can consider a as a series of individual crossings
and apply the previous cases to each crossing. It is now possible to apply planar isotopy to push
all the crossings to occupy one side of the knot to give the closure of a braid. ■

cc c c c c

I II IIIa a a

Figure 3.5: Resolving the anticlockwise arc a to travel clockwise around the origin •
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Example 3.2.4. Consider the trefoil knot K in Figure 2.1 which is equivalent to the knot K ′. As
we are considering up to equivalence of knots we can apply a series of Reidemeister moves to K ′

such that the bottom section of the knot now occupies the space above the knot. This is the knot
diagram appearing in Figure 3.6. Slicing this knot to remove the dotted sections of string forms
the corresponding braid β.

1

2

1

2

K ′ ∼= β ∼= , β ∼=

Figure 3.6: The closure of a braid β ∼= σ3
1 equivalent to the trefoil knot K

3.3 Markov’s Theorem

By Alexander’s Theorem 3.2.3 we now have a surjective map from braids to knots. We would like to
understand the kernel of this map. That is we would like to understand how non-equivalent braids
βj1 , ..., βjm are related when βj1

∼= ... ∼= βjm
∼= K. In order to do this we need to understand how

we can modify our braids such that the closures correspond to equivalent knot diagrams.

Theorem 3.3.1 (Markov’s Theorem). [Fas05, Theorem 2] Let βn ∈ Bn and β′
m ∈ Bm be two

braids in the respective braid groups. Then the knots K ∼= βn and K ′ ∼= β′
m are ambient isotopic if

and only if βn and β′
m are related by the following moves:

(MI) Equivalence in a given braid group.

(MII) Conjugation: Let α, β ∈ Bn. Suppose we compose αβα−1 to give the conjugate braid. When
we we take the closure αβα−1 the braids α and α−1 compose through the closure strands to
obtain the identity braid of no crossings.

(MIII) Embedding: Let β ∈ Bn. Suppose we add a strand to β to make an (n + 1)-strand braid.
Suppose we then cross the nth strand with the (n+ 1)th strand denoted βσ±1

n . When we take
the closure βσn

±1 by applying RI from Definition 2.2.2 the (n + 1)th strand is incorporated
into the non crossing nth closure strand.

We omit the proof which can be found in Section 2 of the book [Bir75].

β α β α−1 β

Figure 3.7: Closure of braid β, a conjugation αβα−1 and an embedding βσn respectively
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In Figure 3.7 by Markov Theorem 3.3.1 we have

β ∼= αβα−1 ∼= βσ±1
n

A specific problem in knot theory is to determine if a given knot is equivalent to the unknot given
in Definition 2.1.7. We use Markov’s Theorem 3.3.1 to simplify the knot in the following example.

Example 3.3.2. Consider the knot diagram K given in Figure 3.8. We achieve the closure of a
braid as described in the proof of Alexander’s Theorem 3.2.3 such that K ∼= β. The result is shown
in Figure 3.8. Notice the far right strands of β are the mirror image of the far left strands. Therefore
we consider the the braid β as a composition of braids αβ′α−1. By Markov’s Theorem 3.3.1 we
have β ∼= β′.

Figure 3.8: The knot diagram K equivalent to the closure of the braid β ∼= αβ′α−1

By Reidemeister’s Theorem 2.2.3 we can apply a series of planar isotopy and Reidemeister moves
to β′. This is demonstrated in Figure 3.9. This implies K ∼= β ∼= β′ ∼= K◦ where K◦ is the unknot.
Therefore K is equivalent to the unknot.

Figure 3.9: The Reidemeister moves RIII, RII, RI and planar isotopy applied to the knot K ′

We now further understand the relation between knots and braids. Suppose f is a function on
the braid group

f : Bn → S

for some set S. Suppose βj1 , ..., βjm are braids which may not be equivalent. For f to be a knot
invariant the following must hold;

βj1
∼= ... ∼= βjm

∼= K =⇒ f(βj1) = ... = f(βjm)

This holds by Markov’s Theorem 3.3.1 if and only if βj1 , ..., βjm are related by a series of moves
MI, MII and MIII. Therefore in order to prove that f is a knot invariant it is required to prove
f remains invariant under a series of Markov moves.
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4 Temperley-Lieb Algebra

To construct a knot invariant using the braid group we aim to represent the braids as elements
of an algebraic structure. The structure be must similar but more restricted than Bn to gain a
further insight into knots. In the case of the Jones polynomial we introduce the Temperley-Lieb
algebra T Ln(τ). There is a similarity between the relations in the Definition 4.0.1 of T Ln and the
Definition 3.1 of Bn. This similarity can be captured diagrammatically. Simple n-diagrams can
be viewed as braids in which the crossings are resolved. The aim in this section is to prove that
the simple n-diagrams give a diagrammatic interpretation of the elements of T Ln. In order to do
this we need to further understand the structure of T Ln(τ); specifically the dimension. This is the
purpose of the following lemmas. The material follows Chapter 5.7 of the book [KT08].

Definition 4.0.1. Let R be the commutative ring of Laurent polynomials R = C[X,X−1] such
that X is a formal variable, let τ ∈ R be a fixed parameter. The Temperley-Lieb Algebra T Ln(τ)
is defined as the unital associative R-algebra with generators e1, ..., en−1 satisfying the relations:

e2i = τei (4.1)

eiejei = ei for |i− j| = 1 (4.2)

eiej = ejei for |i− j| > 1 (4.3)

Definition 4.0.2. A word, w, in the alphabet {e1, ..., en−1} is an element of T Ln(τ). The empty
word is the identity element of T Ln(τ) denoted IT Ln .

Definition 4.0.3. The index of w is defined to be the maximum of all indices i1, ...ir appearing in
w. We denote the maximal index of w as m; this implies em is the maximal generator of w.

Lemma 4.0.4. [KT08, Lemma 5.25.] A non-empty word w is equal in T Ln(τ) to a scalar multiple
of a word in which the maximal generator appears exactly once.

Proof. We will proceed by induction on the index m of the word w.

If m = 1 then w is a positive power of e1. This can be seen by applying Relation 4.1 recursively.

e2i = τei, e3i = τ(τ(ei)) = τ 2ei, . . . , epi = τ p−1ei, . . .

for all p > 1. As this is a scalar multiple of the maximum generator the lemma holds for m = 1.

Assume the claim holds for all w such that the index is less than m.

We will show the claim holds for a word of index m.
Consider a non-empty word w = ei1 · · · eir of index m. Suppose em appears in w at least twice.

Then w is a composition of words
w = w1emw

′emw2

for w′ of index l < m. We define w purposefully so w′ is restricted to not contain em. If w′ did
contain em by Relation 4.2 this would potentially cancel; however we need to guarantee em appears
at least twice. This results in the following cases for the index l of w′.

13



Case 1: If l < m− 1 then by 4.3 w′ commutes with em. This allows us to shift em through w′.
Therefore by 4.1,

w = w1emw
′emw2 = w1w

′e2mw2 = τw1w
′emw2

We have reduced the number of occurrences of em in w by one. Thus applying this method for
the words w1 and w2 by repetition we will reduce the occurrences of em in w to one.

Case 2: If l = m− 1 then by induction hypothesis as l < m we may assume that el appears only
once in w′. So now w′ is of the form w′ = w3em−1w4 for which w3, w4 are words of index strictly
less than m− 1. Therefore w3 and w4 commute with em by Relation 4.3. Using 4.2 we obtain

w = w1emw
′emw2 = w1emw3em−1w4emw2 = w1w3emem−1emw4w2 = w1w3emw4w2

We have reduced the number of occurrences of em in w by one. Thus applying this method recur-
sively we we will reduce the occurrences of em in w to one.

Therefore in each case we are able to transform the word into a scalar multiple of a word in
which the maximal generator appears exactly once. ■

We now aim to define a spanning set of T Ln(τ). For this we write the words in T Ln(τ) as
follows.

Definition 4.0.5. For 1 ≤ k ≤ n− 1, let Tn,k be the set of 2k-tuples (i1, ..., ik, j1, ..., jk) of integers
i1, j1, ..., ik, jk satisfying

0 < i1 < i2 < · · · < ik < n,
0 < j1 < j2 < · · · < jk < n,
j1 ≤ i1, j2 ≤ i2, · · · , jk ≤ ik.
For such a tuple s = (i1, ..., ik, j1, ..., jk) set

es = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eikeik−1 · · · ejk) (4.4)

Observe in the expression for es the indices are decreasing from the left to right in each parenthesis.
Therefore the index in es is ik. A word of the form es is a reduced word in T Ln(τ) for all

s ∈ Tn := Tn,1 ⊔ Tn,2 · · · ⊔ Tn,n−1

Lemma 4.0.6. [KT08, Lemma 5.26] The set {es}s∈Tn of reduced words spans T Ln(τ).

Proof. To prove the set of reduced words spans the algebra it is sufficient to prove any word w is a
scalar multiple of a reduced word. We will proceed by induction on the index m of the word w.

If m = 1 then by the proof of Lemma 4.0.4 w is a scalar multiple of e1 which is a reduced word.

Assume the claim holds for any word of index less than m.

We will show the claim holds for a word w of index m. By Lemma 4.0.4 w is a scalar multiple of
some w0 = w1emw2 where w1 and w2 have index strictly less than m. By the induction hypothesis
we may assume that w2 is reduced.
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Suppose w2 = es = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eikeik−1 · · · ejk) for s ∈ Tn,k with ik < m.

If ik < m− 1 then by Relation 4.3 w2 commutes with em implying

emw2 = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eikeik−1 · · · ejk)(em)

If ik = m − 1 then em will shift through w2 until it reaches eik with which it cannot commute
by Relation 4.3 resulting in

emw2 = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (emeikeik−1 · · · ejk)

In both cases we have written w0 as a word of the form w′(emem−1 · · · el) such that;

w′ is a word of index m′ < m : this follows from w0 being defined to contain em exactly once,

l ≤ m : this follows from w0 being defined to contain em exactly once.

By the induction hypothesis we can assume

w′ = es′ = (ei′1ei1−1′ · · · ej′1)(ei′2ei2−1′ · · · ej′2) · · · (ei′keik−1′ · · · ej′k) for s′ = (i′1, ...i
′
p, j

′
1, ...j

′
p) ∈ Tn,p

The index for w′ is i′p = m′ < m. To compare notation set j′p = l′. We are now considering w0

in the form
w0 = (ei′1 · · · em′ej′1 · · · el′)(emem−1 · · · el)

The value of l′ will effect whether w0 in this form is a reduced word.

Case 1: If l′ < l then wo = w′(emem−1 · · · el) = (ei′1 · · · em′ej′1 · · · el′)(emem−1 · · · el) is reduced.

Case 2: If l′ ≥ l then w′ = w′′(em′em′−1 · · · el′), where l ≤ l′ ≤ m′ < m and w′′ has index < l′.

We proceed with Case 2. We aim to write w0 = w′′(em′em′−1 · · · el′)(emem−1 · · · el) as a reduced
word.

If l′ < m− 1 we can apply Relation 4.3. Then el′ will commute with all the elements until el′+1

as |l′ + 1 − l′| = 1 implies these elements will not commute. At this point we apply Relation 4.2
and the bracket reduces to el′ . We can commute the remaining elements. As l′ + 2 ≤ m we achieve
the reduced form.

el′(emem−1 · · · el) = emem−1 · · · el′+2(el′el′+1el′)el′−1 · · · el = (el′el′−1 · · · el)(emem−1 · · · el′+2)

Therefore
w0 = w′′(el′el′−1 · · · el)(emem−1 · · · el′+2)

By assumption w′′(el′el′−1 · · · el) has index < m so the word w0 is of the form considered in Case 1.
If l′ = m− 1 then m− 1 ≤ m′ < m implies m′ = l′ = m− 1 and by 4.2,

el′(emem−1 · · · el) = (em−1emem−1) · · · el = em−1 · · · el

Therefore
w0 = w′′(el′el′−1 · · · el)

where w′′ has an index < l′ = m′ = m − 1. Thus w0 has index m − 1 and the result that w0 is a
reduced word follows from the induction hypothesis.

In both cases we have that w0 can be written as a scalar as a reduced word as required. ■
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Lemma 4.0.7. [KT08, Lemma 5.27] The cardinality of Tn is equal to the nth Catalan Number,

card Tn =
1

n+ 1

(
2n

n

)
.

Proof. We define an admissible path associated with any element (i1, ..., ik, j1, ..., jk) ∈ Tn,k as a
path

(0, 0) → (i1, 0) → (i1, j1) → (i2, j1) → (i2, j2) → · · · → (ik, jk−1) → (ik, jk) → (n, jk) → (n, n)

By Definition 4.0.5 each vertex is a coordinate of integers. This is a path of oriented polygonal lines
alternating between horizontal edges directed to the right and vertical edges directed upward. The
lines are each of unit lengths.

For es ∈ Tn the admissible path lies under the diagonal in {(x, y) ∈ R | 0 ≤ y ≤ x}. Equally
any admissible path from (0, 0) to (n, n) lying under the diagonal can be obtained from a unique
element of Tn. Therefore it is enough to count such paths as follows.

We translate the admissible path lying under the diagonal along the vector (1, 0) to obtain an
admissible path from (1, 0) to (n+ 1, n). The path no longer intersects the diagonal.

Let γ be any admissible path from (1, 0) to (n+ 1, n). To calculate the number of γ’s which do
not intersect the diagonal we subtract the number of γ’s intersecting the diagonal from the total
number of γ’s.

The admissible path always has n unit horizontal edges and n unit vertical edges. The number
of ways of arranging these unit edges is the binomial coefficient;(

2n

n

)
which is therefore the total number of γ’s.

Associate to each γ an admissible path γ′ from (0, 1) to (n + 1, n) as follows: Let (i, i) be the
smallest point of which γ intersects the diagonal. Replace the section of γ from (1, 0) to (i, i) by
its reflection in the diagonal. The path γ′ is constructed by joining the reflected section and the
section of γ from (i, i) to (n+ 1, n).

An example is given in Figure 4.1 where γ′ is the path issued from (0, 1).

(0, 1)

(0, 0) (1, 0)

(n, n) (n+ 1, n)

(i, 0)

(0, i)

Figure 4.1: An example of the path γ′ associated to γ

16



As shown in Figure 4.1 at point (i, i) the path intersects the diagonal. Any such path from (0,1)
must intersect the diagonal to cross over to (n+ 1, n). Therefore any path γ′ can be obtained from
a unique admissible path from (1,0) to (n+ 1, n) by this construction.

Any admissible path from (0,1) to (n + 1, n) has n + 1 unit horizontal edges and n − 1 unit
vertical edges, therefore the total number of such paths is equal to(

2n

n+ 1

)
which is therefore the number of γ’s intersecting the diagonal.

Therefore counting total admissible paths lying under the diagonal we have

dimTn =

(
2n

n

)
−

(
2n

n+ 1

)
=

(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!
= (1− n

n+ 1
)
(2n)!

n!n!
=

1

n+ 1

(
2n

n

)
. ■

Lemma 4.0.8. The dimension of T Ln(τ) is less than or equal to the nth Catalan Number

dim T Ln(τ) ≤
1

n+ 1

(
2n

n

)
The proof follows from Lemmas 4.0.6 and 4.0.7. The set of reduced words which will have the

cardinality of the nth Catalan number spans T Ln(τ). This means the dimension of T Ln(τ) cannot
exceed the nth Catalan number.

4.1 Kauffman’s Definition of the Temperley-Lieb Algebra

We now introduce the simple n-diagrams as tangles with no crossings. Tangles can be considered
as sliced regions of a knot. Therefore simple n-diagrams can be considered as regions of a knot in
which the crossings have been resolved. They are therefore useful for understanding the structure of

a knot. We aim to construct an algebra T̃ Ln where the simple n-diagrams are the elements. Using

the dimensions of T Ln and T̃ Ln we then prove there is an algebra isomorphism ϕ : T Ln → T̃ Ln.
This proves that the simple n-diagrams provide a diagrammatic interpretation for the elements of
the Temperley-Lieb algebra T Ln. The material continues to follow Chapter 5.7 of the book [KT08].

Definition 4.1.1. A tangle is an embedding of n arcs and m circles into R2 × [0, 1].

Figure 4.2: Tangles

Definition 4.1.2. A simple n-diagram is a tangle of n strands which has no crossings.
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We consider simple n-diagrams up to isotopy.

Definition 4.1.3. Two simple n-diagrams D and D′ are isotopic if they are related by a series of
planar isotopy. We denote this D ∼= D′.

Lemma 4.1.4. [KT08, Lemma 5.33] The number of isotopy classes of simple n-diagrams is equal
to the nth Catalan Number that is 1

n+1

(
2n
n

)
.

Proof. Let D be a simple n-diagram. By extending the strands of D from the endpoints and curving
them down without crossing we obtain a union of n disjoint embedded arcs in [0,+∞)×R. This is
demonstrated in Figure 4.3. As there will be an extended endpoint for each strand there will total
2n endpoints along the straight line {0} × R.

D

Figure 4.3: A simple 3-diagram extended to form arcs with 6 endpoints along {0} × R

There is a one-to-one correspondence between the simple n-diagrams and the systems of n
disjoint arcs. We consider both up to isotopy where the n disjoint arcs can be continuously deformed
without crossing. This implies it is enough to compute the number of systems of n disjoint arcs.

We label an endpoint of an arc by l or r if this point is the left or right endpoint of an ith strand.
This is demonstrated in Figure 4.3 which we have rotated for convenience of reading. Reading the
system of endpoints we obtain a word w of length 2n in the alphabet {l, r}. Every w is a Dyck
word meaning it is a balanced string of l’s and r’s.

l r l l l r l r r r

Figure 4.4: Example of a simple 5-diagram and the corresponding Dyck word

Each arc must have a balanced pair of endpoints. Therefore every such w of length 2n can be
obtained uniquely from a system of n disjoint arcs.

For each Dyck word w of length 2n we associate a polygon path Γw in R2. The path has the
vertices (xk, yk) for k ∈ 0, 1, ..., 2n which are defined by x0 = y0 = 0 then inductively as follows:

if the kth letter in w is l: xk = xk−1 + 1 and yk = yk−1

if the kth letter in w is r: yk = yk−1 + 1 and xk = xk−1
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Since there is a balanced number l and r each occurring n times the path Γw leads from (0,0) to
(n, n). The path is admissible as it consists of orientated horizontal and vertical lines.

For example, consider the Dyck word w = lrlllrlrrr in Figure 4.1. The associated polygonal
path Γw will have the vertices (0, 0), (1, 0), (1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (5, 3), (5, 4), (5, 5).

(0,0)

(5,5)

Figure 4.5: The path Γw associated to the simple n-diagram in Figure 4.1

In particular, Γw lies under the diagonal due the restrictions of w being a Dyck word. For
example in Figure 4.1, it would not be possible for an r to appear as the third letter as it would
not be possible for this to be balanced in the remainder of the word. Conversely, any admissible
path from (0,0) to (n,n) lying under the diagonal is of the form Γw.

Therefore the number of simple n-diagrams up to isotopy is equal to the number of admissible
paths from (0,0) to (n,n) lying under the diagonal. By Lemma 4.0.7 this number is equal to the
nth Catalan number. ■

By Lemma 4.1.4 we can calculate the number of isotopy classes of simple 3-diagrams as follows

1

n+ 1

(
2n

n

)
=

1

3 + 1

(
6

3

)
=

20

4
= 5 (4.5)

Definition 4.1.5. Fix a non-zero τ ∈ C. Let T̃ Ln(τ) be the complex vector space spanned by the

isotopy classes of simple n-diagrams. Every simple n-diagram D represents a vector in T̃ Ln(τ).

We equip T̃ Ln(τ) with the structure of an associative algebra. As T̃ Ln(τ) is defined to be a
vector space it remains to equip a bilinear product as follows.

Definition 4.1.6. Define the composition of simple n-diagrams as

DD′ = τaD ◦D′

where D ◦D′ is the result of composing the strand at the end position i of D to the strand at the
start position i of D′ for i ∈ {1, ..., n− 1}. The scalar a is the number of loops formed.

An example of this composition is given in Figure 4.8.

Figure 4.6: The complete set of simple 3-diagrams up to isotopy
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By construction this is an associative product on T̃ Ln(τ). Figure 4.6 presents the set of simple
3-diagrams up to isotopy. Notice the number of isotopy classes is five which agrees with Equation
4.5. The right two diagrams are both products of the left two diagrams where the order of compo-
sition has been reversed. This demonstrates that this product is not commutative.

The following theorem gives the diagrammatic interpretation of the Temperley-Lieb algebra.

Theorem 4.1.7. [KT08, Theorem 5.34] For i = 1, ..., n− 1, the assignment

ϕ(ei) → Ei

defines an algebra isomorphism ϕ : T Ln(τ) → T̃ Ln(τ).

i

i+1

i+2

Ei =

i

i+1

i+2

i

i+1

i +2

In =

1

n

1

n n

1

i

i+1

i +2

n

1

Figure 4.7: The simple n-diagram Ei for i ∈ 1, ..., n− 1

Proof. The simple n-diagrams satisfy the relations in Definition 4.0.1 defining T Ln(τ), as demon-
strated in Figure 4.8. As we are considering up to isotopy the strands can be continuously deformed
to identify them with their simple n-diagrams.

i

i+1

i+2

i

i+1

i +2

i

i+1

i +2

i

i+1

i+2

i

i+1

j

j+1

E2
i

∼= ∼= τEi

EiEi+1Ei
∼=

EiEj
∼= ∼= EjEi

∼=

∼= Ei

i

i+1

j

j +1

i

i+1

j

j+1

i

i+1

j

j +1

Figure 4.8: Relations (i), (ii), (iii) in Definition 4.0.1 satisfied by the generators of T̃ Ln(τ)

Therefore there is an algebra homomorphism ϕ : T Ln(τ) → T̃ Ln(τ) such that ϕ(ei) = Ei for
i ∈ {1, ..., n− 1}. We now verify that ϕ is an isomorphism.
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We have that T̃ Ln(τ) satisfies all the relations of T Ln(τ) and by Lemmas 4.0.8 and 4.1.4 we

have dim T Ln(τ) ≤ dim T̃ Ln(τ). Therefore ϕ is injective.

It remains to show the map is surjective. It suffices to show any D ∈ T̃ Ln not isotopic to In is
a composition of diagrams E1, E2, ..., En−1. We shall prove this claim by induction on n.

If n = 2 then D must be isotopic to E1 as it is the only non-identity element of T̃ L2.

Assume the claim is true D ∈ T̃ L(n−1).

We will now prove the claim holds for D ∈ T̃ Ln. Every start position issues a strand which
implies the arcs must be disjoint. As simple n-diagrams contain no crossing strands the arcs must
connect consecutive start points. By the assumption D ≇ In there exists an arc connecting two
consecutive start points. Denote i(D) = i to be the minimal i = {1, ..., n− 1} such that there is an
arc connecting positions i and i+ 1.

We can decompose D into a composition of diagrams E1, E2, ..., En−1 for the following cases.
This is shown in Figure 4.9.

If i(D) > 1: Then D ∼= EiD
′ which can be seen in the following deformation. Deform the non-

crossing strand issued from i− 1 to produce a local maxima and minima.

Now we may decompose this diagram into Ei and D′. The diagram D′ has an arc issued from
it’s starting position i− 1 therefore i(D′) = i(D)− 1. If i(D)− 1 > 1, D′ has a non-crossing

strand at position 1. In other words D′ ∈ T̃ L(n−1) is embedded into T̃ Ln. Therefore by
the induction hypothesis D′′ is a composition of E2, ..., En−1. Hence D is a composition of
E1, E2, ..., En−1 as required.

If i(D′)− 1 = 1 we apply the following case to D′.

If i(D) = 1: Then D ∼= E1D
′′ which can be seen in the following deformation. Stretch the arc

descending from the minimum endpoint of D to the arc of D connecting positions 1 and 2.

Now we may decompose D into E1 and D′′. This implies D′′ contains a strand connecting
the minimum endpoints of D′′. Therefore D′′ is obtained by adding a non-crossing strand
to a simple (n − 1)-diagram. In other words D′′ ∈ T̃ L(n−1) is embedded into T̃ Ln. The
inductive assumption implies D′′ is a product of elements of the form E2, ..., En−1. Hence D
is a composition of E1, E2, ..., En−1 as required.

i-1

EiD
′ ∼=

1

i

i+1

n

E1D
′′ ∼=

i-1

1

i

i+1

n

1

n

1

n

2 2

Figure 4.9: The decomposition of D into EiD
′ and E1D

′′ respectively

■
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5 The Jones Revolution

5.1 Representation of the Artin Braid Group

We are now able to compare the diagrammatic interpretation of the Temperley-Lieb algebra with
the braid diagrams. The simple n-diagrams cannot contain crossings whereas the braid diagrams
can. This implies in order to represent a braid diagram as a simple n-diagram we must resolve the
crossings as in some way. The material in this section follows the paper [Fas05].

Definition 5.1.1. Define the homomorphism ρn : Bn → T̃ Ln(τ) by

ρn(σi) = XIn +X−1Ei, (5.1)

ρn(σ
−1
i ) = XEi +X−1In (5.2)

As a braid β can be written as a composition of elementary braids σi we can consider ρn(β)
as a sum of simple n-diagrams. We consider ρn as a function which resolves each crossing of the
braid. There are two possible resolutions of the crossing; either the horizontal strands or the vertical
strands are connected. This is given diagrammatically for ρn(σi) and ρn(σ

−1
i ) respectively by

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1

i

i+1ρn( ) = X

= X

+ X−1

+ X−1ρn( )

Proposition 5.1.2. [Fas05, Proposition 1] The map ρn : Bn → T̃ Ln(τ) such that τ = −X2 −X−2

is a representation of the Artin Braid Group.

Proof. We must verify that ρn preserves the generator relations of Bn as given in Definition 3.1. We
refer to the relations 4.1, 4.2 and 4.3 in Definition 4.0.1 which are given diagrammatically in Figure
4.8.

ρn(σi)ρn(σ
−1
i ) = (XIn +X−1Ei)(XEi +X−1In)

= X2Ei + In + E2
i +X−2Ei

= In + (X2 +X−2)Ei + τEi

= In + (X2 +X−2)Ei + (−X−2 +−X2)Ei

= In

= ρn(σ
−1
i )ρn(σi)

For |i− j| > 1 by relation 4.3

ρn(σi)ρn(σj) = (XIn +X−1Ei)(XIn +X−1Ej)

= X2In + Ei + Ej +X−2EiEj

= X2In + Ej + Ei +X−2EjEi

= (XIn +X−1Ej)(XIn +X−1Ei)

= ρn(σj)ρn(σi)
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For |i− j| = 1 by applying relation 4.2 to the last term of each expansion

ρn(σiσi+1σi) = (XIn +X−1Ei)(XIn +X−1Ei+1)(XIn +X−1Ei)

= (X2In + Ei+1 + Ei +X−2EiEi+1])

= X3In +XEi +XEi+1 +X−1Ei+1Ei +XEi +X−1E2
i

+X−1EiEi+1 +X−3Ei

(5.3)

ρn(σi+1σiσi+1) = (XIn +X−1Ei+1)(XIn +X−1Ei)(XIn +X−1Ei+1)

= X3In +XEi+1 +XEiX
−1EiEi+1 +XEi+1 +X−1E2

i+1

+X−1Ei+1Ei +X−3Ei+1

(5.4)

Therefore ρn(σiσi+1σi) = ρn(σi+1σiσi+1) can be seen by cancelling like terms in Equations 5.3 and
5.4 to give

X−1E2
i+1 +XEi+1 +X−3Ei+1 = X−1E2

i +XEi +X−3Ei

then by applying relation 4.1 we have

(X−1 + τX +X3)Ei = (X−1 + τX +X3)Ei+1

these expressions equal as the common factor equals zero by

(X−1 + τX +X3) = (X−1 + (−X2 −X−2)X +X3) = 0

■

5.2 Markov Trace

We are now able to represent a braid diagram via ρn as a sum of simple n-diagrams. We now define
a Markov trace function on the simple n-diagrams. This will obtain a diagram isotopic to a number
of loops. We assign to this diagram a Laurent polynomial in C[X,X−1]. We first generalise the
notion of a trace function on an algebra. The material follows Chapter 2 of the paper [DA24].

Definition 5.2.1. A trace on an R-algebra A is a linear function t : A → R such that t(AB) =
t(BA) for all A,B ∈ A.

Definition 5.2.2. A Markov Trace on T̃ Ln(τ) is a linear function tr : T̃ Ln(τ) → C[X,X−1]
satisfying the following properties:

(i) tr(IT̃ Ln
) = 1

(ii) tr(AB) = tr(BA) for A,B ∈ T̃ Ln(τ)

(iii) tr(AEn−1) = τ−1tr(A) for A ∈ T̃ Ln−1(τ)

Lemma 5.2.3. [DA24, Lemma 2.1] There is a unique linear function tr on
⋃∞

n=1 T̃ Ln(τ) satisfying
the axioms in Definition 5.2.2.
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Proof. By Lemma 4.0.4 for a word in the alphabet {In, E1, ..., En−1} the maximal generator appears
exactly once. This follows from the algebra isomorphism defined in Theorem 4.1.7. Therefore a
word w ∈ T̃ Ln(τ) contains at most one En−1.

Now suppose w ∈ T̃ Ln(τ)\T̃ Ln−1(τ). All such elements in this set must contain En−1 as it is

the only non-common element as En−1 ̸∈ T̃ Ln−1(τ). Combining this with the first statement the
number of occurrences of En−1 in w is exactly one. We can therefore write w = w1En−1w2 where

w1, w2 ∈ T̃ Ln−1(τ). Then by the relations (ii) and (iii) in Definition 5.2.2 we have

tr(w) = tr(w2w1En−1) = τ−1tr(w2w1)

Therefore for any word w ∈ T̃ Ln(τ) we can reduce the trace computation to the trace of a word

w2w1 ∈ T̃ Ln−1(τ). Iterating this process the trace of a word in T̃ Ln(τ) is uniquely determined by
the relations in Definition 5.2.2. By definition the trace is linear and the result follows. ■

Proposition 5.2.4. The Markov trace tr is the function tr : T̃ Ln(τ) → C[X,X−1] given by

tr(D) = τ p−n (5.5)

where p is the number of loops obtained connecting each starting point i with the endpoint i by
non-crossing strands for all i ∈ {1, ..., n} of the simple n-diagram D.

Proof. By uniqueness it is enough to show the function given by Equation 5.5 satisfies the axioms
in Definition 5.2.2.

(i) A loop will form for each non crossing strand therefore tr(In) = τn−n = τ 0 = 1.

(ii) For |i − j| > 1 this follows immediately from the relations of T̃ Ln(τ) in Figure 4.8. For
|i−j| = 1, Figure 5.1 illustrates the equivalence of tr(EiEi+1) = tr(Ei+1Ei). They both result
in one loop being formed. Therefore we have shown (ii) holds for any combination of basis
elements Ei. As a simple n-diagram may be written as a composition of basis elements the
result follows.

tr(EiEi+1) : : tr(Ei+1Ei)∼= ∼=

Figure 5.1: The trace on elements EiEi+1 and Ei+1Ei ∈ T̃ Ln(τ)

(iii) Let A ∈ T̃ Ln−1(τ). We can embed A ∈ T̃ Ln(τ) by introducing a non crossing nth strand.

The trace of A composed with En−1 ∈ T̃ Ln(τ) is demonstrated in Figure 5.2. Suppose
tr(AEn−1) = τ p−n. Then tr(A) = τ p−(n−1) = ττ p−n implies τ−1tr(A) = τ p−n as required.

tr(AEn−1) : : τ−1tr(A)A AA
∼= ∼=

Figure 5.2: The trace of AEn−1 ∈ T̃ Ln(τ) is equivalent to τ−1tr(A) for A ∈ T̃ Ln−1(τ)

■
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5.3 Writhe

We are now able to move from braids to Laurent polynomials by the composition

tr ◦ ρn : Bn → T̃ Ln(τ) → C[X,X−1]

Recall for a polynomial to be a knot invariant by Markov’s Theorem 3.3.1 it must be invariant
under a series of Markov modifications. We will discover that the construction tr◦ρ is not invariant
under the Markov move MIII. To adjust this we introduce the writhe factor. We define this on an
arbitrary braid which by Alexander’s Theorem 3.2.3 becomes a property of a knot. The material
follows Chapter 3 of the book [JM19].

Definition 5.3.1. For a braid β ∼= σα1
i1
σα2
i2

· · · σαm
im

the writhe of the braid is defined as a map
w : Bn → Z such that

w(β) =
m∑
i=1

αi

For example, consider the braid corresponding to the trefoil knot in Figure 3.6. The braid is a
composition of three basis elements denoted σ3

1 ∈ B2. The writhe is calculated to be w(σ3
1) = 3.

Definition 5.3.2. Let K be a knot diagram given with an orientation. The writhe w(K) is the
sum of the signs of all crossings of K.

Remark 5.3.3. Computing the writhe directly from the knot results in a sum of positive and negative
crossings. This requires a knot diagram with an orientation. By convention the sign of the crossing
is determined by the right-hand rule. To find the sign of the crossing follow the string of the knot
continuously in one direction marking this with arrows. Then follow the string in this direction
again and observe at each over crossing whether the piece of string crossing above travels to the
right (positive) or left (negative) relative to the string being followed.

The writhe of a knot diagram is not a knot invariant as it is not invariant under Reidemeister
move RI. This is shown in Figure 5.3 where K ∼= K ′ differ only in the local areas as shown below.

RI RII RIII

w(K1) = 1 w(K′
1) = 0 w(K2) = 0 w(K′

2) = 0 w(K3) = 3 w(K′
3) = 3

+

-

+

+

+ +

+

+ +

Figure 5.3: The writhe of the Reidemeister moves given in Definition 2.2.2

Remark 5.3.4. Recall the moves from Markov’s Theorem 3.3.1. As shown in Figure 3.7 MIII
modifies the knot in the same way as RI in Figure 5.3. The loop is simply unravelled to remove
the crossing. Therefore MIII alters the writhe of the braid by ±1 depending on whether the nth
strand is crossed over or under. This is given by

w(βσ±1
n ) = w(β)± 1

Recall Theorem 3.0.4. The writhe under MI will not be effected by the above RII and RIII and
planar isotopy does not effect crossings. The writhe under MII will not be effected as

w(αβα−1) = w(α) + w(β)− w(α) = w(β)
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5.4 Jones Polynomial

We will discover in the proof of Theorem 5.4.2 that the Markov move MIII changes tr ◦ ρ by a
factor of (−X±3) depending on whether the crossing has been made over or under. Therefore by
Remark 5.3.4 introducing (−X±3)w(β) nullifies this change. By Remark 5.3.4 this factor will not be
effected under equivalence, MI, or conjugation, MII.

It is now possible to define the Jones polynomial as a knot invariant in terms of the closure of
a braid. We are able to define a function

VK : {Knots} → Bn → T̃ Ln(τ) → C[X,X−1]

which is well defined as by Alexander’s Theorem 3.2.3 every knot can be considered as the closure
of a braid. The material in this section follows the paper [Fas05].

Definition 5.4.1. Let β ∈ Bn be a braid and K a knot diagram. The Jones Polynomial VK(X) of
a knot K ∼= β̄ is the function VK : {Knots} → C[X,X−1] defined by

VK(X) = (−X3)−w(β)tr(ρn(β))τ
n−1 (5.6)

where τ = (−X2 −X−2).

Theorem 5.4.2. [Fas05, Proposition 2] The Jones Polynomial VK(X) is a knot invariant.

Proof. By Theorem 2.1.5 we can consider every knot as a knot diagramK. By Alexander’s Theorem
3.2.3 for every knot K there exists a braid β ∈ Bn such that K ∼= β. Let K ∼= β and K ′ ∼= β′. By
Markov’s Theorem 3.3.1 if it is possible to obtain β′ from β by a series of Markov moves then their
closures are ambient isotopic knots β′ ∼= β. Therefore it suffices to show that VK(X) is invariant
under a series of Markov moves given in Markov’s Theorem 3.3.1.

Case MI : Equivalence in a given braid group follows immediately from ρn being a representation
therefore is invariant under equivalent braids.

Case MII : Let K ∼= β and K ′ ∼= αβα−1 for braids α, α−1 ∈ Bn. For conjugation in a given braid
group the following calculation shows ρn(β) = ρn(σiβσ

−1
i ). As any braid can be written as a

composition of elementary braids this implies ρn(β) = ρn(αβα
−1). We apply relation 4.1 of

Definition 4.0.1 to the last term in the following expansion.

ρn(σiβσ
−1
i ) = ρn(σi)ρn(β)ρn(σ

−1
i )

= (XIn +X−1Ei)ρn(β)(XEi +X−1In)

= (XInρn(β) +X−1Eiρn(β))(XEi +X−1In)

= Inρn(β) +X2EiInρn(β) +X−2EiInρn(β) + E2
i ρn(β)

= ρn(β) + (X2 +X−2)Eiρn(β) + (−X2 −X−2)Eiρn(β)

= ρn(β)

=⇒ VK(X) = (−X3)−w(β)tr(ρn(β))τ
n−1

= (−X3)−w(β)tr(ρn(αβα
−1))τn−1 = VK′(X)
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Case MIII : Let K ∼= β and K ′ ∼= βσn. By Remark 5.3.4 we have w(βσn) = w(β) + 1 and
w(βσ−1

n ) = w(β) − 1. The case that the nth strand passes over the (n + 1)th strand is
calculated first. In the case of the nth strand passing under the (n + 1)th strand we use the
second representation in Definition 5.1.1. This demonstrates why the factor (−X3)−w(β) is
necessary for the Jones Polynomial to be defined as a knot invariant.

(−X3)−w(βσn)tr(ρn+1(βσn))τ
n+1−1 = (−X3)−(w(β)+1)tr(ρn(β)ρn+1(σn))τ

n

= (−X3)−(w(β)+1)tr(ρn(β)(XIn +X−1En))τ
n

= (−X3)−(w(β)+1)tr(ρn(β))(Xτ 0 +X−1τn−(n+1))τn

= (−X3)−w(β)−1tr(ρn(β))(X(−X2 −X−2) +X−1)τn−1

= (−X3)−w(β)(−X−3)tr(ρn(β))(−X3)τn−1

= (−X3)w(β)tr(ρn(β))τ
n−1

(−X3)−w(βσ−1
n )tr(ρn+1(βσ

−1
n ))τn = (−X3)−(w(β)−1)tr(ρn(β)ρn+1(σ

−1
n ))τn

= (−X3)−(w(β)−1)tr(ρn(β)(XEn +X−1In))τ
n

= (−X3)−(w(β)−1)tr(ρn(β))(Xτn−(n+1) +X−1τ 0)τn

= (−X3)−(w(β)−1)tr(ρn(β))(Xτ−1 +X−1)τn

= (−X3)−w(β)+1tr(ρn(β))(X +X−1(−X2 −X−2))τn−1

= (−X3)−w(β)(−X3)tr(ρn(β))(−X−3)τn−1

= (−X3)w(β)tr(ρn(β))τ
n−1

=⇒ VK(X) = (−X3)w(β)tr(ρn(β))τ
n−1

= (−X3)w(βσ±1
n )tr(ρn+1(βσ

±1
n ))τn = VK′(X)

■

This completes the construction of the Jones polynomial VK(X). We will now give two examples
to demonstrate calculating the Jones polynomial of a knot.

Example 5.4.3. Consider the trefoil knot diagram given in Figure 2.1. By Alexander’s Theorem
we have shown in Example 3.2.4 that the trefoil knot is equivalent to the closure of a braid σ3

1. We
therefore consider the braid σ3

1. As there are three crossings we expect there to be 23 terms in the
expansion of ρ2(σ

3
1). We have σ3

1 ∈ B2 as the braid has two strands.

ρ2(σ
3
1) = (XI2 +X−1E1)

3

= X3I32 +XI22E1 + E1XI22 +X−1E2
1I2 +XI22E1 + I2X

−1E2
1 +X−1E2

1I2 +X−3E3
1

= X3I2 + 3XI2E1 + 3I2X
−1E2 +X−3E3

1

Now we have a sum of simple n-diagrams which are elements of T̃ L2(τ).

tr(I2) : tr(E1) : tr(E2
1) : tr(E3

1) :

Figure 5.4: The trace of the required elements of T̃ L2(τ)
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The process of taking the trace of each simple n-diagram is shown in Figure 5.4.
We count the loops in each diagram to calculate the trace as follows.

tr(I2) = τ 2−2 = τ 0

tr(E1) = τ 1−2 = τ−1

tr(E2
1) = τ 2−2 = τ 0

tr(E3
1) = τ 3−2 = τ

Now we can give the trace of the representation of the braid as

tr(ρ2(σ
3
1)) = (X3 + 3Xτ−1 + 3X−1 +X−3τ) (5.7)

It remains to multiply by the factor (−X3)−w(σ3
1)τ 2−1 to calculate the Jones polynomial. Mul-

tiplying by τ 2−1 will cancel any negative powers of τ in Equation 5.7. We use by Definition 5.4.1
τ = (−X2 −X−2) which allows us to expanded and simplify the polynomial.

(−X3)−w(σ3
1)tr(ρ2(σ

3
1))τ = (−X3)−3(X3 + 3Xτ−1 + 3X−1 +X−3τ)τ

= (−X3)−3(X3τ + 3X + 3X−1τ +X−3τ 2)

= (−X3)−3(X3(−X2 −X−2) + 3X + 3X−1(−X2 −X−2)

+X−3(−X2 −X−2)2)

= (−X3)−3(X−7 −X−3 −X5)

= (−X−16 +X−12 +X−4)

The factor of τn−1 is to set the convention that the Jones Polynomial of the unknot is equal to
one. This is demonstrated in the following example.

Example 5.4.4. Consider the knot K given in Figure 5.5. By Alexander’s Theorem 3.2.3 we can
form the closure of the braid β ∼= K.

The braid β can be seen in the highlighted section of the knot shown in Figure 5.5. The closure
strands surround this highlighted section. We present this more clearly on the right.

Figure 5.5: The knot K equivalent to the closure of a braid β respectively

The braid β is the exact braid illustrated in Figure 3.2. Therefore β is written as the composition
of elementary braids given by

β ∼= σ3σ1σ
−1
2

We have that β ∈ B4. The writhe of β is calculated w(β) = 1 + 1− 1 = 1.
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We calculate the Jones Polynomial in stages as follows.

ρ4(σ3σ1σ
−1
2 ) = (X +X−1E3)(X +X−1E1)(X

−1 +XE2)

= X +X3E2 +X−1E1 +XE1E2 +X−1E3 +XE3E2

+X−3E3E1 +X−1E3E1E2

tr(ρ4(σ3σ1σ
−1
2 )) = X +X3τ−1 +X−1τ−1 +Xτ−2 +X−1τ−1 +Xτ−2

+X−3τ−2 +X−1τ−3

tr(ρ4(σ3σ1σ
−1
2 ))τ 3 = Xτ 3 +X3τ 2 +X−1τ 2 +Xτ +X−1τ 2 +Xτ +X−3τ +X−1

= Xτ 3 +X3τ 2 + 2X−1τ 2 + 2XτX−3τ +X−1

= X(−X6 − 3X2 − 3X−2 −X−6) +X3(X4 + 2 +X−4)

+ 2X−1(X4 + 2 +X−4) + 2X(−X2 −X−2) +X−3(−X2 −X−2) +X−1

= −X7 − 3X3 − 3X−1 −X−5 +X7 + 2X3 +X−1 + 2X3 + 4X−1 + 2X−5

− 2X3 − 2X−1 −X−1 −X−5 +X−1

= −X3

=⇒ VK(X) = (−X3)−w(σ3σ1σ
−1
2 )tr(ρ4(σ3σ1σ

−1
2 ))τ 4−1

= (−X3)−1tr(ρ4(σ3σ1σ
−1
2 ))τ 3

= (−X3)−1(−X3)

= 1

This leads us to suspect that this knot is inequivalent to the unknot. Indeed we can apply the
Reidemeister move RI to the three crossings of K in Figure 5.5. By Reidemeister’s Theorem 2.2.3
this will prove that K is in fact equivalent to the unknot.

6 Applications of the Jones Polynomial

6.1 Skein Relation

A skein relation is a term used in knot theory for a linear relation between three knot diagrams
which differ in a small region. Skein relations often simplify knot invariants. The following skein
relation is sufficient for computing the Jones polynomial. The skein relation gradually decreases
the number of crossings of the knot and allows us to compute the Jones polynomial recursively.

Definition 6.1.1. The knots K+, K−, KI are the same except for a small neighbourhood of a
point where they are given by

K+ = K− = KI =

Theorem 6.1.2. [Lic97, Proposition 3.7] Let K be a knot and K◦ be the unknot. The Jones
polynomial VK(X) of a knot K is given by the relations

VK◦(X) = 1 (6.1)

(−X4)VK+ + (X−4)VK− = (X2 −X−2)VKI
(6.2)
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Proof. For the first equation let β ∈ B1, then

VK◦ = (−X3)−w(β)tr(ρn(β))τ
n−1 = 1

By Theorem 5.4.2, VK◦(X) is invariant under equivalent knots and the claim follows.
The second relation is given as follows. By Alexander’s Theorem 3.2.3 we can consider the

additional crossing as a crossing of the braid.

(−X4)VK+ + (X−4)VK−

= −X4(−X3)−w(K+)tr(ρn(βσi))τ
n−1 +X−4(−X3)−w(K−)tr(ρn(βσ

−1
i ))τn−1

= −X4(−X3)−w(K+)(X +X−1τ−1)tr(ρn(β))τ
n−1 +X−4(−X3)−w(K−)(X−1 +Xτ−1)tr(ρn(β))τ

n−1

= −X4(−X3)−w(K+)(Xτ +X−1)tr(ρn(β))τ
n−2 +X−4(−X3)−w(K−)(X−1τ +X)tr(ρn(β))τ

n−2

= −X4(−X3)−w(K+)(−X3)tr(ρn(β))τ
n−2 +X−4(−X3)−w(K−)(−X−3)tr(ρn(β))τ

n−2

= −X4(−X3)−(w(β)+1)(−X3)tr(ρn(β))τ
n−2 +X−4(−X3)−(w(β)−1)(−X−3)tr(ρn(β))τ

n−2

= −X4(−X−3)(−X3)−w(β)(−X3)tr(ρn(β))τ
n−2 +X−4(−X3)(−X3)−w(β)(−X−3)tr(ρn(β))τ

n−2

= −X4(−X3)−w(β)tr(ρn(β))τ
n−2 +X−4(−X3)−w(β)tr(ρn(β))τ

n−2

= (−X4 +X−4)(−X3)−w(β)tr(ρn(β))τ
n−2

= (X2 −X−2)(−X2 −X−2)(−X3)−w(β)tr(ρn(β))τ
n−2

= (X2 −X−2)τ(−X3)−w(β)tr(ρn(β))τ
−1τn−1

= (X2 −X−2)(−X3)−w(β)tr(ρn(β))τ
n−1

= (X2 −X−2)VKI

■

The knot diagram K+ given in Figure 6.1 is the trefoil knot given in Figure 2.1. The knots K−
and KI differ only in the highlighted region. They differ in this region by the diagrams given in
Definition 6.1.1. The crossings correspond to the orientation convention given in Remark 5.3.3.

Figure 6.1: The trefoil knot diagram K+ and the knot diagrams K− and KI respectively

6.2 Kauffman Bracket

In this section we present the Kauffman bracket ⟨K⟩. We will use the Kauffman bracket to construct
a function that is a knot invariant. In this case the function must be invariant under a series of
Reidemeister moves as we are applying the function to the knot directly. We conclude by proving
that the function is in fact a variation of the Jones polynomial. This is an even simpler form of
the Jones polynomial than the skein relation given in Theorem 6.1.2. This is due to the number of
crossings of the knot diagram being strictly reduced when the Kauffman bracket is applied. The
material in this section is primarily from Chapter 5 of the book [PBI+23].

30



Consider a knot diagram K. Each crossing of K is resolved by a choice from the set { ⌣
⌢ , ) ( }.

This results in a knot diagram with no crossings that is a state of the knot K. As a choice of two
is made at each crossing a knot diagram with n crossings will have a summation of 2n states. A
number of closed loops will form in each state which we denote l. This is given as the following
skein relation along with the convention that the unknot gives a bracket of one. Each closed loop
in a diagram is removed as a power of the variable τ .

l

= X + X−1

= τ l−1(1)

(2)

The aim would be to find the necessary coefficients X and Y and variable τ in order for the
bracket to become a knot invariant. We will derive the conditions given in Definition 6.2.1. However
we will see that the Kauffman bracket ⟨K⟩ cannot be a knot invariant without introducing a factor
which nullifies the change under the Reidemeister move RI. This follows from Remark 5.3.4.

Definition 6.2.1. For a knot diagram K the Kauffman bracket ⟨K⟩ ∈ C[X,X−1] of K is defined
recursively by the follow properties:

K

= X + X−1

= 1(i)

(iii)

= (−X2 −X−2)(ii) K

The sum of all states is referred to as the state sum formulation of the Kauffman Bracket ⟨K⟩.
An orientation is not required for the result (iii) in Definition 6.2.1 as each state is a number of
closed loops.

Recall the Reidemeister moves given in Definition 2.2.2. In order to construct the Kauffman
bracket as a knot invariant we must show that the Kauffman bracket of the knot diagram is preserved
when each Reidemeister move is applied locally. Notice that ⟨ ) ( ⟩ in the skein relation resembles
the result of Reidemeister move RII. We use this equality to calculate the coefficients required for
⟨K⟩ to be invariant under RII.

Case RII : Notice for the negative crossing of RII in Figure 5.3 we must exchange the coefficients
X and Y as the orientation is reversed. The Kauffman bracket is given by

= X +Y

= XY +X2 +Y 2 +Y X

= (X2+Y Xτ+Y 2) +XY
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For RII we require equality between the left bracket and second term therefore

Y = X−1

X2 + Y Xτ + Y 2 = 0 =⇒ τ = −X2 −X−2

Case RIII : We show the skein relation with the above coefficients is invariant under RIII by

= X + X−1

= X + X−1

The first terms equal by planar isotopy. The second terms equal by applying Case RII.

Case RI : The Kauffman bracket is not invariant under RI as shown in the following diagram.

= X + X−1 = X3

= X + X−1 = X−3

By Reidemeister’s Theorem 2.2.3 the left knot diagrams are both equivalent to the unknot.
Therefore a knot invariant on these knots must be equivalent to the unknot that is by assump-
tion one. However the Reidemeister move RI causes an additional factor of X±3 depending
on whether it is a positive or negative crossing. To nullify this change we introduce the factor
(−X3)−w(K). Consider the right hand rule in Remark 5.3.3. As RI has a factor (−X3) for a
positive crossing (−X3)−1 will cancel this. The negative crossing is cancelled similarly. We
also know by Remark 5.3.4 that the writhe is not effected under moves RII, RIII or planar
isotopy. Therefore the Kauffman bracket multiplied by this factor becomes a knot invariant.

Corollary 6.2.2. For a knot K then (−X3)−w(K)⟨K⟩ is a knot invariant.

Theorem 6.2.3. [DA24, Lemma 2.2] The Jones Polynomial of a knot K is given by

VK(X) = (−X3)−w(K)⟨K⟩ (6.3)

Proof. Let K be a knot and β a braid such β ∼= K. It is immediate that w(β) = w(β) as the closure
is formed by non-crossing strands. We have that (−X3)−w(K) and (−X3)−w(β) are introduced to
nullify the effect of RI and MIII respectively. By Remark 5.3.4 the moves RI and MIII have the
same effect on the knot therefore any such moves will be nullified in VK(X) by these factors and
can therefore be considered equal. Therefore in comparison to Definition 5.6 it is required to show

⟨K⟩ = τn−1tr(ρn(β))

There is a one to one correspondence between the simple n-diagrams as a result of ρn(β) and the
states in the expansion of ⟨K⟩. The difference at this point is we consider the crossings on the knot
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instead of on the braid. In each case there is 2n terms in the expansion as at each crossing we have
a decision of the same two resolutions.

By linearity of the trace function it suffices to show each term in the Kauffman bracket expansion
is equal to the trace of the simple n-diagram multiplied by the factor τn−1. To compute the term of
the Kauffman bracket we resolve each of the crossings then apply the relations in Definition 6.2.1
until we we obtain a diagram of closed loops.

We claim that the Kauffman bracket of l closed loops is (−X2 −X−2)l−1. We apply Definition
6.2.1 inductively as follows.

We show this holds for 1 loop: ⟨◦⟩ = 1

Assume this holds for l loops: ⟨l◦⟩ = (−X2 −X−2)l−1

This implies: ⟨(l+1)◦⟩ = (−X2−X−2)⟨l◦⟩ = (−X2−X−2)(−X2−X−2)l−1 = (−X2−X−2)(l+1)−1

In comparison, taking the trace of the simple n-diagram will produce a number of loops which will
be equivalent to the number of loops in the corresponding Kauffman bracket term. Multiplying this
value by the factor τn−1 for τ = (−X2 −X−2) implies

τn−1τ l−n = τ l−1 = (−X2 −X−2)l−1

Therefore each term of ⟨K⟩ equals the corresponding term in τn−1tr(ρn(β)) as required. ■

Example 6.2.4. Let K be the trefoil knot in Figure 2.1. We orientate the knot diagram to give

and apply (iii) in Definition 6.2.1 to each of the highlighted areas. Therefore the Kauffman bracket
⟨K⟩ is given by

= X + X−1

= X2 + + + X−2

= X + X3 + X−1

+ X−1 + X−1+ X−3+ X

+ X
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There are 3 crossings which give 23 states in the bracket expansion. By applying the relations
(i) and (ii) in Definition 6.2.1 this results in the following expansion.

⟨K⟩ = X3(−X2 −X−2) +X +X +X−1(−X2 −X−2) +X +X−1(−X2 −X−2)

+X−1(−X2 −X−2) +X−3(−X2 −X−2)2

= X3(−X2 −X−2) + 3X + 3X−1(−X2 −X−2) +X−3(−X2 −X−2)2

= (X−7 −X−3 −X5)

(6.4)

Therefore
(−X3)−3⟨K⟩ = (−X−16 +X−12 +X−4) (6.5)

Notice the resulting Laurent polynomial in Equation 6.5 is the same as the Jones polynomial of
the trefoil knot in Example 5.4.3 as expected.

6.3 The Jones Unknotting Conjecture

The classical problem of knot theory is to decide whether two knots are equivalent. The Jones poly-
nomial allows us to detect distinct knots. However the Jones polynomial does not detect equivalent
knots. Therefore the Jones polynomial is not a complete knot invariant. There exists infinitely
many distinct knots with equal Jones Polynomials. This can be shown by Conway mutation which
is detailed in Chapter 7 of the book [Cro04].

An example is the Kinoshita-Terasaka knot and Conway knot illustrated in Figure 6.2. The
length of the calculation of the Jones polynomial increases exponentially as the number of crossings
of the knot increases. There would be 211 states in the Jones polynomial of the Kinoshita-Terasaka
and Conway knots. Therefore we do not include the calculation of the Jones polynomial of these
knots.

The Jones polynomial for the knots K and K ′ in Figure 6.2 are equal, that is VK(X) = VK′(X).
However the knot K is not equivalent to the knot K ′ in Figure 6.2. We omit the proofs which can
be found in the paper [Lic88].

Figure 6.2: Kinoshita-Terasaka Knot K and Conway Knot K ′ respectively

A more specific problem of knot theory is whether a knot is equivalent to the unknot. We would
like to know whether the Jones polynomial detects the unknot. For this problem there is currently
no known counter example. That is there is no known non-trivial knot K such that the Jones
Polynomial of K is the same as the Jones Polynomial of the unknot.
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Conjecture 6.3.1. [PBI+23, Conjecture 5.2.9] The Jones unknotting Conjecture states

VK(X) = 1 ⇐⇒ K is the unknot

It has been shown that the conjecture holds for knots of up to 24 crossings; see the paper
[RET20]. The conjecture in general remains an open problem in knot theory.

6.4 Chiral Knots

The aim of this subsection is to understand whether the Jones polynomial distinguishes a knot K
from it’s mirror image K∗. We now understand that if the Jones polynomials VK(X) and VK∗(X)
are distinct then the knots are distinct. We return to the familiar trefoil knot as first presented in
Figure 1.1. We will compare the Jones polynomials of the trefoil knot and it’s mirror image. We
will observe a certain relation which will allow us to understand how the Jones polynomial can in
general distinguish whether a knot is equivalent to it’s mirror image. The material follows from
Chapter 11 of the book [Mur93].

Definition 6.4.1. A knot K is amphichiral if it is ambient isotopic to it’s mirror image K∗. Oth-
erwise the knot is chiral.

In order to study chirality it is necessary to understand how to construct the mirror image of
a knot K. The mirror image of a knot is accessed more easily when considering the braid β such
K ∼= β. The mirror image of the braid β is β−1 by definition. By Alexander’s Theorem 3.2.3 this
implies K∗ ∼= β−1.

Example 6.4.2. Consider the trefoil knot as the closure of a braid K ∼= β from Figure 3.2.4. The
mirror image β−1 is achieved by replacing each of the elementary braid elements with the inverse.
In this case each strand in position 1 will now pass under the strand in position 2. This is illustrated
in Figure 6.4.2. Taking the closure of this braid produces the mirror image of the trefoil knot K∗.

K∗ = β−1 = , β−1 =

1

2

1

2

Figure 6.3: The mirror image of the trefoil knot K∗ with the corresponding braid β−1

Proposition 6.4.3. The trefoil knot is chiral.

Proof. We aim to prove that the trefoil knot K is not equivalent to it’s mirror image K∗. We
have calculated the Jones Polynomial of the trefoil knot in Example 5.4.3. We will calculate the
Jones Polynomial of the mirror image of the trefoil knot. By Theorem 5.4.2 if the resulting Laurent
polynomials are distinct then the knots are distinct.

For the first line in Equation 6.6 the negative power requires the representation of the negative
crossing given in Definition 5.1.1.
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ρ2(σ
−3
1 ) = (XE1 +X−1I2)

3

= X3E3
1 +XE2

1I2 +XE2
1I2 +X−1E1I

2
2 +XE2

1I2 +X−1E1I
2
2 +X−1E1I

2
2 +X−3I32

= X3E3
1 + 3XE2

1I2 + 3X−1E1I
2
2 +X−3I32

(6.6)

By Figure 5.4 we have tr(I2) = τ 0, tr(E1) = τ−1, tr(E2
1) = τ 0, tr(E3

1) = τ 1. Therefore

(−X3)−w(σ−3
1 )tr(ρ2(σ

−3
1 ))τ = (−X3)−(−3)(X3τ + 3X + 3X−1τ−1 +X−3)τ

= (−X3)3(X3(−X2 −X−2)2 + 3X(−X2 −X−2) + 3X−1 +X−3(−X2 −X−2))

= (−X3)3(X7 −X3 −X−5)

= (−X16 +X12 +X4)

This implies

VK(X) = (−X−16 +X−12 +X−4) ̸= (−X16 +X12 +X4) = VK∗(X) (6.7)

Therefore the trefoil is not equivalent to it’s mirror image. This implies the trefoil knot is chiral. ■

Notice in Equation 6.7 that VK(X) = VK∗(X−1). The formal variable in the Jones polynomial
of K has been replaced by the inverse of such in Jones polynomial of K∗. This holds for all knots
by the following theorem.

Theorem 6.4.4. [Mur93, Theorem 11.2.5] Suppose that the knot K∗ is the mirror image of the
knot K then

VK∗(X−1) = VK(X)

Furthermore if K is amphichiral then

VK(X) = VK(X
−1)

Proof. Let K be a knot and β ∈ Bn a braid such that K ∼= β. Recall from Equation 3.2 a braid
can be written as a composition of elementary braids

β ∼= σα1
i1
σα2
i2

· · · σαm
im

To construct the mirror image of the braid at each crossing in β we replace σi with it’s inverse σ−1
i

β−1 ∼= σ−α1
i1

σ−α2
i2

· · · σ−αm
im

The mirror image of the knot K denoted K∗ is ambient isotopic to β−1.
We compute the Jones Polynomial using Definition 5.4.1. Recall the representations in Definition

5.1.1. We aim to calculate ρn(β
−1). The representations (XIn + X−1Ei) and (X−1In + XEi) in

ρn(β
−1) will interchange if an over crossing has been replaced with an under crossing and vice versa.

It is possible αi may be negative in the first instance however this does not effect the proof as it
would become positive which will obtain the alternative representation as required.

ρn(β) = ρn(σ
α1
i1
σα2
i2

· · · σαm
im

)

= (XIn +X−1Ei1)
α1(XIn +X−1Ei2)

α2 · · · (XIn +X−1Eim)
αm
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ρn(β
−1) = ρn(σ

−α1
i1

σ−α2
i2

· · · σ−αm
im

)

= (X−1In +XEi1)
α1(X−1In +XEi2)

α2 · · · (X−1In +XEim)
αm

= ((X−1)In + (X−1)−1Ei1)
α1((X−1)In + (X−1)−1Ei2)

α2 · · · ((X−1)In + (X−1)−1Eim)
αm

Therefore each formal variable X has been replaced with X−1 in the representation of ρn(β) to
achieve the representation of ρn(β

−1). Hence VK∗(X−1) = VK(X) as required.
If VK(X

−1) = VK(X) by the previous calculation this implies ρn(β) = ρn(β
−1). As ρn is defined

to be a representation on Bn this implies β ∼= β−1. Therefore K ∼= β ∼= β−1 ∼= K∗ as required.
■

Therefore the Jones Polynomial allows us to study amphichirality. It follows from Theorem 6.4.4
that

VK(X) ̸= VK(X
−1) =⇒ K is chiral

However the Jones Polynomial cannot detect a mirror image. That is VK∗(X−1) = VK(X) does not
imply that K∗ is the mirror image of K. There is currently no known knot invariant which is able
to fully detect chirality.

7 Beyond the Jones Polynomial

The Jones polynomial led to the discovery of a new knot invariant, the HOMFLY polynomial
PK(z,m). The construction of the HOMFLY polynomial is similar to the Jones polynomial. We
will construct a representation φm on the braid group into the Hecke algebra Hn(z,m) and compose
this with the Markov trace

Tr ◦ φm : Bn → Hn(z,m) → C[z±1,m±1]

to obtain a Laurent polynomial in two variables. It remains to find the necessary conditions such
that the function is preserved under a series of Markov moves.

The relations of Hn(z,m) are similar to those of T Ln. The Temperley-Lieb algebra is a quotient
of the Hecke algebra. We will see that the Markov trace Tr on Hn in Definition 7.1.10 satisfies the
same relations as the Markov trace tr on T Ln in Definition 5.2.2. Therefore the resulting HOMFLY
polynomial is closely related to the Jones polynomial. We will prove that the HOMFLY polynomial
contains the Jones polynomial as a special case for z = (X2 −X−2) and m = (−X−4).

The Hecke-algebras are closely related to the symmetric group Sn and braid group Bn given
in Section 3.1. For Hn(z = 0,m = 1) we achieve the group algebra of Sn. The Hecke algebras
share certain properties of Sn. We use these properties to gain an understanding of the elements of
Hn(z,m). In particular this will allow us to define the Markov trace Tr recursively. The material
follows Chapter 17 of the book [BZH13].

7.1 The Hecke Algebra

We return to the Symmetric Group Sn which admits a presentation

Sn = ⟨δ, ..., δn−1 | δ21 = I, δiδi+1δi = δi+1δiδi+1, δiδj = δjδi for |i− j| > 1⟩
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Group composition is defined as the usual permutation composition in this case from left to right
which aligns with the composition of braids. Every permutation π ∈ Sn can be written as a
composition of transpositions. We define the unique representation bπ(δi) of Sn as follows. For the
maximum transposition (n− 1, n) where π−1(n) = j we write

bπ(δi) = (j, j + 1)(j + 1, j + 2)...(n− 1, n) · bπ′(δi) (7.1)

for π′ ∈ Sn−1. We can embed Sn−1 as a subgroup of Sn such that the nth generator remains fixed.
This is shown in Figure 7.1.

bπ′ (δi)

1

nn

j+1

1

j

Figure 7.1: The diagram of bπ(δi) for some π ∈ Sn

Define Wn(δi) = {bπ(δi) | π ∈ Sn}. It follows from Sn having order n! that Wn has n! elements
which we call words.

Example 7.1.1. Consider the cycle (1, 5, 2, 3). Then π−1(5) = 1. Therefore by Equation 7.1
bπ(δi) = (1, 2)(2, 3)(3, 4)(4, 5) · (3, 4)(1, 2)(2, 3). This is shown in the following diagram.

1

2

3

4

5

1

2

3

4

5

Figure 7.2: The cycle (1523) ∈ Sn written in the form bπ(δi)

Definition 7.1.2. Define S̃n as the semigroup given by the presentation

S̃n = ⟨δ̃, ..., δ̃n−1 | δ̃iδ̃i+1δ̃i = δ̃i+1δ̃iδ̃i+1, δ̃iδ̃j = δ̃j δ̃i for |i− j| ≥ 2⟩

S̃n is a semigroup of Sn which means it has the same group composition as Sn but does not have
a multiplicative inverse. Therefore the elements of S̃n correspond to the braids β ∼= σα1

i1
σα2
i2

· · · σαm
im

where the powers {α1, ..., αm} are strictly positive.

There is a canonical homomorphism ϕ : S̃n → Sn given by

ϕ(δ̃i) = δi (7.2)

We can define the representation b̃π = bπ(δ̃i) on S̃n. This forms the set W̃n = {b̃π | π ∈ Sn}. We

now construct the product b̃π · δ̃h. This continues to follow the construction in Chapter 17 of the
book [BZH13].
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Definition 7.1.3. We consider the following two cases. Case I holds if the strands crossing at δh
do not cross with each other in bπ. Case II holds if they do.

Case I : b̃π · δ̃h = b̃θ for θ = πδh

h− 1 h− 1

n

π−1(h + 1)

n

h+1

1

h

1

n

h+1

1

h

n

θ−1(h + 1)

Case 2 : b̃π · δ̃h = b̃θδ̃h
2

for θδh = π

h− 1 h− 1

n

π−1(h + 1)

n

h+1

1

h

n

θ−1(h + 1)

n

h+1

1

h

1

We now use the n! words of Wn to construct the Hecke algebra. We first define Mn to be
the free module over a unitary commutative ring R on the words of Wn. We now denote each
generator δ̃i by gi. Let Mn have the basis Wn(gi) = {bπ(gi)| π ∈ Sn}. Each of the generators gj for
j ∈ {1, ..., n − 1} are contained in this basis as each can be written in the form bδj(gi) = gj. This

follows from bδj(δi) = δj and the canonical homomorphism ϕ(δ̃j) = δj. To achieve the structure of
an associative R-algebra it remains to define an associative product · on Mn. By distributivity it
is enough to define the product on the basis elements. This is obtained by iterating the following
definition for the basis elements bπ(gi) ∈ Wn(gi).

Definition 7.1.4. Let g2h = zgh + 1 for some fixed element z ∈ R. Then Definition 7.1.3 takes the
form

Case I : bπ(gi) · gh = bθ(gi) for θ = πδh

Case II : bπ(gi) · gh = zbπ(gi) + bθ(gi) for θδh = π

The Case II follows from bπ(gi) · gh = zbθ(gi) · gh + bθ(gi) where bθ(gi) · gh = bθδh(gi) = bπ(gi) by
construction on the basis Wn(gi) and the condition θδh = π.

Lemma 7.1.5. [BZH13, Lemma 17.6] The product in Definition 7.1.4 is associative on Wn(gi).

We have now constructed an R-algebra of rank n! which is known as the Hecke algebra. We will
now denote it by Hn(z,m).
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Theorem 7.1.6. [BZH13, Theorem 17.7] Let R be a commutative unitary ring of Laurent poly-
nomials in two variables R = C[z±1,m±1] such that z and m are formal variables. The unitary
associative R-algebra with generators g1, ..., gn−1 defined by the relations:

g2i = zgi + 1 (7.3)

gigi+1gi = gi+1gigi+1 (7.4)

gigj = gjgi for |i− j| > 1 (7.5)

is isomorphic to the Hecke algebra Hn(z,m).

Remark 7.1.7. The inverse g−1
i of gi follows from Relation 7.3 where g2i −zgi = gi(gi−z) = 1 implies

g−1
i = gi − z.

We now use the Hecke algebra Hn(z,m) to construct a representation of the braid group Bn.

Definition 7.1.8. Define the homomorphism φm : Bn → Hn(z,m) by

φm(σj) = mgj (7.6)

φm(σ
−1
j ) = m−1g−1

j (7.7)

Proposition 7.1.9. The map φm : Bn → Hn(z,m) is a representation of the Artin Braid Group.

Proof. We must verify that φm preserves the generator relations of Bn as given in Definition 3.1.
By Remark 7.1.7 we have the following.

φm(σi)φm(σ
−1
i ) = mgim

−1g−1
i = gi(gi − z) = 1 = (gi − z)gi = m−1g−1

i mgi = φm(σ
−1
i )φm(σi)

The below equations follow immediately from the Relations 7.4 and 7.5 in Definition 7.1.6.

φm(σiσi+1σi) = m3gigi+1gi = m3gi+1gigi+1 = φm(σi+1σiσi+1)

φm(σiσj) = φm(σi)φm(σj) = m2gigj = m2gjgi = φm(σj)φm(σi) = φm(σjσi) for |i− j| > 1

■

For the construction of the trace we temporarily introduce a third variable C to the ring R.

Definition 7.1.10. AMarkov trace onHn(z,m) is a linear function Tr : Hn(z,m) → C[z±1,m±1, C]
satisfying the following properties:

(i) Tr(IHn) = 1

(ii) Tr(ab) = Tr(ba) for a, b ∈ Hn(z,m)

(iii) Tr(xgn−1) = C · Tr(x) for x ∈ Hn−1(z,m)

Remark 7.1.11. By Remark 7.1.7, Tr(xg−1
n ) = Tr(xgn)−z ·Tr(x) = (C−z)·Tr(x) for x ∈ Hn(z,m).

Lemma 7.1.12. [BZH13, Lemma 17.10] There is a unique function Tr on
⋃∞

n=1Hn(z,m) satisfying
the axioms in Definition 7.1.10.

Remark 7.1.13. The proof shows that a trace on Hn−1 can be uniquely extended to a trace on Hn.
Let w ∈ Hn/Hn−1. Then w must contain gn−1 as it is the only non-common element as gn−1 ̸∈ Hn−1.
By Equation 7.1 we have that δn−1 appears in w ∈ Wn at most once. Therefore combining this with
the first statement we have gn−1 occurs in w exactly once. Therefore w can be written x1gn−1x2 for
x1x2 ∈ Hn−1. By relations (ii) and (iii) in Definition 7.1.10 we have the extension of Tr given by

Tr(x1gn−1x2) = C · Tr(x1x2) for x1gn−1x2 ∈ Hn and x1, x2 ∈ Hn−1 (7.8)
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7.2 The HOMFLY Polynomial

We now have the function Tr ◦φm : Bn → Hn(z,m) → C[z±1,m±1, C]. We are aiming to construct
a knot invariant. Consider the function defined by

cn · Tr(φm(β)) (7.9)

for some cn ∈ C[z±1,m±1, C]. We aim to define cn such that this function is invariant under the
Markov moves. Therefore by Markov’s Theorem 3.3.1 this will be a knot invariant.

Case MI : Equivalence within a given braid group follows immediately from φm being a represen-
tation and so invariant under equivalent braids.

Case MII : This follows from (ii) in Definition 7.1.10.

cn · Tr(φ(α−1βα)) = cn ·m−1 ·m · Tr(σ−1
i1

. . . σ−1
in
φm(β)σi1 . . . σin) = cn · Tr(φm(β))

Case MIII : This Markov move involves embedding the braid β ∈ Bn into Bn+1. We assume

cn · Tr(φm(β)) = cn+1 · Tr(φm(βσ
±1
n )) (7.10)

For the positive crossing we apply (iii) in Definition 7.1.10 where gn = gn+1−1 we have

cn+1 · Tr(φm(βσn)) = cn+1 ·m · Tr(φm(β)gn) = cn+1 ·m · C · Tr(φm(β))

Combining with Equation 7.10 this implies

cn = cn+1 ·m · C (7.11)

For the negative crossing by applying Remark 7.1.11 we have

cn+1 · Tr(φm(βσ
−1
n )) = cn+1 ·m−1 · Tr(φm(β)c

−1
n ) = cn+1 ·m−1 · (C − z) · Tr(φm(β))

Combining with Equation 7.10 this implies

cn = cn+1 ·m−1 · (C − z) (7.12)

To find the necessary value of cn we equate Equations 7.11 and 7.12 to give

cn+1 ·m · C = cn+1 ·m−1 · (C − z)

=⇒ C =
zm−1

(m−1 −m)

(7.13)

It remains to solve Equation 7.11 using the above value of C.

cn+1 = cn ·
1

m · C
= cn ·

m−1(m−1 −m)

zm−1
= cn ·

m−1 −m

z
(7.14)

We use Equation 7.14 to define cn inductively for n as follows.

cn = cn−1 ·
m−1 −m

z
= (

m−1 −m

z
)n−1 (7.15)

This is the value of cn required for cn · Tr(φm(β)) to be invariant under MIII.
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We now have the necessary conditions such that the function given in Equation 7.9 is invariant
under the Markov moves.

Definition 7.2.1. Let β ∈ Bn be a braid and K a knot diagram. The HOMFLY polynomial
PK(z,m) of the knot K ∼= β is the function PK : {Knots} → C[z±1,m±1] defined by

PK(z,m) =
(m−1 −m

z

)n−1

· Tr(φm(β)) (7.16)

Theorem 7.2.2. [BZH13, Theorem 17.13] The HOMFLY polynomial PK(z,m) is a knot invariant.

Proof. The proof follows from the above construction. ■

Example 7.2.3. We compute the HOMFLY polynomial of the trefoil knot. By Alexander’s Theo-
rem 3.2.3 and Figure 3.6 we have the trefoil knot K ∼= β for β ∼= σ3

1 ∈ B2. In order to simplify the
trace we use Equation 7.3 to give

(g21)g1 = (zg1 + 1)g1 = zg21 + g1 = z(zg1 + 1) + g1 = (z2 + 1)g1 + z

We use (iii) in Definition 7.1.10 as g2−1 = g1 this implies tr(g1) = C. Recall C = zm−1/(m−1−m).
By linearity of the Markov trace we have the following calculation.

PK(z,m) =
(m−1 −m)2−1

z2−1
· tr(φ(σ3

1))

= z−1(m−1 −m) ·m3 · Tr(g31)
= z−1(m−1 −m) ·m3 · Tr((z2 + 1)g1 + z)

= z−1(m−1 −m) ·m3 · Tr((z2 + 1)g1 + z)

= z−1(m−1 −m) ·m3 · ((z2 + 1)Tr(g1) + z)

= z−1(m−1 −m) ·m3 · ((z2 + 1)C + z)

= z−1 ·m3 · (zm−1(z2 + 1) + z(m−1 −m))

= z−1 ·m3 · (z3m−1 + zm−1 + zm−1 − zm)

= z2m2 + 2m2 −m4

We introduced skein relations in Section 6.1. The skein relation given in Proposition 7.2.4 suffices
to calculate the HOMFLY polynomial of a knot recursively.

Proposition 7.2.4. [BZH13, Proposition 17.17] Let K+, K−, KI be the sections of knot diagrams
given in Theorem 6.1.2. There is a skein relation given by

m−1PK+ −mPK− = zPKI

Proof. To compute PK we are considering the knot as the closure of a braid K ∼= β. We can write
β such that K+ and K− correspond to over and under crossings of the braid and KI is the area of
no crossing. We use the fact that Remark 7.1.7 implies gi − g−1

i = gi − gi + z. We apply properties
(ii) and (iii) from Definition 7.1.10 to give the following equality.

m−1PK+ −mPK− = m−1cn · Tr(φm(β
′σi))−mcn · Tr(φm(β

′σ−1
i ))

= m−1cn ·m · Tr(giφ(β′))−mcn ·m−1 · Tr(g−1
i φ(β′))

= cn · Tr(gi − g−1
i ) · Tr(φ(β′))

= cnz · Tr(φ(β′))

= zPKI

(7.17)
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■

Theorem 7.2.5. [BZH13, Theorem 17.21] The Jones polynomial can be obtained in terms of the
HOMFLY polynomial by the change of variables

VK(X) = PK(z = X2 −X−2,m = −X−4) (7.18)

Proof. We claim PK(z,m) in Definition 7.2.1 specialises to VK(X) given in Definition 5.4.1 under
the change of variables in Equation 7.18.

Recall C and cn from Equations 7.13 and 7.15. The change of variables implies the following
two equations where τ = (−X2 −X−2).

cn =
(m−1 −m

z

)n−1

=
(−X4 +X−4

X2 −X−2

)n−1

=
((X2 −X−2)(−X2 −X−2)

(X2 −X−2)

)n−1

= τn−1 (7.19)

C =
zm−1

m−1 −m
=

(X2 −X−2)(−X4)

−X4 +X−4
=

(X2 −X−2)(−X4)

(X2 −X−2)(−X2 −X−2)
= (−X4)τ−1 (7.20)

By Alexander’s Theorem 3.2.3 we consider the braid β ∈ Bn such that K ∼= β. We aim to prove
the claim holds for all such braids. We proceed inductively on n.

If n = 1 then for all β ∈ B1 we have τ 0 · Tr(IH1) = 1 = (−X3)0tr(I1)τ
0 and the claim holds.

Assume for all β ∈ Bn the claim holds.

We prove that the claim holds for all β ∈ Bn+1. That is we claim

τ (n+1)−1Tr(φm(β)) = (−X3)−w(β)+1tr(ρn+1(β))τ
(n+1)−1 (7.21)

We can write β as a composition of elementary braids. If β does not contain σn then the
(n+ 1)th strand does not cross anywhere in the braid. In this case β ∈ Bn is embedded into
Bn+1 by a non-crossing (n+1)th strand and the claim follows from the induction hypothesis.

Suppose β contains a crossing of the (n + 1)th strand. We can write β ∼= ασ±1
n α′ for braids

α, α′ ∈ Bn+1.

Case 1: If neither α or α′ contain a crossing with the (n + 1)th strand then α, α′ ∈ Bn are
embedded into Bn+1. By Theorem 5.4.2 and Theorem 7.2.2 we have invariance under
Markov move MIII therefore the following holds for σn and σ−1

n similary.

On the left hand side of Equation 7.21 we use the Equations 7.19 and 7.20. We apply
Remark 7.1.13 for x1, x2 ∈ Hn to give

τ (n+1)−1 · Tr(φm(ασnα
′)) = τn−1τ(−X−4) · Tr(x1gnx2)

= τn−1τ(−X−4) · C · Tr(x1x2)

= τn−1τ(−X−4) · C · Tr(φm(αα
′))

= τn−1τ(−X−4)(−X4)τ−1 · Tr(φm(αα
′))

= τn−1 · Tr(φm(αα
′))

43



On the right hand side of Equation 7.21 we have

(−X3)−w(β)+1tr(ρn+1(ασnα
′))τ (n+1)−1 = (−X3)−w(β)(−X−3)(X +X−1τ−1)tr(ρn(αα

′))τn

= (−X3)−w(β)tr(ρn(αα
′))τn−1

as α, α′ ∈ Bn equality holds by the induction hypothesis.

Case 2: If either α or α′ do contain a crossing with the (n + 1)th strand then we can write
α = α′′σ±1

n α′′′ and repeat this process. By properties (ii) and (iii) in Definition 7.1.10
we can then apply Case 1 and the claim follows.

α α′ α α′

1

n

n+1

1

n

n+1

1

n

n+1

1

n

n+1

Figure 7.3: Case 1 and Case 2 respectively

Alternatively the claim follows immediately from the skein relation of the Jones polynomial
given in Theorem 6.1.2 and the HOMFLY polynomial given in Proposition 7.2.4.

−X4PK+ +X−4PK− − (X2 −X−2)PKI = (−X4)VK+ + (X−4)VK− − (X2 −X−2)VKI

■

We have now defined a knot invariant using representations of the braid group on either the
Temperley-Lieb algebra or the Hecke algebra. There are conceptual explanations as to why such
algebras are chosen. This involves the study of quantum groups. The theory of quantum groups
is closely related to the theory of representations of semisimple Lie algebras and the topology of
knots. Vaughan Jones’ discovery of the Jones polynomial whilst studying von Neumann algebras
was a significant event in the early history of this theory.

Inspired by Vaughan Jones’ work, Reshetikhin and Turaev showed how to use quantum groups
to construct finite-dimensional representations of the braid group; see the paper [NR90]. Any finite-
dimensional representation V of a quantum group gives rise to a representation of the braid group
Bn on V ⊗n. The Temperley-Lieb algebra and Hecke algebra appear as endomorphism algebras of
such tensor powers.

For the Temperley-Lieb algebra this is given by

EndUq(g)(V
⊗n
q ) ∼= T Ln(q)

where Vq is a representation of Uq(sl(2)), the quantum enveloping algebra of sl(2). The repre-
sentation Vq is the quantum analogue of the standard representation V = C2 of the Lie algebra
sl(2).

Therefore the Jones polynomial and the HOMPFLY polynomial are special cases of quantum
invariants. An introduction to quantum invariants can be found in the book [Kas95].
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