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0.1 Introduction

0.1 Introduction

0.1.1 Interpolation categories

In this thesis we will discuss the representation theory of the Weyl groups of type B, more
specifically we will discuss categories parameterized by a complex number t that interpolate
the categories of representations Rep(Bn) for different n ∈ N. Such interpolating categories
were first defined by Deligne-Milne in [DM82] for the orthogonal and general linear groups
and by Turaev for certain quantum groups [Tur90]. They were then systematically studied
by Deligne in [Del07] for the Weyl groups of type A, the symmetric groups.

There where different generalisations afterwards, among them by Knop [Kno07] and
Etingof [Eti14] and there are now many interpolation or Deligne categories. These Deligne
categories have found applications in the theory of tensor categories, representations of
supergroups [CH17][ES21] and invariant theory [Cou18].

Among the cases studied by Knop were representations of wreath products G ≀Sn. Knop
constructed interpolating categories in this setting and determined the singular parameters
(those t for which the categories are not semisimple). A different generalisation came from
Mori in [Mor12]. Because the Weyl group Bn is isomorphic to the hyperoctahedral group
Hn = Z2 ≀Sn, both theories yield constructions for how to interpolate the representation
categories Rep(Bn) = Rep(Hn). Recently Flake and Maasen [FM21] generalised the
ideas of Deligne’s Rep(St) construction to interpolate the representation categories of easy
quantum groups. Among their examples is yet another interpolation category Rep(Ht)
for Rep(Hn). Knop’s construction was taken up recently by Likeng and Savage in [LS21],
where they gave a description of interpolation categories for representation categories of
wreath products G ≀ Sn using generators and relations.

0.1.2 Main results of this thesis

This thesis started with the observation that the interpolation categories Rep(Ht) and
Par(Z2, t)Kar for Bn given in [FM21] and [LS21], interpolate the representation categories
for the hyperoctahedral groups in different objects and for different parameters t ∈ C. This
means that the morphisms between the tensor powers of the generating objects in the cate-
gories Rep0(Hn) and Par(Z2, 2n), the pre-Karoubian envelope versions of the interpolation
categories, mimic the behaviour of the morphism spaces between the tensor powers of the
reflection representation u and of the permutation representation V respectively. So the
interpolation functors G : Rep(Ht) → Rep(Hn) and H : Par(Z2, 2n)Kar → Rep(Hn) are
defined on objects by [k] → u⊗k and [k̃] → V ⊗k respectively. We compare these different
constructions and formulate and prove for the first time clearly the universal properties of
these categories. For this we derive in Theorem 2.6.21 a presentation via generators and
relations for the reflection category Rep(Ht).

The main result of this thesis is the following theorem (see Theorem 3.2.15 and Corollary
3.2.18).

Theorem 0.1.1. There is a symmetric monoidal equivalence

Ω : Rep(Hn) ≃ Par(Z2, 2n)Kar
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such that the diagram
Rep(Hn) Rep(Hn)

Par(Z2, 2n)kar Rep(Hn)

G

Ω =

H

commutes for all n ∈ N. The functor Ω descends to an equivalence Ω̂ between the semisim-
plifications of the interpolation categories. For the equivalences Ĝ and Ĥ, the respective
semisimplifications of the interpolation functors G and H, the functor Ω̂ corresponds to
the composition Ĥ−1 ◦ Ĝ.

We remark that it was already shown in [LS21] that there is an embedding of Par(Z2, 2n)Kar

into the group Heisenberg category for the group Z/2Z which intertwines the categorical
actions of Par(Z2, 2n)Kar and Heis(Z/2Z) on modules of the hyperoctahedral group. Using
the equivalence Ω : Rep(Hn) ≃ Par(Z2, 2n)Kar this implies now also that the categorical
actions of Rep(Hn) and the Heisenberg category are compatible.

As another application we obtain in Theorem 3.3.2 that the isomorphism classes of
indecomposable objects of Par(Z2, t)Kar are parametrized by the set of all bipartitions for
t ∈ C \{0}. This was proven by Knop [Kno07] in the semisimple t ̸= 2n-case (see also
[LS21]).

0.1.3 Structure of the thesis

In Chapter 1, we introduce the categorical framework in which we will work during this thesis
and discuss some relations between important representations of the hyperoctahedral groups.
In Chapter 2 we will introduce the interpolation categories and some of their properties,
as well as their universal properties which can be deduced from their presentations via
generators and relations. We will also give a clear motivation for the definition of these
categories, showing how the morphism spaces correspond to the morphisms between tensor
powers of certain objects in the interpolated representation categories. Our approach
in discussing Rep(St), Rep(Ht) and Par(Z2, t)Kar will be one of unifying the language
and the notation as much as possible. We hope that this lays bare the many similarities
between the different interpolation categories and that this juxtaposition gives us new
ideas and proofs. In Chapter 3 we will first discuss a naive way of defining a functor
Rep(Hn) → Par(Z2, 2n)Kar. This will be of limited use, because the functor will neither be
full, nor compatible with the interpolation functors. We construct a functor Ω which does
satisfy these properties and we will show that it is also faithful and essentially surjective,
therefore an equivalence. The result is new and may seem counter-intuitive after a first
look at the involved interpolation categories.

0.1.4 Outlook

It would be interesting to explore whether such equivalences occur in more general situa-
tions. One generalization would be to consider wreath product groups Gn ≀ Sn for other
groups G. Maybe even more interesting would be to look at the complex reflection groups
G(r, p, d) where we have by their definition a reflection representation as well as a permu-
tation representation, and study, whether their categorical incarnations generate the same
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0.1 Introduction

symmetric monoidal category. In general, it seems unclear when the categorical analogues
of two different faithful representations (or tensor generators) give rise to equivalent Deligne
categories. We remark that even in the original article [Del07] Deligne does not use the
reflection representation Cn of Sn and its tensor powers to build his category.

Another interesting direction is the connections to other settings of stable representation
theory for the hyperoctahedral group. Wilson [Wil14] studied this from the perspective of
stable sequences of Weyl group representations. Another setting are tensor representations
of the infinite hyperoctahedral group, the inductive limit of the ascending tower of groups
H1 ⊂ H2 ⊂ ..., similar to Sam-Snowden’s category Rep(S∞) [SS13]. In the symmetric
group case it is known that these different categories are closely related [BEH19], and one
might expect that an analogous theorem holds for the hyperoctahedral case.

0.1.5 Acknowledgements

I would like to express my deep gratitude to my supervisor Dr. Thorsten Heidersdorf
for his guidance and encouragement during the writing of this thesis. Not only was his
feedback invaluable, I am also very grateful for the interesting insights and topics I got
introduced to under his supervision. It has been an inspiring experience. I would also like
to offer my special thanks to the second examiner Professor Dr. Catharina Stroppel for
her time and effort.
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Chapter 1

Background on Monoidal
Categories and Representation
Theory

1.1 Category Theory

This section is mostly inspired on [BW99] and general knowledge of category theory. We
introduce the category theoretic notions and statements which will be relevant for the later
chapters of the thesis. Because this is not proven in the literature, we prove the well-known
fact that the Karoubian envelope of a C-linear spherical rigid symmetric monoidal category
is again a C-linear spherical rigid symmetric monoidal category in Proposition 1.1.20,
Proposition 1.1.24 and Proposition 1.1.28,

Definition 1.1.1. A monoidal category C is a category with

• a bifunctor ⊗ : C × C → C

• a unit object 1 ∈ C

• an associator, which is a natural isomorphism α : ((− ⊗ −) ⊗ −) → (− ⊗ (− ⊗ −))

• a left unitor, which is a natural isomorphism λ : (1 ⊗ −) → (−)

• a right unitor, which is a natural isomorphism ρ : (− ⊗ 1) → (−)

such that he following diagrams commute for all objects A,B,C,D ∈ C:

(A ⊗ 1) ⊗ B

A ⊗ (1 ⊗ B)

αA,1,B

A ⊗ B
idA ⊗ λB

ρA ⊗ idB

Triangle identity
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1.1 Category Theory

((A ⊗ B) ⊗ C) ⊗ D

(A ⊗ (B ⊗ C)) ⊗ D

(A ⊗ B) ⊗ (C ⊗ D)

A ⊗ ((B ⊗ C) ⊗ D)

A ⊗ (B ⊗ (C ⊗ D))

αA⊗B,C,D

αA,B,C ⊗ idD αA,B⊗C,D

αA,B,C⊗D

idA ⊗ αB,C,D

Pentagon identity

Remark 1.1.2. In this thesis we will assume for any monoidal category C that EndC(1) ∼= C
if C is C-linear, i.e. the morphism spaces of C are C-vector spaces and the composition
is C-bilinear. The sole reason for this, is that all C-linear monoidal categories we will
encounter in this thesis, will satsify property.

Example 1.1.3. Examples of monoidal categories are the category of vector spaces over
some field K. The bifunctor is the tensor product of vector spaces and the unit object is
the one-dimensional vector space K.

Definition 1.1.4. A symmetric monoidal category C is a monoidal category with a natural
isomorphism SA,B : A ⊗ B → B ⊗ A for all A,B ∈ C such that the following diagrams
commute for all A,B,C ∈ C:

A⊗ 1

1 ⊗ A

AsA,1

ρA

λA

Unit coherence

(A⊗B) ⊗ C

A⊗ (B ⊗ C)

(B ⊗ C) ⊗A

(B ⊗A) ⊗ C

B ⊗ (A⊗ C)

B ⊗ (C ⊗A)

αA,B,C

αB,C,A

αB,A,C

sA,B ⊗ idC

sA,B⊗C idB ⊗ sA,C

Associativity coherence
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Chapter 1 Background on Monoidal Categories and Representation Theory

A⊗B A⊗B

B ⊗A

sA,B sB,A

idA⊗B

inverse law

Example 1.1.5. An example of a C-linear symmetric monoidal category is the category
Rep(G) of finite-dimensional representations over a group ring CG for some finite group
G. The monoidal structure is given by the tensor product ⊗C of the underlying C-vector
spaces and 1Rep(G) = C with the trivial G-action, because C⊗CA = A = A⊗C C for all
A ∈ Rep(G). Clearly there is an isomorphism EndRep(G)(C) ∼= C, see Remark 1.1.2. For
all A,B ∈ Rep(G) there are isomorphisms

sA,B : A⊗C B → B ⊗C A

x⊗ y → y ⊗ x for all x ∈ A and y ∈ B,

which give the category a symmetric monoidal structure.
Let (M, ◦, e) be a finite non-commutative monoid, for example the ring of 2 × 2 matrices

over the finite field F2. Let M be a category with as objects elements in M and formal
tensor products m1⊗. . .⊗mk for mi ∈ M . The morphisms of M are the identity morphisms
and isomorphisms between tensor products if the corresponding products in M are the
same. Then (M,⊗, e) is a non-symmetric monoidal category.

Definition 1.1.6. A rigid symmetric monoidal category C is a symmetric monoidal category
with

• a contravariant monoidal endofunctor 1 ∗ : C → C. The object A∗ is called the dual
object of A.

• an isomorphism τA : A ∼= ((A)∗)∗ which is natural in all A ∈ C, so a natural
isomorphism τ : idC → ((−)∗)∗. If this axiom holds, we call the functor ∗ involutive.

• an isomorphism ν : 1 → 1∗.

• isomorphisms γA,B : (A⊗B)∗ → B∗ ⊗A∗ which are natural in all A,B ∈ C.

• morphisms called the evaluation and coevaluation

A⊗A∗

1

evA

1

A∗ ⊗A

coevA

for all A ∈ C. They satisfy the property that the following diagrams commute for all
A ∈ C:

1See Definition 1.1.9

6



1.1 Category Theory

A⊗A∗

1

evA∗

1A∗ ⊗A

coevA∗

sA∗⊗A

evA A⊗A∗

A∗ ⊗A

sA⊗A∗

coevA

duality identities

A⊗ (A∗ ⊗A)

A

(A⊗A∗) ⊗A

A

(αA⊗A∗⊗A)−1

idA ⊗ coevA
evA ⊗ idA

idA

(A∗ ⊗A) ⊗A∗

A∗

A∗ ⊗ (A⊗A∗)

A∗

αA∗⊗A⊗A∗

coevA ⊗ idA∗ idA∗ ⊗ evA

idA∗

Triangle identities

A C-linear rigid symmetric monoidal category is a pivotal tensor category in the sense
of [CO11] and we will call it a tensor category. We will also assume the following identities
for rigid monoidal symmetric categories, because they will be needed to prove that the
Karoubian envelope of a C-linear spherical rigid symmetric monoidal category C is also
a C-linear spherical rigid symmetric monoidal category. For all f : A → B the following
diagrams commute:

1A⊗B∗

evB

evA

1

A∗ ⊗A

B ⊗B∗

A⊗A∗

f ⊗ idB∗

idA ⊗ f∗

B∗ ⊗B

A∗ ⊗B

f∗ ⊗ idB

Morphism identities

idA∗ ⊗ f

coevB

coevA

Example 1.1.7. The category of vector spaces over a field K is an example of a rigid
symmetric monoidal category. Another example is the category Rep(G) of finite-dimensional

7



Chapter 1 Background on Monoidal Categories and Representation Theory

representations over a group ring CG for some finite group G. Let A ∈ Rep(G) be a finite-
dimensional representation over CG with basis {e1, . . . , em}. Then the dual is defined by
A∗ := HomC(A,C) with the G-action defined by g · f(x) := f(g−1 · x) for all x ∈ A, g ∈ G
and f ∈ A∗. It has a dual basis {e∗

1, . . . , e
∗
m}. The evaluation is the C-linear extension of

evA : A⊗A∗ → C
x⊗ f 7→ f(x).

The coevaluation is defined by the C-linear extension of

coevA : C → A∗ ⊗A

1 7→
m∑

i=1
e∗

i ⊗ ei.

Remark 1.1.8. The assumption of the morphism identities

evB ◦ (f ⊗ idB∗) = evA ◦ (idA ⊗ f∗) and (f∗ ⊗ idB) ◦ coevB = (idA∗ ⊗ f) ◦ coevA

is not a far-fetched assumption since they hold for example in the category VectK of vector
spaces over a field K and the category Rep(G) of finite-dimensional representations over a
group ring CG for some finite group G.

Definition 1.1.9. We let a tensor functor F : C → D between tensor categories
be a C-linear strong monoidal functor which respects the given tensor structures2 of
the involved tensor categories. This means that there exists a natural isomorphism
ζ : F ◦ (− ⊗C −) → F(−) ⊗D F(−). The isomorphisms ζA,B are called coherence maps for
all A,B ∈ C. There also exists an isomorphism ζ : F(1C) ∼= 1D. We want the functor F to
respect the properties of the tensor categories and refer for example to [Eti+15, Section 2.4,
Definition 4.2.5] for more details. As an example we shortly state what it means for the
functor to respect the symmetric structure and unit coherence property, all other structures
and properties can be discussed similarly. Preserving the symmetric structure means that
for all A,B ∈ C we have that

sD
F(A),F(B) ◦ ζA,B = ζB,A ◦ F(sC

B,A).

This will imply together with the similar statements for the right and the left unitor

F ◦ λC(1C ⊗ −) = λD((ζ ◦ F)(1C),F(−)) = λD(1D,F(−)) and
F ◦ (− ⊗ ρC(1C)) = ρD(F(−), (ζ ◦ F)(1C)) = ρD(F(−),1D),

that unit coherence triangle of morphisms in C will be send to a triangle of morphisms in
D, which is isomorphic to a unit coherence triangle under the coherence maps.

Definition 1.1.10. We call the above tensor functor F : C → D strict if F(A⊗B) = F(A)⊗F(B)
2If we have for example a functor between two tensor categories, which is an equivalence, then this

equivalence induces a tensor structure of one category onto the other. This induced tensor structure
is not necessarily the same as the original one. If we talk about a tensor functor, we assume that it
respects the tensor structures that were considered before defining the tensor functor.

8



1.1 Category Theory

for all A,B ∈ C, so if all coherence maps are equalities.
Definition 1.1.11. Let C be a C-linear rigid symmetric monoidal category and A ∈ C.
Left and right traces are the C-linear maps Tracel, T racer : EndC(A) → EndC(1) = C
which are defined for all f ∈ HomC(A,A) by the compositions:

1 A∗ ⊗A A∗ ⊗A 1

1 A∗∗ ⊗A∗ A⊗A∗ A⊗A∗ 1

coevA

coevA∗

idA∗ ⊗ f evA∗

(τA)−1 ⊗ idA∗ f ⊗ idA∗
evA

Tracer(f)

Tracel(f)

Definition 1.1.12. A C-linear spherical rigid symmetric monoidal category C is a C-linear
rigid symmetric monoidal category for which the left and the right traces coincide. In this
case we denote the trace of morphism f : A → A in C by tr(f).
Remark 1.1.13. Let C be a C-linear spherical rigid symmetric monoidal category and
f : A → B and g : B → A morphisms in C. Then multiple applications of the morphism
identities show us that tr(g ◦ f) = tr(f ◦ g). For an object A ∈ C we define the categorical
dimension of A by dim(A) := tr(idA).
Example 1.1.14. An example of a C-linear spherical rigid symmetric monoidal category
is the category Rep(G) of finite dimensional representations over a group algebra CG
for a finite group G. We are interested in the category Rep(Sn) of finite dimensional
representations over the group algebra CSn for the n-th symmetric group Sn and the
category Rep(Hn) of finite dimensional representations over the group algebra CHn for
the n-th hyperoctahedral group Hn.
Remark 1.1.15. Note that tensor functors F : C → D between C-linear rigid symmetrical
monoidal categories preserve the traces. This holds because the properties of the tensor
functor imply that F(Tracel(f)) = Tracel(F(f)) and F(Tracer(f)) = Tracer(F(f)).
Definition 1.1.16. An embedding F : C → D between categories C and D is a functor
which is injective on objects and faithful. A full embedding is an embedding which is full.
Definition 1.1.17. Let C be a C-linear category. We define the additive envelope Cadd to
be the category with objects formal words A := A1 ⊕ . . .⊕An with Aj ∈ C for 1 ⩽ j ⩽ n.
The morphism sets are defined as

HomCadd(A1 ⊕ . . .⊕An, B1 ⊕ . . .⊕Bm) :=
⊕

1⩽i⩽m,1⩽j⩽n

HomC(Aj , Bi).

9



Chapter 1 Background on Monoidal Categories and Representation Theory

Therefore Cadd is C-linear. We write the elements of HomC(A,B) as m× n-matrices [fij ],
where fij ∈ HomC(Aj , Bi) for all 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n. This allows us to define the
C-linear composition map

◦ : HomCadd(B,C) ⊗ HomCadd(A,B) → HomCadd(A,C)

for some object C := C1 ⊕ . . .⊕ Cp and [gij ] ∈ HomCadd(B,C) as

[gij ] ◦ [fij ] :=
[ m∑

k=1
gik ◦ fkj

]
.

The additive envelope Cadd comes together with an obvious C-linear functor ιadd : C → Cadd

which sends

A 7→ A

f 7→ f

for all objects A ∈ C and all morphisms f ∈ HomC(B,C). Thus ιadd is a C-linear full
embedding.

Definition 1.1.18. A C-linear category C is called additive if ιadd : C ≃ Cadd is an
equivalence, i.e. it admits all finite biproducts. A functor between additive categories is
called additive if it preserves all finite biproducts.

Remark 1.1.19. Let C be a C-linear category. Then the additive envelope Cadd satisfies
the following universal property. Let D be an additive category and α : C → D a C-linear
functor. Then there exists a C-linear additive functor α′ : Cadd → D such that α = α′ ◦ ιadd.
The functor α is unique up to natural isomorphism.

Proposition 1.1.20. The additive envelope Cadd of a C-linear spherical rigid monoidal
category C can again be given the structure of a C-linear spherical rigid monoidal category.

Proof. The C-linearity is given by the definition of the additive envelope of C-linear category.
We define the necessary morphisms in terms of corresponding morphisms in C. It will be
clear by these definitions that the necessary equalities and identities follow from the fact that
the corresponding ones hold in C. We define for all A := A1 ⊕ . . .⊕An, B := B1 ⊕ . . .⊕Bm

and C := C1 ⊕ . . .⊕ Cp in Cadd

• A⊗B := ⊕i,j=1(Ai ⊗Bj).
• 1C := 1.
• αA,B,C := ⊕i,j,kα(Ai,Bj ,Ck) := (A⊗B) ⊗ C → A⊗ (B ⊗ C).

• λA := ⊕n
i=1λAi : 1 ⊗A → A.

• ρA := ⊕n
i=1ρAi : A⊗ 1 → A.

• sA,B := ⊕i,jsAi,Bj : A⊗B → B ◦A.

• (A)∗ := ⊕n
i=1A

∗
i and (f = [fij ] : A → B)∗ := [f∗

ij ]T , where T is taking the transposed
of the matrix. So (f∗)ji = (fij)∗ : B∗

i → A∗
j .

10



1.1 Category Theory

• τA := ⊕n
i=1τAi : A ∼= ((A)∗)∗.

• The evaluation is defined as the map evA :=: A⊗A
∗ → 1 so that

evA ◦ pi,i := evAi for all i ∈ {1, . . . , n},
evA ◦ pi,j := 0 if i ̸= j.

for the inclusions pi,j : Ai ⊗A∗
j → A⊗A

∗.

• The coevaluation is defined as the map coevA : 1 → A
∗ ⊗A so that

qi,i ◦ coevA := coevAi for all i ∈ {1, . . . , n},
qi,j ◦ coevA := 0 if i ̸= j

for the projections qi,j : A∗ ⊗A → A∗
i ⊗Aj .

• νCadd := ν.

• γA,B := ⊕i,j(γAi,Bj ) : (A⊗B)∗ → B
∗ ⊗A

∗, which is again an isomorphism.

• Let f = [fij ] : A → A. The right trace is defined by

Tracer(f) := ev
A

∗ ◦ (id
A

∗ ⊗ f) ◦ coevA

.

• Let f = [fij ] : A → A. The left trace is defined by

Tracel(f) := evA ◦ (f ⊗ id
A

∗) ◦ (τ−1
A

⊗ id
A

∗) ◦ coev
A

∗ .

Monoidal category: The triangle and pentagon identities follow directly from the defini-
tions and the fact that C is monoidal.

Symmetric Monoidal category: Unit coherence, Associative coherence and the inverse
law follow directly from the definitions and the fact that C is symmetric monoidal.

Rigid Symmetric Monoidal category: The dual and triangle identities follow directly
from the definitions and the corresponding identities for C. We see for example for the first
duality identity that

evA ◦ s
A

∗⊗A
= ⊕n

i=1(evAi ◦ sA∗
i ⊗Ai)

= ⊕n
i=1evA∗

i

= ev
A

∗

where we used the first duality identity in C for the second equality. We see that the
morphism identities also hold for f : A → B because

evB ◦ (f ⊗ id
B

∗) = (⊕m
i=1evBi) ◦ ([frs] ⊗ (⊕m

j=1idB∗
j
))

= ⊕m
i=1(evBi ◦ ([frs] ⊗ (⊕m

j=1idB∗
j
))

= ⊕m
i=1 ⊕m

j=1 (evBi ◦ ([frs] ⊗ idB∗
j
))

11



Chapter 1 Background on Monoidal Categories and Representation Theory

= ⊕m
i=1 ⊕m

j=1 (evBi ◦ (
n∑

k=1
fjk ⊗ idB∗

j
))

= ⊕m
i=1

n∑
k=1

(evBi ◦ (fik ⊗ idB∗
i
))

= ⊕n
k=1

m∑
i=1

(evAk
◦ (idAk

⊗ f∗
ki))

= ⊕n
k=1 ⊕n

j=1 (evAk
◦ (idAj ⊗

m∑
i=1

f∗
ji))

= (⊕n
k=1evAk

) ◦ ((⊕n
j=1idAj ) ⊗ [f∗

rs]))
= evA ◦ (idA ⊗ f∗)

where we applied the first morphism identity in C for the sixth equality. The other mor-
phism identity is proven similarly. Clearly End(1) = C.

Spherical Rigid Symmetric Monoidal category: The fact that the left and right trace
coincide follows directly from the definitions and the fact that C is spherical.

Definition 1.1.21. Let C be a C-linear category. The C-linear category C ^, called
the idempotent completion of C, has as objects pairs (A, e), where A ∈ ob(C) and
e = e2 ∈ HomC(A,A) is an idempotent. When the context is clear, we will sometimes write
A for (A, idA). The morphism sets are obtained by pre- and postcomposing the morphisms
of the corresponding morphism sets in C with the idempotents of the pairs, thus

HomC^((A, e), (B, f)) := f HomC(A,B)e.

The composition in C ^ coincides with the composition of morphisms in C. The identity
morphism of (A, e) ∈ C ^ is id(A,e) := e. The idempotent completion C ^ comes together
with a C-linear functor ι^ : C → C ^ given by

A 7→ (A, idA)
f 7→ f

for all A ∈ C and f ∈ HomC(B,C). The functor ι^ is a C-linear full embedding.

Definition 1.1.22. A C-linear category C is idempotent complete if ι^ : C ≃ C ^, is an equiv-
alence i.e. all idempotents split. An idempotent e2 = e : (A, idA) → (A, idA) splits because
e is the identity of (A, e) and because it factors over the morphisms e : (A, idA) → (A, e)
and e : (A, e) → (A, idA).

Remark 1.1.23. Let C be a C-linear category. Then the idempotent completion C ^
satisfies the following universal property. Let D be an idempotent complete category and
β : C → D a C-linear functor. Then there exists a C-linear functor β′ : C ^ → D such that
β = β′ ◦ ι^. The functor β is unique up to natural isomorphism.

12



1.1 Category Theory

Proposition 1.1.24. The idempotent completion C ^ of a C-linear spherical rigid symmetric
monoidal category C can again be given the structure of a C-linear spherical rigid symmetric
monoidal category.

Proof. The C-linearity is given by the definition of the idempotent completion of a C-linear
category. We define the necessary morphisms in terms of corresponding morphisms in C.
It will be clear by these definitions that the necessary equalities and identities follow from
the fact that the corresponding ones hold in C. Let (A, e), (B, f), (C, g) ∈ C ^. We define:

• (A, e) ⊗ (B, f) := (A⊗B, e⊗ f)
• by abuse of notation 1 := (1, 1C)
• α(A,e),(B,f),(C,g) := (e ⊗ (f ⊗ g)) ◦ αA,B,C ◦ ((e ⊗ f) ⊗ g) which is a map form

((A, e) ⊗ (B, f)) ⊗ (C, g) to (A, e) ⊗ ((B, f) ⊗ (C, g)). Note that by naturality

αA,B,C ◦ ((e⊗ f) ⊗ g) = (e⊗ (f ⊗ g)) ◦ αA,B,C : (A⊗B) ⊗ C → A⊗ (B ⊗ C).

• λ(A,e) := e ◦ λA(1C ⊗ e) : (1, 1C) ⊗ (A, e) → (A, e)
• ρ(A,e) := e ◦ ρA(e⊗ 1C) : (A, e) ⊗ (1, 1C) → (A, e)
• s(A,e),(B,f) := (f ⊗ e) ◦ sA,B ◦ (e ⊗ f) : (A, e) ⊗ (B, f) → (B, f) ⊗ (A, e). Note that

by naturality sA,B ◦ (e⊗ f) = (f ⊗ e) ◦ sA,B : A⊗B → B ⊗A

• (A, e)∗ := (A∗, e∗). Note that the dual of an idempotent is again an idempotent.
• ev(A,e) := 1C ◦ evA ◦ (e,⊗e∗) : (A, e) ⊗ (A∗, e∗) → (1, 1C).
• coev(A,e) := (e∗ ⊗ e) ◦ coevA ◦ 1C. : (1, 1C) → (A∗, e∗) ⊗ (A, e).
• τ(A,e) := (e∗)∗ ◦ τA ◦ e : (A, e) → ((A, e)∗)∗. Note that by naturality

τA ◦ e = (e∗)∗ ◦ τA : A → (A∗)∗.

So τ(A,e) is still an isomorphism with inverse e ◦ τ−1
A ◦ (e∗)∗ because

τ(A,e) ◦ τ−1
(A,e) = (e∗)∗ ◦ τA ◦ e ◦ e ◦ τ−1

A ◦ (e∗)∗ = (e∗)∗ ◦ τA ◦ τ−1
A ◦ (e∗)∗

= (e∗)∗ = id((A,e)∗)∗ and
τ−1

(A,e) ◦ τ(A,e) = e ◦ τ−1
A ◦ (e∗)∗ ◦ (e∗)∗ ◦ τA ◦ e = e ◦ τ−1

A τA ◦ e = e = id(A,e).

• νC^ := 1C ◦ ν ◦ 1C
• γ(A,e),(B,f) := (f∗ ⊗ e∗) ◦ γA,B ◦ (e ◦ f)∗ : ((A, e) ⊗ (B, f))∗ → (B, f)∗ ⊗ (A, e)∗. Note

that γA,B ◦ (e ◦ f)∗ = (f∗ ⊗ e∗) ◦ γA,B : (A⊗B)∗ → B∗ ⊗A∗ by naturality. Similarly
as for τ(A,e), this implies that γ(A,e),(B,f) is still an isomorphism.

• Let f = efe : (A, e) → (A, e). The right trace is defined by

Tracer̂(f) := ev(A,e)∗ ◦ (idA∗ ⊗ f) ◦ coev(A,e).

• Let f = efe : (A, e) → (A, e). The left trace is defined by

Tracel̂ (f) := evA,e ◦ (f ⊗ id(A,e)∗) ◦ (τ−1
(A,e) ⊗ id(A,e)∗) ◦ coev(A,e)∗ .

13



Chapter 1 Background on Monoidal Categories and Representation Theory

Monoidal category: The first triangle identities follows from the naturality of α and the
identities for C:

(id(A,e) ⊗ λ(B,f)) ◦ α(A,e),(1,1C),(B,f)

= (e⊗ f) ◦ (idA ⊗ λB) ◦ (e⊗ (1C ⊗ f)) ◦ αA,1,B ◦ ((e⊗ 1C) ⊗ f)
= (e⊗ f) ◦ (idA ⊗ λB) ◦ αA,1,B ◦ ((e⊗ 1C) ⊗ f)
= (e⊗ f) ◦ (ρA ⊗ idB) ◦ ((e⊗ 1C) ⊗ f)
= ρ(A,e) ⊗ id(B,e).

The other triangle identity and the pentagon identity are proven in a similar way.

Symmetric Monoidal category: The unit coherence axiom is proven by the naturality of
s and the corresponding identity for C:

λ(A,e) ◦ s(A,e),(1,1C) = e ◦ λA ◦ (1C, e) ◦ sA,1 ◦ (e, 1C)
= e ◦ λA ◦ sA,1 ◦ (e, 1C)
= e ◦ ρA ◦ (e, 1C)
= ρ(A,e).

The associativity coherence and the inverse law are proven in a similar fashion. Clearly
End((1, 1C)) = C.

Rigid Symmetric Monoidal category: The first duality axiom holds because of the
naturality of s and the corresponding identity for C

ev(A,e) ◦ s(A,e)∗,(A,e) = 1C ◦ evA ◦ (e⊗ e∗) ◦ sA∗,A ◦ (e∗ ⊗ e)
= 1C ◦ evA ◦ sA∗,A ◦ (e∗ ⊗ e)
= 1C ◦ evA∗ ◦ (e∗ ⊗ e)
= ev(A,e)∗ .

The other duality identity is proven similarly.
The morphism identites in C implies that for some idempotent e2 = e : A → A the following
equalities hold:

evA ◦ (e⊗ e∗) = evA ◦ (idA ⊗ (e∗)2) = evA ◦ (idA ⊗ e∗) and
(e∗ ⊗ e)coevA = (idA∗ ⊗ e2) ◦ coevA = (idA∗ ⊗ e) ◦ coevA.

The first of the triangle identities follows from the morphism identities in C, the naturality
of α and the corresponding identity in C:

(ev(A,e) ⊗ id(A,e)) ◦ (α(A,e),(A,e)∗,(A,e))−1 ◦ (id(A,e) ⊗ coev(A,e))
= e ◦ (evA ⊗ idA) ◦ ((e⊗ e∗) ⊗ e) ◦ (αA,A∗,A)−1 ◦ (e⊗ (e∗ ⊗ e)) ◦ (idA ⊗ coeva) ◦ e
= e ◦ (evA ⊗ idA) ◦ ((e⊗ e∗) ⊗ e) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ coeva) ◦ e
= e ◦ (evA ⊗ idA) ◦ ((idA ⊗ e∗) ⊗ e) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ coeva) ◦ e
= e ◦ (evA ⊗ idA) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ (e∗ ⊗ e)) ◦ (idA ⊗ coeva) ◦ e

14



1.1 Category Theory

= e ◦ (evA ⊗ idA) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ (idA∗ ⊗ e)) ◦ (idA ⊗ coeva) ◦ e
= e ◦ (evA ⊗ idA) ◦ ((idA ⊗ idA∗) ⊗ e) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ coeva) ◦ e
= e ◦ (evA ⊗ e) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ coeva) ◦ e
= e ◦ (evA ⊗ idA) ◦ (αA,A∗,A)−1 ◦ (idA ⊗ coeva) ◦ e
= e ◦ idA ◦ e
= id(A,e).

The other triangle identity can be proven in a similar way. The first morphism identity
follows for g = f ◦ g ◦ e : (A, e) → (B, f) from the morphism identities in C:

ev(B,f) ◦ (g ⊗ id(B,f)∗) = evB ◦ (f ⊗ f∗) ◦ (g ⊗ idB∗) ◦ (e⊗ f∗)
= evB ◦ ((f ◦ g ◦ e) ⊗ idB∗) ◦ (e, f∗)
= evA ◦ (idA ⊗ (f ◦ g ◦ e)∗) ◦ (e, f∗)
= evA ◦ (e, e∗) ◦ (idA ⊗ g∗) ◦ (e, f∗)
= ev(A,e) ◦ (id(A,e) ⊗ g∗).

The second one is proven similarly.
Spherical Rigid Symmetric Monoidal category: Let f = e ◦ f ◦ e : (A, e) → (A, e) be an

endomorphism, then by the naturality of τ , the morphism identities and the fact that C is
spherical we see that

Tracel̂ f = evA,e ◦ (f ⊗ id(A,e)∗) ◦ (τ−1
(A,e) ⊗ id(A,e)∗) ◦ coev(A,e)∗

= evA ◦ (e⊗ e∗) ◦ (f ⊗ idA∗) ◦ (e⊗ e∗) ⊗ ((τA)−1 ⊗ idA∗) ◦ ((e∗)∗ ⊗ e∗) ◦ coevA∗

= evA ◦ (e⊗ e∗) ◦ (f ⊗ idA∗) ◦ (e⊗ e∗) ⊗ ((τA)−1 ⊗ idA∗) ◦ coevA∗

= evA ◦ (e⊗ e∗) ◦ ((f ◦ e) ⊗ idA∗) ⊗ ((τA)−1 ⊗ idA∗) ◦ coevA∗

= evA ◦ (e⊗ idA∗) ◦ ((f ◦ e) ⊗ idA∗) ⊗ ((τA)−1 ⊗ idA∗) ◦ coevA∗

= evA ◦ ((e ◦ f ◦ e) ⊗ idA∗) ⊗ ((τA)−1 ⊗ idA∗) ◦ coevA∗

= Tracel(efe)
= Tracer(efe)
= evA∗ ◦ (idA∗ ⊗ (e ◦ f ◦ e)) ◦ coevA

= evA∗ ◦ (idA∗ ⊗ e) ◦ (idA∗ ⊗ (f ◦ e)) ◦ coevA

= evA∗ ◦ (e∗ ⊗ e) ◦ (idA∗ ⊗ (f ◦ e)) ◦ coevA

= evA∗ ◦ (e∗ ⊗ e) ◦ (idA∗ ⊗ f) ◦ (e∗ ⊗ e) ◦ coevA

= ev(A,e)∗ ◦ (id(A,e)∗ ⊗ f) ◦ coev(A,e)

= Tracer̂(f)

Definition 1.1.25. We define the Karoubian envelope of a C-linear category C by
CKar := (Cadd)^ and ιKar := ι^ ◦ ιadd, which is a C-linear full embedding.

Definition 1.1.26. A C-linear category C is Karoubi if ιKar : C ≃ CKar = (Cadd)^ is an
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equivalence, i.e. all idempotents split and all finite biproducts exist.

Remark 1.1.27. Let C be a C-linear category. Then the Karoubian envelope CKar satisfies
the following universal property. Let D be a Karoubi category and γ : C → D a C-linear
functor. Then there exists a C-linear additive functor γ′ : CKar → D such that γ = γ′ ◦ιKar.
The functor γ is unique up to natural isomorphism.

Proposition 1.1.28. The Karoubian envelope CKar of a C-linear spherical rigid symmetric
monoidal category C can again be given the structure of a C-linear spherical rigid symmetric
monoidal category.

Proof. This follows immediately from Proposition 1.1.20 and Proposition 1.1.24.

Proposition 1.1.29. Let C be a C-linear category. Let D be a Karoubi category and
γ : C → D a C-linear functor. Let γ′ : CKar → D be the C-linear additive functor given by
the universal property of the Karoubian envelope such that γ = γ′ ◦ ιKar. Assume that γ is
faithful. Then the induced functor γ′ is also faithful. Assume that γ is fully faithful. Then
the induced functor γ′ is also fully faithful.

Proof. We first assume that γ is faithful and show the faithfulness of γ′. Because D is
Karoubi, we can replace it by DKar. We do this to be able to get a more manageable
description of γ′. The functor γ′ is given up to isomorphism, but we work with the con-
crete choice which sends an object (A, e) ∈ CKar to γ′((A, e)) := (γ(A), γ(e)) ∈ DKar. Let
g, h : (A, e) → (B, f) be morphisms in CKar with γ′(g) = γ′(h) : (γ(A), γ(e)) → (γ(B), γ(f)).
By the fact that the morphisms g, h : A → B also lie in C, γ′ sends the commutative square

(A, e) (B, f)

(A, idA) (B, idB).

g,h

e

g,h

f

in CKar to the commutative square

(γ(A), γ(e)) (γ(B), γ(f))

(γ(A), idγ(A)) (γ(B), idγ(B))

γ′(g),γ′(h)

γ(g),γ(h)
γ(e) γ(f)

in D. This shows that

γ(g) = γ(f ◦ g) = γ(f) ◦ γ(g) = γ′(g) ◦ γ(e)
= γ′(h) ◦ γ(e) = γ(f) ◦ γ(h) = γ(f ◦ g) = γ(h).

Because γ is faithful by assumption, we get g = h. This shows that γ′ is faithful.
Now assume that γ is fully faithful. Let g : (γ(A), γ(e)) → (γ(B), γ(f)) be a morphism.

Then g is also a morphism (γ(A), idγ(A)) → (γ(B), idγ(A)). Because γ is full there exists a
g′ : A → B such that γ(g′) = g. Because

γ(f ◦ g′ ◦ e) = γ(f) ◦ γ(g′) ◦ γ(e) = γ(g′)
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and γ is faithful, we see that g′ = f ◦ g′ ◦ e. So g′ is a morphism (A, e) → (B, f) with
γ′(g′) = g. This shows that γ′ is full.

Definition 1.1.30. A functor F : C → D is called essentially injective if for all objects
A,B ∈ C with F(A) ∼= F(B), also A ∼= B holds.

Lemma 1.1.31. If F : C → D is a fully faithful functor, then it is essentially injective.

Proof. Let A,B ∈ C with F(A) ∼= F(B). Then there exist α : F(A) → F(B) and
β : F(B) → F(A) such that β ◦ α = idF(A) and α ◦ β = idF(B). Because F is full, there
exist α′ : A → B and β′ : B → A such that F(α′) = α and F(β′) = β. Because F is
faithful, F(β′ ◦ α′) = β ◦ α = idF(A) = F(idA) implies that β′ ◦ α′ = idA. Similarly we
obtain α′ ◦ β′ = idB, so A ∼= B, which shows that F is essentially injective.

Definition 1.1.32. A ∗-operation3 on a C-linear monoidal category C is a contravariant
involutive antilinear monoidal endofunctor ∗ : C → C which is the identity on objects.
Involutive means that ∗ ◦ ∗ = IdC .

Definition 1.1.33. A ∗-category4 is a C-linear monoidal category with an ∗-operation.

Definition 1.1.34. A functor between two ∗-categories is called a ∗-functor if it preserves
the ∗-operation.

Definition 1.1.35. A ∗-operation is called positive if for any morphism f we have that
f* ◦ f = 0 implies f = 0.

1.2 Representation Theory

The representation categories Rep(Sn) and Rep(Hn) over the complex numbers are C-linear
semisimple categories. This follows from Maschkes Theorem. In this section we want to
take a closer look at some representations of the symmetric and hyperoctahedral groups.

1.2.1 The symmetric and hyperoctahedral groups

Definition 1.2.1. Let n ∈ N. The n-th permutation group Sn is the group of bijective
functions of some set with n elements into itself.

Remark 1.2.2. As is seen in [AA00] the symmetric groups can be described using the
following generators and relations:

Sn = ⟨x1, x2, ..., xn−1|x2
i = 1 for all i ∈ {1, . . . , n− 1},

(xixi+1)3 = 1 for all i ∈ {1, . . . , n− 2},
(xixj)2 for 1 ⩽ i < j − 1 ⩽ n− 2⟩.

3This and the following definitions are taken from [FM21, Chapter 3.2]
4See Remark 2.5.23 for an example.
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Definition 1.2.3. Let G and H be groups. Let A be a finite set equiped with an H-action
and with cardinality |A| = n. The wreath product G ≀A H is the semi direct product with
underlying set Gn ×H and product given by

(g1, . . . , gn, h) · (g′
1, . . . , g

′
n, h

′) := (g1g
′
h−1(1), . . . , gng

′
h−1(n), hh

′)

for all g1, . . . , gn, g
′
1, . . . , g

′
n ∈ G and h, h′ ∈ H.

Remark 1.2.4. The n− th symmetric group Sn is isomorphic to the wreath product 1 ≀Sn,
where 1 is the group with one element. As a matrix group, it consists of the permutation
matrices of size n × n. Note that Sn is also an example of a complex reflection group,
namely G(1, 1, n), see [Tay12].

Definition 1.2.5. The n-th hyperoctahedral group Hn is the group of bijective functions
π on {−n, . . . ,−1, 1, . . . , n} where π(i) = −π(−i) for all i ∈ {−n, . . . ,−1, 1, . . . , n}.

Remark 1.2.6. If we consider Z2 as the multiplicative group {−1, 1} ⊂ C, then we can
describe the group Zn

2 by the following generators and relations:

Zn
2 = ⟨y1, y2, . . . , yn|y2

i = 1 for all i ∈ {1, . . . , n},
(yiyj)2 = 1 for 1 ⩽ i < j ⩽ n⟩.

Note that the generators equal yi = (1, . . . , 1, −1
i−th

, 1, . . . , 1) for all i ∈ {1, . . . , n}. We will
sometimes write 1 := (1, . . . , 1) ∈ Zn

2 for the neutral element of the group. As a wreath
product Hn equals Z2 ≀ Sn = Zn

2 ⋊ Sn. The elements are of the form a = (a1, . . . , an, σ),
with ai ∈ Z2 and σ ∈ Sn. The product is given by

(a1, . . . , an, σ)(b1, . . . , bn, ρ) = (a1bσ−1(1), . . . , anbσ−1(n), σρ).

Then Hn can be described using the following generators and relations:

Z2 ≀ Sn = ⟨(y1, 1), (1, x1), . . . , (1, xn−1)|((y1, 1)(1, x1))4 = 1,
((1, xi)(1, xi+1))3 = 1 for all i ∈ {1, . . . , n− 2},
(y1, 1)2 = 1, (1, xi)2 = 1 for all i ∈ {1, . . . , n− 1},
((y1, 1)(1, xi))2 = 1 for all i ∈ {2, . . . , n− 1},
((1, xi)(1, xj))2 = 1 for 1 ⩽ i < j − 1 ⩽ n− 2⟩.

This shows that Hn is isomorphic to the Coxeter group of type B

Bn = ⟨r1, . . . , rn|(r1r2)4 = 1,
(riri+1)3 = 1 for all i ∈ {2, . . . , n},
(ri)2 = 1 for all i ∈ {1, . . . , n},
(rirj)2 = 1 for 1 ⩽ i < j − 1 ⩽ n− 1⟩.

Remark 1.2.7. There is an injective group homomorphism λ : Sn → Hn given by
λ(xi) = (1, xi). As a matrix group, Hn consists of the permutation matrices of size n× n
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1.2 Representation Theory

with possible entries {−1, 1}. Note that Hn is also an example of a complex reflection
group, namely G(2, 1, n), see [Tay12].

1.2.2 Reflection and permutation representations

Definition 1.2.8. Let σ ∈ Sn and (c1, . . . , cn) ∈ Cn. The permutation representation
u′ = Cn is given by

σ(c1, . . . , cn) = (cσ−1(1), . . . , cσ−1(n)).

If ei = (0, . . . , 1, . . . , 0) is the canonical basis element with 1 on the i-th place, then
σ(ei) = eσ(i).

Lemma 1.2.9. The permutation representation of Sn is a faithful representation and it is
self-dual, i.e. u′ ∼= (u′)∗ as representations.

Proof. The fact that u′ is faithful follows directly from its definition. Let {ei|i ∈ {1, . . . , n}}
be the canonical basis of (Cn)∗. The action of Sn on (u′)∗ is given by σ · (ei) := eσ(i). We
define the following isomorphism of vector spaces

ϕ : u′ −→ (u′)∗

ei 7→ ei for all i ∈ {1, . . . , n}.

For all σ ∈ Sn and a = (a1, . . . , an), c = (c1, . . . , cn) ∈ u we have that

ϕ(σ · a)(c) = ϕ(σ · (a1, . . . , an))(c1, . . . , cn)
= ϕ((aσ−1(1), . . . , aσ−1(n)))(c1, . . . , cn)

=
n∑

i=1
aσ−1(i)ci

=
n∑

i=1
aicσ(i)

= ϕ((a1, . . . , an))(σ−1 · (c1, . . . , cn))
= σ · ϕ(a)(c).

This shows that ϕ is an isomorphism of representations.

Definition 1.2.10. Let a = (a1, . . . , an, σ) ∈ Hn and (c1, . . . , cn) ∈ Cn. Then the reflection
representation u = Cn is defined by

a · (c1, . . . , cn) = (a1cσ−1(1), . . . , ancσ−1(n))

where we consider Z2 = {−1, 1} ⊂ C. If ei is a canonical basiselement of Cn, then
a · ei = aσ(i)eσ(i).

Remark 1.2.11. Note that this corresponds to the multiplication of the corresponding
permutation matrices with entries {−1, 1} with vectors of Cn.
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Chapter 1 Background on Monoidal Categories and Representation Theory

Lemma 1.2.12. The reflection representation of Hn is a faithful representation and it is
self-dual, i.e. u ∼= u∗ as representations.

Proof. The fact that u is faithful follows directly from its definition. Let {ei|i ∈ {1, . . . , n}}
be the canonical basis of (Cn)∗. The action of Hn on u∗ is given by a · (ei) := aσ(i)e

σ(i).
We define the following isomorphism of vector spaces

ψ : u −→ u∗

ei 7→ ei for all i ∈ {1, . . . , n}.

For all a = (a1, . . . , an, σ) ∈ Hn we have that

a−1 = (a−1
σ(1), . . . , a

−1
σ(n), σ

−1)

= (aσ(1), . . . , aσ(n), σ
−1)

and for all b = (b1, . . . , bn), c = (c1, . . . , cn) ∈ u we have

ψ(a · b)(c) = ψ((a1, . . . , an, σ) · (b1, . . . , bn))(c1, . . . , cn)
= ψ((a1bσ−1(1), . . . , anbσ−1(n)))(c1, . . . , cn)

=
n∑

i=1
aibσ−1(i)ci

=
n∑

i=1
biaσ(i)cσ(i)

= ψ((b1, . . . , bn))((aσ(1)cσ(1), . . . , aσ(n)cσ(n)))
= ψ((b1, . . . , bn))((aσ(1), . . . , aσ(n), σ

−1) · (c1, . . . , cn))
= ψ(b)(a−1 · c)
= a · ψ(b)(c).

This shows that ψ is an isomorphism of representations.

Definition 1.2.13. Let a = (a1, . . . , an, σ) ∈ Hn. The permutation representation
V = C2n = (CZ2)n = ⊕n

i=1(C ei
1 ⊕ C ei

−1) of Hn is defined by the C-linear extension
of the action

a · ei
j = e

σ(i)
aσ(i)·j

for j ∈ {−1, 1} and i ∈ {1, . . . , n}. Let ci
j ∈ C for j ∈ Z2 and i ∈ {1, . . . , n}. Then we get

for c = (c1
1e

1
1 + c1

−1e
1
−1, . . . , c

n
1e

n
1 + cn

−1e
n
−1 ∈ V ) that

a · c = (cσ−1(1)
a1·1 e1

1 + c
σ−1(1)
a1·(−1)e

1
−1, . . . , c

σ−1(n)
an·1 en

1 + c
σ−1(n)
an·(−1)e

n
−1).

Lemma 1.2.14. The permutation representation of Hn is a faithful representation and it
is self-dual, i.e. V ∼= V ∗ as representations.

Proof. The fact that V is faithful follows directly from its definition.
Let {ej

i |i ∈ {1, . . . , n}, j ∈ {−1,+1}} be the canonical basis of V ∗. The action of Hn on
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1.2 Representation Theory

V ∗ is given by a · (ej
i ) := e

aσ(i)·j
σ(i) . We define the following isomorphism of vector spaces

ρ : V −→ V ∗

ei
j 7→ ej

i for all i ∈ {1, . . . , n}, j ∈ {−1, 1}.

For all a = (a1, . . . , an, σ) ∈ Hn, b = (b1
1e

1
1 + b1

−1e
1
−1, . . . , b

n
1e

n
1 + bn

−1e
n
−1) ∈ V and

c = (c1
1e

1
1 + c1

−1e
1
−1, . . . , c

n
1e

n
1 + cn

−1e
n
−1) ∈ V we have that

ρ(a · b)(c) = ρ((a1, . . . , an, σ) · (b1
1e

1
1 + b1

−1e
1
−1, . . . , b

n
1e

n
1 + bn

−1e
n
−1))(c)

= ρ(bσ−1(1)
a1·1 e1

1 + b
σ−1(1)
a1·(−1)e

1
−1, . . . , b

σ−1(n)
an·1 en

1 + b
σ−1(n)
an·(−1))e

n
−1)(c)

=
n∑

i=1
j∈Z2

b
σ−1(i)
ai·j ci

j

=
n∑

i=1
j∈Z2

bi
aσ(i)·jc

σ(i)
j

=
n∑

i=1
j∈Z2

bi
jc

σ(i)
aσ(i)·j

= ρ(b)(cσ(1)
aσ(1)·1e

1
1 + c

σ(1)
aσ(1)·(−1)e

1
−1, . . . , c

σ(n)
aσ(n)·1e

n
1 + c

σ(n)
aσ(n)·(−1)e

n
−1)

= ρ(b)((aσ(1), . . . , aσ(n), σ
−1) · (c1

1e
1
1 + c1

−1e
1
−1, . . . , c

n
1e

n
1 + cn

−1e
n
−1))

= ρ(b)(a−1 · c)
= a · ρ(b)(c).

This shows that ρ is an isomorphism of representations.

Remark 1.2.15. Note that u ∼= ũ := ⊕n
i=1 C(ei

1 − ei
−1) ⊂ V is a subrepresentation.

Another interesting n-dimensional subrepresentation of V is v = ⊕n
i=1 C(ei

1 + ei
−1), this is

the complement of ũ in V . By considering Sn as a subgroup of Hn via λ : Sn → Hn, we
see that ResHn

Sn
(u) = u′. The induced representation IndHn

Sn
(u′) = CHn ⊗CSn u

′ has V as a
subrepresentation, as can be seen by the C-linear map

ei
j 7→ (1, . . . , j

i−th
, . . . , 1, idSn) ⊗ ei.

21



Chapter 2

Interpolation Categories

In this chapter we are defining three interpolation categories for all t ∈ C: the categories
Rep(St) of Deligne [Del07], Par(Z2, t)Kar of Nyobe Likeng-Savage [LS21] and Rep(Ht) of
Flake-Maassen [FM21]. The latter two can be seen as different interpolation categories
for the hyperoctahedral groups, respectively modelled by the tensor products of the
permutation representations and the tensor products of the reflection representations.

2.1 Partition Theory

In this section we introduce the notions of partition theory that we will use later. The
general partition theory is based on [CW12], but we will introduce the notation in such a
way that it can be made compatible with notions from other sources. We define so-called
permutation partitions in Definition 2.1.2. The discussion about the even partitions is
based on [FM21]. In Proposition 2.1.7 we show that Peven is closed under the partition
operations and in Proposition 2.1.8 that Peven is generated by a finite set of partitions, They
are assumed in the mentioned source, but not proven. The definitions for the Z2-coloured
partitions and the idea for the proof of Proposition 2.1.11 are taken from [LS21], though
the notation has been adjusted in both cases. Proposition 2.1.10 was assumed in the source,
but not proven. We define normal forms for coloured and non-coloured partitions. This
was inspired on the idea of a standard decomposition given in the proof of [LS21, Theorem
4.4] and the normal form in [Koc03, Remark 1.4.16].

Definition 2.1.1. Let k, l ∈ N. We denote the set of all partitions of the set
{1, . . . , k, 1′, . . . , l′} by P (k, l) and the set of all partitions by P := ⊔k,l∈NP (k, l). Note that
we will add or remove accents in the sets {1, . . . , k, 1′, . . . , l′} depending on the context we
are working in. We call (k, l) the size of the partitions in P (k, l). The elements of some
partition p ∈ P (k, l) are called components, parts or blocks. For partitions p, q ∈ P (k, l)
we call q coarser as p if every part in p is a subset of some part in q. We can associate a
partition diagram to each partition p ∈ P (k, l) by placing k vertices in a horizontal row
and l vertices in a horizontal row, above the first one. We label the vertices from left to
right by the elements of the set {1, . . . , k, 1′, . . . , l′}. We draw a line between to vertices in
the diagram if and only if the corresponding labels lie in the same component. We call two
such partition diagrams equivalent if the set partitions are the same.
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2.1 Partition Theory

=

Example: {{1, 3, 1′}, {2, 2′, 3′, 4′}} ∈ P (3, 4)

1 2 3 1 2 3

1’ 2’ 3’ 4’ 1’ 2’ 3’ 4’

There are some important operations on the sets of partitions.
Horizontal concatenation: Let p ∈ P (k, l) and q ∈ P (m,n), where we let the set of par-

titions contain partitions of {1, . . . , k, 1′′, . . . , l′′} and {1′, . . . ,m′, 1′′′, . . . , n′′′} respectively.
Then we can describe P (k +m, l + n) as the set of partitions of

{1, . . . , k, 1′, . . . ,m′, 1′′, . . . , l′′, 1′′′, . . . , n′′′}.

We define p⊗ q ∈ P (k +m, l + n) by: a ∈ p⊗ q if and only if a ∈ p or a ∈ q.

1 2 3

1’ 2’ 3’ 4’

⊗

1 2

1’

=

1 2 3

1’ 2’ 3’ 4’

4 5

5’

Example: Horizontal Concatenation

Involution: Let p ∈ P (k, l) and let us describe P (l, k) as the set of partitions of
{1′, . . . , l′, 1, . . . , k}. We define p∗ ∈ P (l, k) by: a ∈ p if and only if a ∈ p∗.

1 2 3

1’ 2’ 3’ 4’

Example: Involution

p=

1’ 2’ 3’

1 2 3 4

p*=

Vertical concatenation: Let p ∈ P (k, l) and q ∈ P (l,m) where we let the set of partitions
contain partitions of {1, . . . , k, 1′, . . . , l′} and {1′, . . . , l′, 1′′, . . . ,m′′} respectively. Then we
can describe P (k,m) as the set of partitions of {1, . . . , k, 1′′, . . . ,m′′} and define qp by:
{i, j′′} ⊆ A for some A ∈ qp if and only if there exists h′ ∈ {1′ . . . , l′} such that there exist
B ∈ p and C ∈ q with {i, h′} ⊆ B and {h′, j′′} ⊆ C.
The stacking q ⋆ p is the diagram which is attained of putting q on top of p.
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Chapter 2 Interpolation Categories

1 2 3

1’ 2’ 3’ 4’

Example: Vertical Concatenation with l(p, q) = 1.

p=

1’ 2’ 3’ 4’

1” 2”

5’ 6’

5’ 6’

q=

1” 2”

1 2 3

q ∗ p=

1 2 3

1” 2”

qp=

A loop in qp is a subset L ⊆ {1′ . . . , l′} satisfying two conditions: firstly it consists of
elements in h′ ∈ {1′ . . . , l′} for which there doesn’t exist an i ∈ {1 . . . , k} and a B ∈ p
such that {i, h′} ⊆ B or an element j′′ ∈ {1′′ . . . ,m′′} and a C ∈ q such that {h, j′′} ⊆ C.
Secondly assume that L is a non-empty loop containing some element h′. Then g′ ∈ L if
and only if there exist some B ∈ p such that {h′, g′} ⊆ B or C ∈ q such that {h′, g′} ⊆ C.
We denote the number of loops in qp by l(q, p).

Before we continue discussing the even partitions we discuss the permutation partitions
and the non-crossing forms of a partition.
Definition 2.1.2. For every n ∈ N, there is an injective monoid homomorphism ϕ : Sn ↪→ P (n, n),
which is defined by sending the cycles (1, i) to

1 2 i-1 i.

1’ 2’ i-1’ i’

for all 2 ⩽ i ⩽ n. The image ϕ((1, i)) is the partition

{{1, i′}, {2, 2′}, . . . {i, 1′}, . . . , {n, n′}} ∈ P (n, n).

Because the cycles {(1, i)|2 ⩽ i ⩽ n} generate Sn, this defines the map ϕ. It is well defined
because the image contains all partitions of block size 2 which connect one lower and one
upper vertex, in other words ϕ(σ) = {{i, σ(i)′}|1 ⩽ i ⩽ n} and this will not depend on
the way we decompose σ ∈ Sn in transitions. We call the partitions in the image of ϕ
permutation partitions.
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2.1 Partition Theory

Definition 2.1.3. Let p ∈ P (k, l) and let B1, . . . , Bt be its blocks, which are respectively
of size (k1, l1), . . . , (kt, lt). Define the partitions pi := {{1, . . . , ki, 1′, . . . , l′i}} ∈ P (ki, li) for
all 1 ⩽ i ⩽ t. A non-crossing form of p is some horizontal concatenation pi1 ⊗ . . . ⊗ pit ,
where i1, . . . , it is some permutation of {1, . . . , t}.

p

⊗⊗

Examples of non-crossing forms of p

⊗ ⊗

Proposition 2.1.4. Every partition p ∈ P (k, l) can be written as ϕ(σ) ◦ p′ ◦ ϕ(ρ), where
σ ∈ Sl, ρ ∈ Sk and p′ is some non-crossing form of p. We call ϕ(σ) ◦ p′ ◦ ϕ(ρ) a normal
form of p.

Proof. Let p′ = p1 ⊗ . . . ⊗ pt be some non-crossing form. The upper vertices of every
block pj should be uniquely redistributed along {1′, . . . , l′} according to how the block is
positioned in p. There is an unique σ ∈ Sl which achieves this. Similarly we choose a
ρ ∈ Sk.

p

⊗ ⊗◦ ◦=

ϕ(σ) ϕ(ρ)p′

Definition 2.1.5. Let p ∈ P (k, l) and p′ be some non-crossing form of p. Then by
Proposition 2.1.4 we can write p = ϕ(σ) ◦ p′ ◦ ϕ(ρ) for some σ ∈ Sl and ρ ∈ Sk. We call
ϕ(σ) ◦ p′ ◦ ϕ(ρ) a normal form of p.

Definition 2.1.6. Let k, l ∈ N. We call a partition p ∈ P (k, l) even if all its components
contain an even number of vertices. We denote the set of all even partitions in P (k, l) by
Peven(k, l) and the set of all even partitions by Peven := ⊔k,l∈NPeven(k, l) ⊂ P .

Proposition 2.1.7. Peven is closed under involution, vertical concatenation and horizontal
concatenation.

Proof. It is clear that the involution of an even partition is again even. The horizontal
concatenation of two even partitions is even because the the blocks of the individual
partitions are kept intact. Let p ∈ Peven(k, l) and q ∈ Peven(l,m). Let A ∈ qp be a block
and let us use the notation from above. Assume that #(A ∩ {1, . . . , k}) is even. This
implies that the number of vertices in the upper row of p connected to A ∩ {1, . . . , k}, is
even, because p is even. Assume that #(A ∩ {1′′, . . . ,m′′}) is odd. Because q is even, the
number of vertices in the lower row of q connected to A ∩ {1′′, . . . ,m′′} is odd. We assume
that the number of vertices in the lower row of q connected to A∩ {1′′, . . . ,m′′} is less than
the number of vertices in the upper row of p connected to A ∩ {1, . . . , k}. Then there is an
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Chapter 2 Interpolation Categories

odd amount of vertices in the middle row of q ⋆ p which are connected to A ∩ {1, . . . , k})
but not to A ∩ {1′′, . . . ,m′′}. But these vertices cannot form even blocks in q by itself,
because if they are only connected to vertices in the lower row of q which are not connected
to the upper row, we still get odd blocks. So some of them have to be connected in q to
a vertex in {1′′, . . . ,m′′} which does not lie in A. Which is a contradiction, because by
construction this vertex would be connected to the lower row of A in q ⋆ p and thus lie in
A. So the number of vertices in the lower row of q connected to A ∩ {1′′, . . . ,m′′} is even,
which implies that A ∩ {1′′, . . . ,m′′} is even, because q is even.

If we assume that the number of vertices in the lower row of q connected toA∩{1′′, . . . ,m′′}
is greater than the number of vertices in the upper row of p connected to A ∩ {1, . . . , k},
we can proceed the argument analogously.

Similarly we can proof that if #(A ∩ {1, . . . , k}) is odd, then also #(A ∩ {1′′, . . . ,m′′})
will be odd. We conclude that qp is even.

Proposition 2.1.8. Every even partition p ∈ Peven can be constructed by applying the
involution, horizontal and vertical concatenation operations to the partitions

= {{1, 2′}, {2, 1′}}, = {1, 2, 1′, 2′}, ={1, 1′} and ={{1, 2}}.

Proof. Assume that p ∈ Peven(k, l).
First note that every permutation partition is an even partition, so im(ϕ) ⊂ Peven(n, n),

because and lie in Peven.
We can find σ ∈ Sk and ρ ∈ Sl, such that ϕ(ρ) ◦ p ◦ ϕ(σ) is a noncrossing partition,

meaning that it is a horizontal concatenation of its blocks. The only thing left to prove is
that every even block is obtained by the aforementioned partitions and operations.

Firstly we show that this hold for every block sn containing n vertices in the lower and
upper row. Assume that n = 2m is even and m > 0. Then the block equals the vertical
concatenation

1’

1 2 n-1 n.

2’ n’n-1’

If n = 2m+ 1 is odd and m > 0, then the block equals the vertical concatenation
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1’

1 2 n.

2’

n-1

n’n-1’

If n = 1 we just define s1 = {{1, 1′}}. Secondly we see that for m > 0 every block tn
with n = 2m + 1 vertices in the lower row and 1 in the upper row equals the vertical
concatenation

1’

1 2 n.

2’

n-1

n’n-1’

Let k > l ⩾ 1. Now every even block with k vertices in the lower row and n vertices in
the upper row equals the concatenation sl(tk−l+1 ⊗ ⊗ . . .⊗︸ ︷︷ ︸

l − 1 times

). If l > k we can use the

involution and then apply the previous procedure. If k = l every even block with k lower
and k upper vertices equals of course sk.

To summarize the proof: Let ϕ(ρ)pϕ(σ) = B1 ⊗ . . .⊗Bt, where the Bj are even blocks.
The partitions ϕ(ρ) and ϕ(σ) can be constructed using and . The Bj can be
constructed by the partitions , and . So p = ϕ(ρ−1)(B1 ⊗ . . .⊗Bt)ϕ(σ−1) can

be obtained by applying the partition operations to , , and .

Definition 2.1.9. We denote the set of Z2-coloured partitions by PZ2 = ⊔PZ2(k, l). An
element of (p, z) ∈ PZ2(k, l) is pair consisting of a partition p ∈ P (k, l) and a vector
z ∈ (Z2)k+l. Such a Z2-coloured partition can be visualised by a partition diagram with
labeled vertices. Unlabeled vertices will be assumed to be labeled with 1. Two Z2-coloured
partitions are equivalent, denoted by ≃, when the the corresponding partition diagrams
are the same and when for each block the labels of one Z2-coloured partition are obtained
by multiplying all labels of the correseponding block in the other Z2-coloured partition by
the same element of Z2 = {−1, 1}.
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Example: ({{1, 3, 1′}, {2, 2′, 3′, 4′}}, (1, −1, −1, −1, 1, 1, −1)) ∈ P{Z{2}}(3, 4)

1 2 3

1’ 2’ 3’ 4’
1

1

-1

-1 -1

1 -1

1 2 3

1’ 2’ 3’ 4’
-1

-1

1

1 1

-1 1

≃

1 2 3

1’ 2’ 3’ 4’
-1

1

-1

1 -1

-1 1

≃

Involution, horizontal concatenation, and loops are defined for the Z2-coloured parti-
tions as for the non-coloured partitions. For the vertical concatenation we have to be
more careful. Let (p, z1) ∈ PZ2(k, l) and (q, z2) ∈ PZ2(l,m). As for the non-coloured
partitions we let p ∈ P (k, l) and q ∈ P (l,m) with the sets of partitions containing parti-
tions of {1, . . . , k, 1′, . . . , l′} and {1′, . . . , l′, 1′′, . . . ,m′′} respectively. We label the elements
i′ ∈ {1′, . . . , l′} in the middle row of the stacking q ⋆ p by zi′

1 z
i′
2 . We call (p, z1) and

(q, z2) compatible if for each i′, j′ ∈ {1′, . . . , l′} in q ⋆ p that lie in the same connected
component of q, we have that zi′

1 z
i′
2 = zj′

1 z
j′

2 . In this case the vertical concatenation
(q, z2)(p, z1) := (qp, z2z1) is given by the vertical concatenation of the underlying non-
coloured partitions, which is then labeled by setting (z2z1)i := zi

1 for i ∈ {1, . . . , k} and
(z2z1)j′′ := zj′′

2 g for j′′ ∈ {1′′, . . . ,m′′}, where g is the labeling of a vertex in the middle
row of q ⋆ p which is connected to j′′ in q. If there are no such vertices we set g = 1.

1 2 3

1’ 2’ 3’ 4’

Example: Vertical Concatenation of compatible diagrams with l(p, q) = 1.

(p, z{1})=

1’ 2’ 3’ 4’

1” 2”

5’ 6’

5’ 6’

1” 2”

1 2 3

(q, z{2}) ∗ (p, z{1})=

1 2 3

1” 2”

-1 1 -1

-1 1 -1 1 1 -1

-1 1

-1 -1 1 -1 1 -1

1 -1 -1 -1 1 1

-1 1 -1

11

(q, z{2})=

(q, z{2})(p, z{1})=

Proposition 2.1.10. Let (p, z1), (p, z3) ∈ PZ2(k, l) and (q, z2), (q, z4) ∈ PZ2(l,m), so that
((q, z2), (p, z1)) is a compatible pair. If (q, z2) ≃ (q, z4), then also ((q, z4), (p, z1)) is a
compatible pair. The analogue statement ’If (p, z1) ≃ (p, z3), then also ((q, z2), (p, z3)) is a
compatible pair’ is generally false.

Proof. Assume that (q, z2) ≃ (q, z4). We show that the compatibility of ((q, z2)(p, z1))
implies that ((q, z4)(p, z1)) is a compatible pair. Let B ∈ q be a connected component.
Because (q, z2) and (p, z1) are compatible, we know that for each i′, j′ ∈ {1′, . . . , l′} in q ⋆ p
that lie in B, the equality zi′

1 z
i′
2 = zj′

1 z
j′

2 holds. Because (q, z2) ≃ (q, z4), there exists a
g ∈ {−1, 1}, so that gzi′

2 = zi′
4 for all i′ ∈ B. But this implies that for each i′, j′ ∈ {1′, . . . , l′}

28



2.1 Partition Theory

in q ⋆ p that lie in B, the equality

zi′
1 z

i′
4 = zi′

1 gz
i′
2 = zj′

1 gz
j′

2 = zj′

1 z
j′

4

holds, which means that ((q, z4)(p, z1)) is compatible.
Now assume that (p, z1) ≃ (p, z3). A possible counter example would be
(p, z1) = ({{1, 1′}, {2, 2′}}, (1,−1, 1,−1)) ∈ PZ2(2, 2), (p, z3) = ({{1, 1′}, {2, 2′}}, (1, 1, 1, 1))
and (q, z2) = ({{1, 2, 1′}}, 1,−1, 1) ∈ PZ2(2, 1). The pair ((q, z2)(p, z1)) is compatible but
((q, z2)(p, z3)) isn’t.

Proposition 2.1.11. Let (p, z1), (p, z3) ∈ PZ2(k, l) and (q, z2), (q, z4) ∈ PZ2(l,m), so
that ((q, z2), (p, z1)) and ((q, z4), (p, z3)) are compatible pairs. Let (p, z1) ≃ (p, z3) and
(q, z2) ≃ (q, z4), then (q, z2)(p, z1) ≃ (q, z4)(p, z3). So equivalences of Z2-coloured partitions
are respected by vertical concatenation.

Proof. We show that (q, z2)(p, z1) ≃ (q, z4)(p, z1) and (q, z4)(p, z1) ≃ (q, z4)(p, z3), this
then proves the claim because ≃ is an equivalence relation. Note that these vertical
concatenations exist by last proposition. We only prove the first equivalence, the proof for
the second one is similar in nature.
Let B be a component of qp, which doesn’t only contain vertices in the upper row of
the stacking q ⋆ p, because otherwise checking the conditions for the equivalence on this
component, would follow directly from the equivalence (q, z2) ≃ (q, z4).

Let us write p ∈ P (k, l) and q ∈ P (l,m) as partitions of the sets {1, . . . , k, 1′, . . . , l′}
and {1′, . . . , l′, 1′′, . . . ,m′′} respectively. Then qp can be considered as a partition of
{1, . . . , k, 1′′, . . . ,m′′}.

We have to prove that there exists a g ∈ {−1, 1} such that g(z2z1)t = (z4z1)t for all
vertices t ∈ B. If t ∈ {1, . . . , k} ∩ B we see that zt

1 = gzt
1, but because in both cases the

lower rows are just labeled by z1, we get g = 1. Let t ∈ {1′′, . . . ,m′′} and h ∈ {−1, 1}
such that hzt

2 = zt
4. By assumption there is a vertex s ∈ {1′, . . . l′} in the middle row of

q ⋆ p which is connected to t. It is respectively labeled by zs
1z

s
2 and zs

1z
s
4 in the stackings

(q ⋆ p, z1z2) and (q ⋆ p, z1z4). Because (q, z2) ≃ (q, z4), and s is connected to t we have that
hzs

2 = zs
4. The vertex t is then labeled in (qp, z1z2) by zs

1z
s
2z

t
2 and in (qp, z1z4) by

zs
1z

s
4z

t
4 = zs

1hz
s
2hz

t
2

= h2zs
1z

s
2z

t
2

= 1zs
1z

s
2z

t
2

= gzs
1z

s
2z

t
2

which shows that we have found our g for the component B, therefore (qp, z2z1) ≃ (qp, z4z1).

Definition 2.1.12. Let (p, z1) ∈ PZ2(k, l) and (q, z2) ∈ PZ2(l,m). We call a pair of
equivalence classes ([(q, z2)], [(p, z1)]) compatible if there exist representatives which are
compatible. We define

[(q, z2)][(p, z1)] := [(q, z2)(p, z1)].
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Chapter 2 Interpolation Categories

Remark 2.1.13. From now on we will consider equivalent Z2-coloured partitions to be
equal.

Remark 2.1.14. We can write every Z2-coloured partition diagram (p, z) in the following
form

(p, z) =
z1′ zl−1′zl′

· · · ◦ p ◦
z1 zk−1zk

· · · .

This will be useful in reducing problems involving Z2-coloured partitions to problems
containing only non-coloured partitions.

Definition 2.1.15. Let (p, z) ∈ PZ2(k, l). We extend the permutation partitions from
Definition 2.1.2 to Z2-coloured partitions by ϕ : Sn ↪−→ P (n, n) ↪−→ PZ2(n, n). If p′ is some
non-crossing form of p such that p = ϕ(σ) ◦ p′ ◦ ϕ(ρ), then we call

(p, z) =
z1′ zl−1′zl′

· · · ◦ ϕ(σ) ◦ p′ ◦ ϕ(ρ) ◦
z1 zk−1zk

· · ·

a normal form of (p, z).

2.2 Defining the interpolation categories
In this section we define the different interpolation categories and prove their categorical
properties using the notions that were introduced in Chapter 1. We state adjustments of
Proposition 1.1.27 for the case that the involved categories are tensor categories and the
involved functors are tensor functors.

2.2.1 Defining the interpolation categories in the permutation
representations for the symmetric groupss

The category Rep(St) was originally defined in [Del07], but we use the notation from
[CW12, Definition 2.1.1]. We base the proof of Proposition 2.2.2, except for the part about
sphericality, mostly on the proof given in [CW12, Section 2.2]. We have to adjust it to our
axiomatic setting so that we can apply Proposition 1.1.28 afterwards.

Definition 2.2.1. Define the category Rep0(St) to be the category with objects {[n]|n ∈ N}
and morphism spaces C-linear combinations of partition diagrams, so

HomRep0(St)([k], [l]) = CP (k, l)

for all k, l ∈ N. The identity of an object [n] is given by

id[n] := {{1, 1′}, . . . , {n, n′}}

and the composition of morphisms is defined on the generating morphisms of the
morphism spaces by

◦ : CP (l,m) × CP (k, l) → CP (k,m)
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2.2 Defining the interpolation categories

(q, p) 7→ q ◦ p := tl(q,p)qp

and then extended C-bilinearly. Note that this is well-defined category, the composition
is associative, because the composition of partitions is associative and the number of
occurring loops doesn’t depend on the order of composition. The category has a tensor
product, which is given on objects by [n]⊗ [m] := [n+m] and on morphisms by a C-bilinear
extension of the horizontal concatenation of partitions.
Proposition 2.2.2. Rep0(St) is a strict C-linear spherical rigid symmetric monoidal
category.
Proof. The category Rep0(St) is C-linear and strict by definition. When we talk about mor-
phisms we will in general only talk about partition diagrams, instead of their sums, knowing
that all arguments can be C- linearly extended. Define for all [m], [n], [k], [l] ∈ Rep0(St)

• [m] ⊗ [n] := [m+ n]. For p ∈ Hom([m], [n]) and q ∈ Hom([k], [l]) the tensor product
p⊗ q is just the horizontal concatenation.

• 1 := [0].
• α[m],[n],[k] := id[m+n+k].
• λ[m] := id[m]

• ρ[m] := id[m].
• s[m],[n] by

1 2 m − 1 m m + 1 m + 2 m + n − 1 m + n

1′ 2′ n − 1′ n′ n + 1′ n + 2′ m + n − 1′m + n′

s[m],[n]

• [m]∗ := [m] and (p : [m] → [n])∗ := (p∗ : [n] → [m]) is given by the involution.
• τ[m] := id[m].
• The evaluation ev[m] : [2m] → [0] is given by

1 2 m − 1 m m + 1 m + 2 2m − 1 2m

ev[m]

• The coevaluation coev[m] : [0] → [2m] is given by
1′ 2′ m − 1′ m′ m + 1′ m + 2′ 2m − 1′ 2m′

coev[m]
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Chapter 2 Interpolation Categories

• ν := id[0] = 1C.

• γ[m],[n] := id[m+n].

• The right trace of p ∈ Hom([m], [m])is given by

1 2 m − 1 m m + 1 m + 2 2m − 1 2m

1′ 2′ m − 1′ m′ m + 1′ m + 2′ 2m − 1′ 2m′

Tracer(p)

id[m]
p

• The left trace of p ∈ Hom([m], [m])is given by

1 2 m − 1 m m + 1 m + 2 2m − 1 2m

1′ 2′ m − 1′ m′ m + 1′ m + 2′ 2m − 1′ 2m′

Tracel(p)

id[m]
p

Monoidal category: The triangle and pentagon identities are trivially satisfied.

Symmetric Monoidal category: Unit coherence is trivially satisfied. Associativty coher-
ence holds because
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2.2 Defining the interpolation categories

s[m],[n]⊗[k] = (id[n] ⊗ s[m],[k]) ◦ (s[m],[n] ⊗ id[k])

1 m + 1m m + n + 1m + n m + n + k

1′ n + 1′n′
n + m + 1′n + m′ n + m + k′

1′′ n + 1′′n′′
n + k + 1′′

n + k′′
m + n + k′′

1 m + 1m
m + n m + n + k

... ... ...

.........

... ... ...

m + n + 1

1′′
n + 1′′n′′

n + k′′ m + n + k′′
n + k + 1′′

=

The inverse law holds because

1 2 m − 1 m m + 1 m + 2 m + n − 1 m + n

1′ 2′ n − 1′ n′ n + 1′ n + 2′ n + m − 1′n + m′

s[n],[m] ◦ s[m],[n] = id[m+n]

1′′ 2′′ m − 1′′m′′ m + 1′′m + 2′′ m + n − 1′′m + n′′

1 m m + 1 m + n

1′′ m′′ m + 1′′
m + n′′

...

...

... ...=

Rigid Symmetric Monoidal category: The duality identities follow trivially from the
definitions. The first triangle identity holds because

id[m]

id[m]

coev[m]

ev[m]

= id[m]

...

...

... ... ...

...

...

Similarly also the second triangle identity holds. The first morphism identity holds
because for p : [m] → [n] the following diagrams are equal
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1 2 m − 1 m m + 1 m + 2 m + n − 1m + n

1′ 2′ n − 1′ n′ n + 1′ n + 2′ 2n − 1′ 2n′

id[n]
p

1 2 m − 1 m m + 1 m + 2 m + n − 1m + n

1′ 2′ m − 1′ m′ m + 1′m + 2′ 2m − 1′ 2m′

id[m] p∗

... ...

... ...

......

... ...

=

as can be seen by the fact that in the first diagram the vertex 1 ⩽ i ⩽ m is connected
to the vertex m + 1 ⩽ j ⩽ m + n if and only if i and j − m′ lie in the same block of p
in that diagram. In the second diagram the vertex 1 ⩽ i ⩽ m is connected to the vertex
m+ 1 ⩽ j ⩽ m+ n if and only if m+ i′ and j lie in the same block of p∗ in the diagram
above. The statement follows from the fact that these conditions are equivalent. One can
easily extend this argument to work for all 1 ⩽ i, j ⩽ m+n. The second morphism identity
is proven similarly. Clearly End([0]) = C .

Spherical Rigid Symmetric Monoidal category: We use the notation from the definition.
Let p : [m] → [m]. We first consider the left trace. Let B1, . . . , Br be the blocks of p. For
s, t ∈ {1, . . . , r} we say that blocks Bs and Bt are left related if there exist i ∈ Bs such
that i′ ∈ Bt or j ∈ Bt such that j′ ∈ Bs. We call blocks Bs ∼left Bt left equivalent if there
exist i1, . . . , iu ∈ {1, . . . , r} such that Bs is left related to Bi1 , Biu is left related to Bt and
Bij is left related to Bij+1 for all j ∈ {1, . . . , u− 1}. This defines an equivalence relation
on the blocks of p.

Vertices 1 ⩽ i, j ⩽ m lie in the same connected component of Tracel(p) if there exist left
equivalent blocks Bs ∼ Bt such that i ∈ Bs and j ∈ Bt. The number of disconnected loops
for the left trace is then the same as the number of left equivalence classes of blocks of p.

Now we consider the right trace. Let B∗
1 , . . . , B

∗
r be the blocks of p∗. For s, t ∈ {1, . . . , r}

we say that blocks B∗
s and B∗

t are right related if there exist m + i ∈ B∗
s such that

m + i′ ∈ B∗
t or m + j ∈ B∗

t such that m + j′ ∈ B∗
s . We call blocks B∗

s ∼right B
∗
t right

equivalent if there exist i1, . . . , iu ∈ {1, . . . , r} such that B∗
s is right related to B∗

i1 , B∗
iu

is
right related to B∗

t and B∗
ij

is right related to B∗
ij+1

for all j ∈ {1, . . . , u− 1}. This defines
an equivalence relation on the blocks of p∗. Vertices m + 1 ⩽ i, j ⩽ 2m lie in the same
connected component of Tracer(p) if there exist right equivalent blocks B∗

s ∼ B∗
t such that

i ∈ B∗
s and j ∈ B∗

t . The number of disconnected loops for the right trace is therfore the
same as the number of right equivalence classes of blocks of p∗. We remark that the right
equivalence relation on the blocks of p∗ induces an equivalence relation on the blocks of p,
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2.2 Defining the interpolation categories

which coincides with the the left equivalence relation on the blocks p. This implies that
Tracel(p) = Tracer(p) and that the category is spherical.

Definition 2.2.3. We define the Deligne category for t ∈ C by Rep(St) := (Rep0(St))Kar

and denote the corresponding C-linear full embedding by ιF : Rep0(St) → Rep(St). By
Proposition 2.2.2 and Proposition 1.1.28 we see that Rep(St) is a C-linear spherical rigid
symmetric monoidal category.
Remark 2.2.4. It is not too difficult to see that that the C-linear functor ιF is also a
tensor functor. As a consequence the following adjustement of the universal property
of the Karoubian envelope can be shown. Let D be a C-linear Karoubi tensor category
and γ′ : Rep0(St) → D a strict C-linear tensor functor. Then the universal property of
the Karoubian envelope gives us a C-linear tensor functor γ : Rep(St) → D such that
γ′ = γ ◦ ιF .

2.2.2 Defining the interpolation categories in the reflection
representations for the hyperoctahedral groups

The definition of Rep(Ht) we use, can be found in [FM21, Definition 2.5]. They also
discussed the categorical properties of the interpolation categories. We change their
definition of the evaluation and coevaluation, so that they become compatible with the
definitions we gave for the evaluation and coevaluation in Rep(St) and with our notions
from Chapter 1.
Definition 2.2.5. Define the category Rep0(Ht) to be the category with objects {[n]|n ∈ N}
and morphism spaces C-linear combinations of even partition diagrams, so

HomRep0(Ht)([k], [l]) = CPeven(k, l).

The identity of an object [n] is given by

id[n] := {{1, 1′}, . . . , {n, n′}}

and the composition by extending

◦ : CPeven(l,m) × CPeven(k, l) → CPeven(k,m)
(q, p) 7→ q ◦ p := tl(q,p)qpn

C-bilinearly. Note that this is a well-defined category because the composition is clearly
associative since the composition of partitions is associative and the number of occurring
loops doesn’t depend on the order of composition. The category has a tensor product,
which is given on objects by [n]⊗ [m] := [n+m] and on morphisms by a C-bilinear extension
of the horizontal concatenation of partitions.
Proposition 2.2.6. Rep0(Ht) is strict C-linear spherical rigid symmetric monoidal cate-
gory.

Proof. One can make the same choices as we did in Proposition 2.2.2 for Rep0(St), since
all the occuring morphisms consist only of even partition diagrams.
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Definition 2.2.7. We define the Deligne category for the hyperoctahedral groups in
the reflection representation for t ∈ C by Rep(Ht) := (Rep0(Ht))Kar and denote the
corresponding C-linear full embedding by ιG : Rep0(Ht) → Rep(Ht). As for the case of
the symmetric groups, Proposition 2.2.6 and Proposition 1.1.28 show us that Rep(Ht) is a
C-linear spherical rigid symmetric monoidal category.

Remark 2.2.8. Similarly as before, it can be seen that the C-linear functor ιG is also a
tensor functor. Now the following adjustement of the universal property of the Karoubian
envelope can be shown. Let D be a C-linear Karoubi tensor category and γ′ : Rep0(Ht) → D
a strict C-linear tensor functor. Then the universal property of the Karoubian envelope
gives us a C-linear tensor functor γ : Rep(Ht) → D such that γ′ = γ ◦ ιG.

2.2.3 Defining the interpolation categories in the permutation
representations for the hyperoctahedral groups

We use the definition of Par(Z2, t)Kar that is given in [LS21, Definition 3.6]. Except for
the monoidal property, the categorical properties that we state in Proposition 2.2.10, are
not mentioned there.

Definition 2.2.9. Define the category Par(Z2, t) to be the category with objects {[ñ]|n ∈ N}
and morphism spaces C-linear combinations of equivalence classes of Z2-coloured partition
diagrams, so

HomPar(Z2,t)([k̃], [l̃]) = CPZ2(k, l),

where we identify equivalence classes of Z2-coloured partitions, according to Remark 2.1.13.
The identity of an object [ñ] is given by

id[ñ] := ({{1, 1′}, . . . , {n, n′}}, (1, . . . , 1))

and the composition is given by extending the rule

◦ : CPZ2(l,m) × CPZ2(k, l) → CPZ2(k,m)
(q, p) 7→ q ◦ p := tl(q,p)qp.

C-bilinearly. Note that this is well-defined category because the composition is clearly
associative since the composition of partitions is associative and the number of occurring
loops doesn’t depend on the order of composition. The category has a tensor product, which
is given on objects by [ñ] ⊗ [m̃] := [ ˜n+m] and on morphisms by a C-bilinear extension of
the horizontal concatenation of Z2-coloured partitions.

Proposition 2.2.10. Par(Z2, t) is strict C-linear spherical rigid symmetric monoidal
category.

Proof. One can again make the same choices as we did in Proposition 2.2.2 for Rep0(St),
since every non-coloured partition is also a Z2- coloured partition if we label all the vertices
by 1. These choices are well-defined. The only thing one has to be aware of is that when
one composes with the equivalence class of the identity, not all choices of representatives
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2.3 Motivating the definition of the interpolation categories

will give a compatible pair. Thus the sign of the blocks of the identity morphism have to be
adjusted to the particular case. This also holds for the evaluation and the coevaluation.

Remark 2.2.11. Note that for t ∈ 2N the compatibility of certain equivalence classes works
remarkable well in calculating the traces in the corresponding representation categories.

A correspondence we will dicuss more detailed later on. For example Trace(
−1

) = 0,
because the signs of the blocks in the evaluation ev[1], the coevaluation coev[m], the identity

morphism id[m] and −1 can not be chosen in such a way that all occuring compositions
are compatible. We will later see that for t = 2, this corresponds to the fact that the
endomorphism of the permutation representation of H1 given by

e1
1 7→ e1

−1

e1
−1 7→ e1

1,

has trace zero, as can be seen by looking at its matrix form
(

0 1
1 0

)
.

Definition 2.2.12. We define the Deligne category for the hyperoctahedral groups in
the permutation representation for t ∈ C by Par(Z2, t)Kar and denote the corresponding
C-linear full embedding by ιH : Par(Z2, t) → Par(Z2, t)Kar. Proposition 2.2.10 and
Proposition 1.1.28 imply that Par(Z2, t)Kar is a C-linear spherical rigid symmetric monoidal
category.
Remark 2.2.13. The C-linear functor ιH is also a tensor functor. As a consequence the
following adjustement of the universal property of the Karoubian envelope can be shown.
Let D be a C-linear Karoubi tensor category and γ′ : Par(Z2, t) → D a strict C-linear
tensor functor. Then the universal property of the Karoubian envelope gives us a C-linear
tensor functor γ : Par(Z2, t)Kar → D such that γ′ = γ ◦ ιH .
Remark 2.2.14. The category Rep0(St) can be considered as a subcategory of Par(Z2, t)
because every non-coloured partition can be considered as a partition where all vertices
are labeled by the unit elements of Z2. As a consequence Rep(St) can be considered as a
subcategory of Par(Z2, t)Kar. This will be further discussed in Chapter 3.

2.3 Motivating the definition of the interpolation categories
In this section we discuss the morphism spaces between the tensor products of the represen-
tations on which the interpolation categories are modelled. This gives a good motivation
for the definition of the interpolation categories and will make it possible to define interest-
ing functors between the interpolation categories and their corresponding representation
categories.

2.3.1 Morphism spaces between tensor products of the permutation
representations of symmetric groups

In this section we show that the morphism spaces between the tensor products of the
reflection representation u′ = Cn of Sn, can be described using the set of partitions P . The
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structure and ideas of the proof of Proposition 2.3.5 are based on [CO11, Theorem 2.6],
but the notation is changed to fit our conventions. The statement is also proven in [BS09,
Theorem 1.10], but from this source we mainly take the name for the C-linear map T .

Definition 2.3.1. Let e1, . . . , en be the canonical basis for u′ = Cn. For all k, l ∈ N we
define a C-linear map by its image on the basis elements:

T : CP (k, l) → HomSn((Cn)⊗k, (Cn)⊗l)
p 7→ Tp

where

Tp : (Cn)⊗k → (Cn)⊗l

ei1 ⊗ . . .⊗ eik
7→

∑
1⩽j1...jl⩽n

δp(i, j)(ej1 ⊗ . . .⊗ ejl
).

for all 1 ⩽ i1, . . . , ik ⩽ n. We use the abbreviation i = (i1, . . . , ik) and j = (j1, . . . , jl). We
can label the partition diagram of p by i and j in an obvious way: i labels th lower row
from left to right and j the upper row from left to right. By definition δp(i, j) equals 1 if
and only if all vertices in the same block of the partition are labeled by the same number.
Otherwise it equals 0. We call this a good labeling. We call it a perfect labeling when
vertices are labeled by the same number if and only if they are in the same block. Note
that a partition p ∈ P (k, l) with more than n blocks can not have a perfect labeling.

Proposition 2.3.2. The linear map T is well-defined.

Proof. We want to see that each morphism Tp commutes with the action of Sn. Define
the action from σ ∈ Sn on a k-tuple i = (i1, . . . , ik) by σ · i := (σ(i1), . . . , σ(ik)). Then
δp(i, j) = 1 if and only if δp(σ(i), σ(j)) = 1 for all σ ∈ Sn. The equality

Tp ◦ σ(ei1 ⊗ . . .⊗ eik
) =

∑
1⩽j1...jl⩽n

δp(σ · i, j)(ej1 ⊗ . . .⊗ ejl
)

=
∑

1⩽j1...jl⩽n

δp(i, σ−1 · j)(ej1 ⊗ . . .⊗ ejl
)

=
∑

1⩽j1...jl⩽n

δp(i, j)(eσ(j1) ⊗ . . .⊗ eσ(jl))

= σ ◦ Tp(ei1 ⊗ . . .⊗ eik
)

shows that T is well-defined.

By definition every morphism in HomSn((Cn)⊗k, (Cn)⊗l) is stable under the Sn action.
This motivates the definition of a certain basis for the morphism space.

Definition 2.3.3. Define the action from Sn on (i, j) ∈ {1, . . . , n}k+l by σ(i, j) := (σ·i, σ, ·j)
for all σ ∈ Sn, write [(i, j)] for an equivalence class under this action and let A be the set
of such equivalence classes. We define a morphism f[(i,j)] : (Cn)⊗k → (Cn)⊗l which sends
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eσ(i1) ⊗ . . .⊗ eσ(ik) 7→ eσ(j1) ⊗ . . .⊗ eσ(jl)

for all σ ∈ Sn and all other basis elements of (Cn)⊗k to 0. This definition is clearly indepen-
dent of the chosen representative and {f[(i,j)] | [(i, j)] ∈ A} is a basis of HomSn((Cn)⊗k, (Cn)⊗l).
This basis consists of sums of Sn-orbits of basis elements in Hom((Cn)⊗k, (Cn)⊗l).

Similarly we want to define a basis for CP (k, l).

Definition 2.3.4. We recursively define a new set of basiselements

xp := p−
∑

q coarser than p

xq for p ∈ P (k, l)

in CP (k, l). They generate CP (k, l) because p = xp +∑q coarser than p xq for all p ∈ P (k, l)
and they form a basis for CP (k, l) because for different p, q ∈ P (k, l), the sums xp and xq

are different linear combinations of elements in P (k, l).

Proposition 2.3.5. The linear map T : CP (k, l) → HomSn((Cn)⊗k, (Cn)⊗l) is surjective
and has as kernel {xp | p ∈ P (k, l) has more then n parts}. As a consequence T is an
isomorphism in the cases that k + l ⩽ n.

Proof. We associate to a basis element f[(i,j)] of the morphism space HomSn((Cn)⊗k, (Cn)⊗l),
see Definition 2.3.3, a partition p[(i,j)] ∈ P (k, l). We label the vertices by (i, j) and let two
vertices be in the same block if and only if the they are labeled by the same number. Then
the partition p[(i,j)] has a perfect labeling. Note that Tp[i,j] does not equal f[(i,j)], but it is
easy to check that Txp[(i,j)]

= f[(i,j)]. This implies that T is surjective.
Now let p ∈ P (k, l) be a partition with less than or equal to n parts. Then there exists

a unique equivalence class of perfect labels [(i, j)] of p, so p = p[(i,j)]. We remarked in the
first part of the proof that Txp = f[(i,j)] ̸= 0. For a different partition q ∈ P (k, l) with less
than or equal to n parts, Txq will be a different basiselement of HomSn((Cn)⊗k, (Cn)⊗l).
So we have that T is injective on the subspace of CP (k, l) spanned by the partitions with
less than or equal to n parts with image all of HomSn((Cn)⊗k, (Cn)⊗l).

Now assume that p ∈ P (k, l) is a partition with more than n parts. Then we can
argument inductively as follows. First assume that p has n+ 1 parts. Then

Txp = Tp −
∑

q coarser than p

Txq

where each Txq in the equation is a linear map f[(i,j] corresponding to some perfect labeling
of q. But because p has no perfect labeling, Tp will exactly be the sum of all Txq for q
coarser as p. This shows then that Txp is zero. One can now apply this argument to
inductively prove that Txp = 0 for a partition p with m parts, for all m > n.

In [BS09] this theorem is proven similarly. They also prove that PSn(k,l) = P (k, l) for

PSn(k, l) := {p ∈ P (k, l) | Tp ∈ HomSn(Cn)⊗k, (Cn)⊗l}
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and that its image under T generates HomSn((Cn)⊗k, (Cn)⊗l). This means then again that
the morphisms spaces between tensor powers of the reflection representation of Sn can be
described completely by linear combinations of the images of partitions under T :

< {Tp | p ∈ P (k, l)} >= HomSn((Cn)⊗k, (Cn)⊗l).

Remark 2.3.6. Note that these description of the morphism spaces doesn’t depend on
the number n ∈ N. It is this observation that motivated the definition of the interpolation
categories. What does depend on n is the composition of the image under T of partitions
p ∈ P (k, l) and q ∈ P (l,m):

Tqp = n−l(q,p)Tq ◦ Tp or nl(q,p)Tqp = Tq ◦ Tp,

which is proven in [BS09, Proposition 1.9].

Remark 2.3.7. To conclude this section we shortly discuss the dimension of the endomor-
phism algebras in Rep(Sn). In [Blo03] they state the dimension of the C algebra Pk(t),
which equals our algebra EndRep(St)([k]) for t ∈ C.

The number of partition diagrams in P (k, k) with l connected components is the Stirling
number of the second kind S(2k, l). The dimension of EndRep(Sn)([k]) equals the cardinality
of P (k, k), which equals the Bell number

B(2k) =
2k∑

l=1
S(2k, l).

Because T is an isomorphism for 2k ⩽ n, we see that in this case B(2k) is also the dimension
of the centralizer algebra EndRep(Sn)((Cn)⊗k).

2.3.2 Morphism spaces between tensor products of the reflection
representations of hyperoctahedral groups

We use and if necessary modify the definitions and proofs of previous section to discuss
the morphism spaces between the tensor products of the reflection representation of Hn.
They can be described by the set of even partitions Peven.

Definition 2.3.8. Let e1, . . . , en be the canonical basis for u = Cn. For all k, l ∈ N, with
k+ l even, we define a C-linear map by restricting the map T we defined for the symmetric
group case:

T : CPeven(k, l) → HomSn((Cn)⊗k, (Cn)⊗l)
p 7→ Tp

where

Tp : (Cn)⊗k → (Cn)⊗l

ei1 ⊗ . . .⊗ eik
7→

∑
1⩽j1...jl⩽n

δp(i, j)(ej1 ⊗ . . .⊗ ejl
).
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2.3 Motivating the definition of the interpolation categories

for all 1 ⩽ i1, . . . , ik ⩽ n. The notation is the same as in the case for the symmetric groups.

Proposition 2.3.9. The linear map T is well-defined.

Proof. We want to show that each morphism Tp commutes with the action of Hn for some
p ∈ Peven(k, l). Let a = (a1, . . . , an, σ) ∈ Hn and 1 ⩽ i1, . . . , ik ⩽ n. We consider the
equality

Tp ◦ a(ei1 ⊗ . . .⊗ eik
) = Tp(aσ(i1)eσ(i1) ⊗ . . .⊗ aσ(ik)eσ(ik))

= aσ(i1) · · · aσ(ik)Tp(eσ(i1) ⊗ . . .⊗ eσ(ik))
= aσ(i1) · · · aσ(ik)

∑
1⩽j1...jl⩽n

δp(σ · i, j)(ej1 ⊗ . . .⊗ ejl
)

= aσ(i1) · · · aσ(ik)
∑

1⩽j1...jl⩽n

δp(i, σ−1 · j)(ej1 ⊗ . . .⊗ ejl
)

= aσ(i1) · · · aσ(ik)
∑

1⩽j1...jl⩽n

δp(i, j)(eσ(j1) ⊗ . . .⊗ eσ(jl))

=
∑

1⩽j1...jl⩽n

δp(i, j)(aσ(j1)eσ(j1) ⊗ . . .⊗ aσ(jl)eσ(jl))

= a ◦ Tp(ei1 ⊗ . . .⊗ eik
).

The second last equality can only be true when aσ(i1) · · · aσ(ik) = aσ(j1) · · · aσ(jl) for all
i = {i1, . . . , ik} and j = {j1, . . . , jl} with δp(i, j) = 1. For this to hold for all a ∈ Hn, it is
necessary that every number in {i1, . . . , ik, j1, . . . , jl} occurs an even number of times in
the labeling of the partition p by (i, j). But this is the case because p is an even partition.
This shows that T is well-defined.

Let k + l be even for k, l ∈ N. Let (i, j) ∈ {1, . . . , n}k+l such that every number
in {i1, . . . , ik, j1, . . . , jl} occurs an even number of times in (i1, . . . , ik, j1, . . . , jl) and
[(i, j)] its equivalence class under the Sn action. Let B be the set of such equivalence
classes. Then we can see by a similar argument as in the last proof that the morphism
f[(i,j)] : (Cn)⊗k → (Cn)⊗l of Definition 2.3.3 lies in HomHn((Cn)⊗k, (Cn)⊗l) because each
of its terms does. The set {f[(i,j)] | [(i, j)] ∈ B} then forms a basis of the morphism space.

Definition 2.3.10. We define partitions

xp := p−
∑

q coarser than p

xq

for some p ∈ CPeven(k, l) recursively. Note that when q is coarser than an even partition
p, then q is also an even partition, so the xp form a basis for CPeven(k, l).

Proposition 2.3.11. The linear map T : CPeven(k, l) → HomHn((Cn)⊗k, (Cn)⊗l) is sur-
jective and has as a kernel {xp | p ∈ Peven(k, l) has more then n parts}. As a consequence
T is an isomorphism in case k + l ⩽ n.

Proof. We already know that every basis element f[(i,j)] of the morphism space lies in the
image of xp[(i,j)] which was constructed in the proof of Proposition 2.3.5. p[(i,j)] is an even par-
tition because [(i, j)] lies in B. This shows that T : CPeven(k, l) → HomHn((Cn)⊗k, (Cn)⊗l)
is surjective.
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We also showed already that Txp = 0 for an even partition p with more than n parts.
Because the Txp for partitions with n or less parts, are pairwise different, we know that
T is injective on the subspace of CPeven(k, l) spanned by the partitions with less than or
equal to n parts. So the kernel is indeed {xp | p ∈ Peven(k, l) has more then n parts}.

In [BS09] the surjectivity is proven using the results for the symmetric groups, which was
proven in the framework of easy quantum groups. They define for all k, l ∈ N the set

PHn(k, l) := {p ∈ P (k, l) | Tp ∈ HomHn((Cn)⊗k, (Cn)⊗l)}.

Because Sn is a subgroup of Hn we have

HomHn((Cn)⊗k, (Cn)⊗l) ⊂ HomSn((Cn)⊗k, (Cn)⊗l) = P (k, l).

This implies that all linear maps commuting with the action of the hyperoctahedral groups
can be described using partitions and the functor T . A direct calculation, similar as we
did above, then shows that PHn(k, l) = Peven or

< {Tp | p ∈ Peven(k, l)} >= HomHn((Cn)⊗k, (Cn)⊗l).

Remark 2.3.12. Note that the description of the morphism spaces doesn’t depend on
the number n ∈ N. It is this observation that motivated the definition of interpolation
categories for the reflection representation of Hn. What does depend on n is the composition
of the image under T of even partitions p ∈ Peven(k, l) and q ∈ Peven(l,m):

Tqp = n−l(q,p)Tq ◦ tp or nl(q,p)Tqp = Tq ◦ Tp

Remark 2.3.13. In [Ore07] a formula for the dimension of the centralizer algebra
EndHn((Cn)⊗k) is given. It equals

k∑
i=1

(
2k − 1
2i− 1

)
dim(EndHn((Cn)⊗k−i)).

For 2k ⩽ n, this dimension equals the dimension of EndRep(Hn)([k]). Because one can
rotate the even partitions this will also equal the dimension of the morphism spaces
HomRep(Hn)([a], [b]) for all a, b ∈ N with a+ b = 2k ⩽ n.

2.3.3 Morphism spaces between tensor products of the permutation
representations of hyperoctahedral groups

In this section we show that the morphism spaces between the tensor products of the
permutation representation V = C2n of Hn can be described using the set of Z2-coloured
partitions PZ2 . We alter the notation that was given in [LS21, Proposition 5.2] and proceed
analogously as in the previous sections to present the proof of Proposition 2.3.19 in a
different way as in the literature, although the underlying idea stays the same. Proposition
2.3.19 is also proven in [LS21, Theorem 5.4] and we will shortly discuss this proof and
write out the involved isomorphisms more explicitly.
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2.3 Motivating the definition of the interpolation categories

Definition 2.3.14. Recall the set of basis elements {ei
j |1 ⩽ i ⩽ n, j ∈ {−1, 1}} for C2n.

For all k, l ∈ N we define a C-linear map by its image on the basis elements:

T : CPZ2(k, l) → HomHn((C2n)⊗k, (C2n)⊗l)
(p, z) 7→ T(p,z)

where

T(p,z)(ei1
b1

⊗ . . .⊗ eik
bk

) =
∑

1⩽j1...jl⩽n
c1...cl∈Z2

δ(p,z)((i, b), (j, c))(ej1
c1 ⊗ . . .⊗ ejl

cl
)

for all (i, b) ∈ {1, . . . , n}k × (Z2)k. We use the notation (i, b) = ((i1, . . . , ik)(b1, . . . , bk))
and (j, c) = ((j1, . . . , jl), (c1, . . . , cl)). We can label the partition p by (i, j) and (b, c) in
an obvious way: i and b label the lower row of p from left to right and j and c label the
upper row from left to right. Then δ(p,z)((i, b), (j, c)) equals 1 if and only if for vertices in
the same part of p the following two condition hold: the corresponding (i, j)-labels are the
same and the corresponding (b, c)-labels multiplied with the corresponding labels of z are
the same. Otherwise it equals 0. We call this a good labeling. We call it a perfect labeling
when it is good and if the vertices have the same (i, j)-labeling if and only if they are in
the same part.

Remark 2.3.15. Note that the definition implies that the image of T doesn’t depend on
the equivalent classes of the Z2-coloured partitions. This means that we can still identify
equivalence classes of Z2-coloured partitions, see Remark 2.1.13, and assume that T is
defined on equivalence classes of Z2-coloured partitions.

Proposition 2.3.16. The linear map T is well-defined.

Proof. We want to see that each morphism T(p,z) commutes with the action ofHn. Define the
action from a = (a1, . . . , an, σ) ∈ Hn on (i, b) = ((i1, . . . , ik), (b1, . . . , bk)) ∈ {1, . . . , n}k×(Z2)k

by a · (i, b) := ((σ(i1), . . . , σ(ik)), (aσ(i1)b1, . . . , aσ(ik)bk)). Then δ(p,z)((i, b), (j, c)) = 1 if and
only if δ(p,z)(a · (i, b), a · (j, c)) = 1 for all a ∈ Hn. The equality

T(p,z) ◦ a(ei1
b1

⊗ . . .⊗ eik
bk

) =
∑

1⩽j1...jl⩽n
c1...cl∈Z2

δ(p,z)(a · (i, b), (j, c))(ej1
c1 ⊗ . . .⊗ ejl

cl
)

=
∑

1⩽j1...jl⩽n
c1...cl∈Z2

δ(p,z)((i, b), a−1 · (j, c))(ej1
c1 ⊗ . . .⊗ ejl

cl
)

=
∑

1⩽j1...jl⩽n
c1...cl∈Z2

δ(p,z)((i, b), (j, c))a · (ej1
c1 ⊗ . . .⊗ ejl

cl
)

= a ◦ T(p,z)(ei1
b1

⊗ . . .⊗ eik
bk

)

shows that T is well-defined.

43



Chapter 2 Interpolation Categories

By definition every morphism in HomHn((C2n)⊗k, (C2n)⊗l) is stable under the Hn action.
This motivates the definition of a certain basis for this morphism space.

Definition 2.3.17. Define the action

a · ((i, b), (j, c)) := (a · (i, b), a · (j, c))

for all (i, b) ∈ {1, . . . , n}k × (Z2)k, (j, c) ∈ {1, . . . , n}l × (Z2)l and a ∈ Hn. We write
[((i, b), (j, c))] for an equivalence class under this action and let C denote the set of such
equivalence classes. We define a morphism f[((i,b),(j,c))] : (C2n)⊗k → (C2n)⊗l which sends

e
σ(i1)
aσ(i1)b1

⊗ . . .⊗ e
σ(ik)
aσ(ik)bk

7→ eσ(j1)
aσ(j1)c1 ⊗ . . .⊗ eσ(jl)

aσ(jl)cl

for all a = (a1, . . . , an, σ) ∈ Sn and all other basis elements of (C2n)⊗k to 0. This definition is
independent of the representative of the equivalent class and {f[((i,b),(j,c))]|[((i, b), (j, c))] ∈ C}
is a basis of HomHn((C2n)⊗k, (C2n)⊗l). This basis consists of sums over Hn-orbits of basis
elements in Hom((C2n)⊗k, (C2n)⊗l).

Similarly we want to define a basis for CPZ2(k, l).

Definition 2.3.18. We define the partitions

x(p,z) := (p, z) −
∑

q coarser than p

∑
z′∈Zk+l

2
with (p,z′)≃(p,z)

x(q,z′)

in CPZ2(k, l) for (p, z) ∈ PZ2(k, l) recursively. So after the substracion we want to sum
over all Z2-coloured partitions (q, z′), where q is can be any partition coarser as p and z′

can be any labeling of p such that (p, z) ≃ (p, z′).1. They form a basis for CPZ2(k, l).

Proposition 2.3.19. The linear map T : CPZ2(k, l) → HomHn((C2n)⊗k, (C2n)⊗l) is surjec-
tive and has as kernel {x(p,z) | (p, z) ∈ PZ2(k, l) has more then n parts}. As a consequence
T is an isomorphism in case k + l ⩽ n.

Proof. We want to associate to some basis element f[(i,b),(j,c)] of the morphism space a
partition (p, z) ∈ PZ2(k, l). We label the k + l vertices by (i, j) and let two vertices be in
the same block if and only if the they are labeled by the same number. We colour the
vertices by setting z = (b1, . . . , bk, c1, . . . , cl). Then ((i, b), (j, c)) is a perfect labeling of the
partition (p, z). Note that T(p,z)) does not equal f[((i,b),(j,c))], but Tx(p,z) = f[(i,b),(j,c)] holds.
This shows that T is surjective.

Now let (p, z) ∈ PZ2(k, l) be a partition with less or equal than n parts. Then there
exists a unique equivalence class of perfect labels [(i, b), (j, c)] of (p, z) because the colour-
ing can be chosen in each part only up to sign, which doesn’t change the equivalence
class. We saw in the first part of the proof that Tx(p,z) = f[(i,b),(j,c))] ̸= 0. For a different
partition (q, y) ∈ P (k, l) with less or equal than n parts, Tx(q,y) will be a different basise-
lement of HomHn((C2n)⊗k, (C2n)⊗l). So we have that T is injective on the subspace of

1Note that (p, z) ≃ (p, z′) doesn’t imply that (q, z) ≃ (q, z′) for q coarser as p!
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CPZ2(k, l) spanned by the partitions with less than or equal to n parts, with image all of
HomHn(C2n)⊗k, (C2n)⊗l.

Now assume that (p, z) ∈ P (k, l) is a partition with more than n parts. Then we can
argument simlarly as in the symmetric group case as follows. First assume that (p, z) has
n+ 1 parts. Then

Tx(p,z) = T(p,z) −
∑

q coarser than p

∑
z′∈Zk+l

2
with (p,z′)≃(p,z)

Tx(q,z′)

where each Tx(q,z) in the equation is a linear map f[(i,b),(j,c)] corresponding to some perfect
labeling of q. But because (p, z) has no perfect labeling T(p,z) will exactly be a sum of all
Tx(q,z) for q coarser as p. This shows then that Tx(p,z) is zero. One can now apply this
argument to inductively prove that Tx(p,z) = 0 for (p, z) with m parts for all m > n.

Remark 2.3.20. In [Blo03] they state the dimension of the C-algebra Pk(t,Z2), which
equals our algebra EndPar(Z2,t)([k]) for t ∈ C. To see this, one has to show that the notion
of coloured partition diagrams and their composition in [Blo03] corresponds to our notion.
This can be easily done if one sees that the orientation of the edges between vertices is
irrelevant for the Z2-case and that one can label the vertices belonging to an edge with
label 1 equally and label −1 differently.

The number of partition diagrams in PZ2(k, k) with l connected components is 22k−lS(2k, l)
because we have to count the non-equivalent labelings. The dimension of EndPar(Z2,t)([k])
equals the cardinality of PZ2(k, k)

2k∑
l=1

22k−lS(2k, l).

This is also the dimension of the centralizer algebra EndRep(Hn)((C2n)⊗k) in the case
2k ⩽ n.

The surjectivity of T can also be derived in a different way, using slightly different nota-
tional conventions. In [LS21][Chapter 5] they associate to each partition (p, z) ∈ PZ2(k, l)
a linear map T(p,z) : V ⊗k → V ⊗l between tensor powers of the permutation representation
V = C2n. It is defined on basiselements by

T(p,z)(ei1
j1

⊗ . . .⊗ eik
jk

) =
∑

1⩽i1′ ...il′⩽n
j1′ ...jl′ ∈Z2

δ
(i,j)
(p,z)(e

i1′
j1′ ⊗ . . .⊗ e

il′
jl′

)

where i = (i1, . . . , ik, i1′ , . . . , il′) and j = (j1, . . . , jk, j1′ , . . . , jl′). We can label the par-
tition p by i and j in an obvious way. Then δ

(i,j)
(p,z) equals 1 if and only if for all

c, d ∈ {1, . . . k, 1′, . . . , l′} which lie in the same block of p we have that ic = id and
jczc = jdzd.

The following proof is based on material in [LS21][Lemma 5.3] and [Com20][Chapter
2.3].
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Proposition 2.3.21. The morphisms spaces between tensor products of the permutation
representation of Hn can be descibed using Z2-coloured partitions, more accurately:

< {T(p,z) | (p, z) ∈ PZ2(k, l)} >= HomHn(V ⊗k, V ⊗l).

Proof. The inclusion ⊂ can be verified by checking that the linear maps T(p,z) commute with
the action of the hyperoctahedral groups on V . This follows directly from the definitions.
Because C2n is self-dual, there is an isomorphism

HomHn(V ⊗k, V ⊗l) → HomHn(V ⊗(k+l),1)
g 7→ evV ⊗l ◦ (g ⊗ idV ⊗l)

with inverse

HomHn(V ⊗(k+l),1) → HomHn(V ⊗k, V ⊗l)
h 7→ (h⊗ idV ⊗k) ◦ (idV ⊗k ⊗ coevV ⊗l).

Similarly there is a bijection

PZ2(k, l) → PZ2(k + l, 0)
(p, z) 7→ ({{1, l + 1}, {2, l + 2}, . . . {l, 2l}}, 1) ◦ ((p, z) ⊗ (idl, 1))

with inverse

PZ2(k + l, 0) → PZ2(k, l)
(p, z) 7→ ((p, z) ⊗ (idl, 1)) ◦ ((idk, 1) ⊗ ({{1′, l + 1′}, {2′, l + 2′}, . . . {l′, 2l′}}, 1)).

Here 1 indicates the trivial labeling of the partitions and for m ∈ N we wrote
idm := {{1, 1′}, . . . {m,m′}} ∈ P (m,m). After taking the C-linear span, this bijection
becomes an isomorphism. Because the map T commutes with both isomorphisms, we get
a commutative diagram:

CPZ2(k, l) CPZ2(k + l, 0)

HomHn(V ⊗k, V ⊗l) HomHn(V ⊗(k+l),1).

T

∼=

T

∼=

HomHn(V ⊗(k+l),1) has as a basis the different morphisms which each send some Hn-orbit
S of a canonical basis element ei1

j1
⊗ . . . ⊗ e

ik+l

jk+l
in V ⊗(k+l) to 1 and everything else to 0.

Such a morphism lies in the image under T of the inductively defined linear combination
of partitions

P[(p,z)] := [(p, z)] −
∑

q coarser than p

P[(q,z)]

where (p, z) ∈ PZ2(k+l, 0) is a representative of an equivalence class of Z2-coloured partitions
representing the orbit S of V ⊗(k+l). For example ({{1, 3}, {2}}, (−1, 1, 1)) represents the

46



2.4 Defining functors from the interpolation categories to the representation categories

orbit of e2
1 ⊗ e1

−1 ⊗ e2
−1 ∈ (C4)⊗3, but also ({{1, 3}, {2}}, (1,−1,−1)) represents this orbit.

This implies that the vertical right map is surjective, which then implies that the left
vertical map is surjective, meaning that the image of the Z2-coloured partitions under T
span the morphism space HomHn(V ⊗k, V ⊗l).

Remark 2.3.22. Again we have the situation where we have described the morphism
spaces without distinguishing between different n ∈ N. This will be essential in constructing
our interpolation category of the hyperoctahedral group at the permutation representation.
Similarly as before the only difference will occur when one composes the images under
T of compatible Z2-coloured partitions. Let (p, z1) ∈ PZ2(k, l) and (q, z2) ∈ PZ2(l,m) be
compatible, then

T(q,z2)(p,z1) = n−l(q,p)T(q,z2) ◦ T(p,z1) or nl(q,p)T(q,z2)(p,z1) = T(q,z2) ◦ T(p,z1).

2.4 Defining functors from the interpolation categories to
the representation categories

In this section we use the information obtained about the morphism spaces to relate the
interpolation categories to the representation categories. To proof that the interpolation
functors are essentially surjective and full, it suffices to put the results of Section 2.3 in
a category theoretical framework. Proposition 2.4.2 is also proven in [BS09, Proposition
1.1.9].

2.4.1 Symmetric groups

In this section we define the interpolation functor F : Rep(Sn) → Rep(Sn) and prove that
it is well-defined. This was done in [CW12, Definition 3.8 and Proposition 2.8], but with
different notation.

Definition 2.4.1. We define a strict C-linear tensor functor

F ′ : Rep0(Sn) → Rep(Sn)

between C-linear spherical rigid symmetric monoidal categories on objects by [k] → (u′)⊗k

and on the morphisms by the C-linear extension of the rule p → Tp for some partition
p ∈ P (k, l). If this is well-defined, then Remark 2.2.4 and the fact that Rep(Sn) is a
Karoubi tensor category, give us up to isomorphism a C-linear tensor functor

F : Rep(Sn) → Rep(Sn),

which satisfies F ′ = F ◦ ιF .

Proposition 2.4.2. The functor F ′ is well-defined and a tensor functor.

Proof. Note that [k] and (u′)⊗k are both self-dual objects of dimension nk in their respective
categories. We will prove that F ′ is well-defined and monoidal. Checking that the other
tensor functor properties are satisfied, is straight-forward but very lengthy. We have to
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Chapter 2 Interpolation Categories

show that T is compatible with the identity morphisms, the composition of morphisms
and the tensor product.

First we consider the identity morphism p = id[k] ∈ HomRep0(Sn)([k], [k]). We see that
Tp(ei1 ⊗ . . .⊗ eik

) = (ei1 ⊗ . . .⊗ eik
) for all 1 ⩽ i1, . . . , ik ⩽ n. This shows that F ′ respects

the identity morphisms.
Now let p ∈ P (k, l) and q ∈ P (l,m). Then

Tq ◦ Tp(ei1 ⊗ . . .⊗ eik
) = Tq(

∑
1⩽t1...tl⩽n

δp(i, t)(et1 ⊗ . . .⊗ etl
))

=
∑

1⩽t1...tl⩽n

δp(i, t)(
∑

1⩽j1...jm⩽n

δp(t, j)(ej1 ⊗ . . .⊗ ejm))

=
∑

1⩽t1...tl⩽n

∑
1⩽j1...jm⩽n

δp(i, t)δq(t, j)(ej1 ⊗ . . .⊗ ejm)

= nl(q,p) ∑
1⩽j1...jm⩽n

δqp(i, j)(ej1 ⊗ . . .⊗ ejm)

= nl(q,p)Tqp.

This implies the equality

T (q ◦ p) = T (nl(q,p)qp) = nl(q,p)Tqp = nl(q,p)n−l(q,p)Tq ◦ Tp = Tq ◦ Tp

which shows that T , and as a consequence F ′, is compatible with the composition in both
categories.

Let p ∈ P (k, l) and q ∈ P (s, t) then

Tp⊗q(ei1 ⊗ . . .⊗ eik
⊗ ev1 ⊗ . . .⊗ evs)

=
∑

1⩽j1...jl⩽n
1⩽w1...wt⩽n

δp(i, j)δq(v, w)(ej1 ⊗ . . .⊗ ejl
⊗ ew1 ⊗ . . .⊗ ewt)

= (
∑

1⩽j1...jl⩽n

δp(i, j)(ej1 ⊗ . . .⊗ ejl
)) ⊗ (

∑
1⩽w1...wt⩽n

δp(v, w)(ew1 ⊗ . . .⊗ ewt))

= Tp(ei1 ⊗ . . .⊗ eik
) ⊗ Tq(ev1 ⊗ . . .⊗ evs).

for all i and v. This shows that T is compatible with the tensor product, so F ′ is
monoidal.

Proposition 2.4.3. The functor F is a full and essentially surjective monoidal functor.

Proof. The fact that F is full follows from Proposition 2.3.5. Because the permutation
representation of Sn is a faithful representation, every irreducible representation is a direct
summand of some tensor power of the permutation representation u′. This means that some
irreducible representation A ∈ Rep(Sn) is isomorphic to the image of some idempotent
e : u′⊗k → u′⊗k for some k ∈ N. Because the functor is full there exists an idempotent
e′ : [k] → [k] with F (e′) = e. As a consequence F (im(e′)) ∼= im(e) ∼= A. This shows that
F is essentially surjective.
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2.4 Defining functors from the interpolation categories to the representation categories

2.4.2 Hyperoctahedral groups: reflection representations

In this section we define the interpolation functor G : Rep(Hn) → Rep(Hn) as it was done
in [FM21, Section 2.3], but without using the ideas involving easy quantum groups.

Definition 2.4.4. We define a strict C-linear tensor functor between C-linear spherical
rigid symmetric monoidal categories

G′ : Rep0(Hn) → Rep(Hn)

on the objects by [k] → u⊗k and on the morphisms by p → Tp for some partition
p ∈ Peven(k, l), after which one linearly extends this rule. Note that [k] and u⊗k are both
self-dual objects of dimension nk in their respective categories. The fact that this is a
well-defined tensor functor was proven in Proposition 2.4.2. By Remark 2.2.8 and the
fact that Rep(Hn) is a Karoubi tensor category, the universal property of the Karoubian
envelope in Proposition 1.1.27 gives us a C-linear tensor functor

G : Rep(Hn) → Rep(Hn),

which satisfies G′ = G ◦ ιG and is unique up to isomorphism.

Proposition 2.4.5. The functor G is a full and essentially surjective monoidal functor.

Proof. The fullness of G was shown in Proposition 2.3.11. It is essentially surjective
because the reflection representation is a faithful representation of Hn and every irreducible
representation is a direct summand of some tensor power of a faithful representation.

We have by definition that

G({1, 2, 1′, 2′}) = G( ) = T ( ) : u⊗ u → u⊗ u

ei ⊗ ei 7→ ei ⊗ ei for all 1 ⩽ i ⩽ n and
ei ⊗ ej 7→ 0 for all 1 ⩽ i ̸= j ⩽ n.

This implies that the image of G( ) consists of C-linear combinations of {ei ⊗ei|1 ⩽ i ⩽ n}
and as a consequence the representation v, see Remark 1.2.15, lies in the essential image of
G:

G(([1] ⊗ [1], {1, 2, 1′, 2′})) = G(([1] ⊗ [1], )) = im(G( ) : u⊗ u → u⊗ u)) ∼= v.

Then also the permutation representation lies in the essential image of G:

G([1] ⊕ ([1] ⊗ [1], {1, 2, 1′, 2′})) ∼= u⊕ v ∼= V.

2.4.3 Hyperoctahedral groups: permutation representations

In this section we define the interpolation functor H : Par(Z2, 2n)Kar → Rep(Hn) of
[LS21, Theorem 5.1], but without using the presentation of the interpolation category via
generators and relations.
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Definition 2.4.6. We define a strict C-linear tensor functor between C-linear spherical
rigid symmetric monoidal categories

H ′ : Par(Z2, 2n) → Rep(Hn)

on the objects by [k̃] → V ⊗k and on the morphisms by a linear extension of the rule
(p, z) → T(p,z). Note that [k̃] and V ⊗k are both self-dual objects of dimension (2n)k in their
respective categories. The fact that this is a well-defined tensor functor is proven similarly
as in Proposition 2.4.2. By Remark 2.2.13 and the fact that Rep(Hn) is a Karoubi tensor
category, the universal property of the Karoubian envelope in Proposition 1.1.27 gives us a
C-linear tensor functor

H : Par(Z2, 2n)Kar → Rep(Hn),

which satisfies F ′ = F ◦ ιF and is unique up to isomorphism. We will see that some choices
of H will be more convenient in particular situations, for example in the proof of Corollary
3.2.18.

Proposition 2.4.7. The functor H is a full and essentially surjective monoidal functor.

Proof. The functor is full as is shown in Proposition 2.3.19. It is essentially surjective be-
cause the permutation representation is a faithful representation of Hn and every irreducible
representation is a direct summand of some tensor power of a faithful representation.

Corollary 2.4.8. The reflection representation u and its complement v in V both lie in
the essential image of H.

Remark 2.4.9. In Chapter 3 we will give explicit preimages of the representations u and
v for H.

2.5 Semisimplification

We show that the interpolation functors induce equivalences between the interpolation
categories and the representation categories. These results follow from the fact that
the interpolation functors are full tensor functors and from Proposition 2.5.11, which is
proven in [CW12, Proposition 3.23]. We also obtain explicit descriptions of the negligible
morphisms in the interpolation categories.

2.5.1 General theory

Our definition of a tensor ideal is equivalent to the one in [AKO02, Definition 6.1.1]. We
use the definition of negligible morphisms from [EO22, Definition 2.1]. In Proposition 2.5.5
and Proposition 2.5.11, we write out the proof of [CO11, Proposition 3.23]. The proof that
we give for Proposition 2.5.10 is the proof from [AKO02], but the statement also follows
from [EO22, Lemma 2.2].

Definition 2.5.1. We define a tensor ideal I in a C-linear spherical rigid symmetric
monoidal category C as a collection of morphism spaces I(A,B) ⊂ C(A,B) for all objects
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2.5 Semisimplification

A,B ∈ Ob(C). This collection is closed under addition, composition and tensor product
with all morphisms, i.e. if f ∈ I(A,B), g ∈ C(C,D), h ∈ C(B,E) and i ∈ C(K,A) then
f ⊗ g ∈ I(A⊗ C,B ⊗D), g ⊗ f ∈ I(C ⊗ A,D ⊗B), h ◦ f ∈ I(A,C) and f ◦ i ∈ I(K,A)
for all A,B,C,D,K ∈ Ob(C).
Definition 2.5.2. Let I be a tensor ideal in a C-linear spherical rigid symmetric monoidal
category C. Then the quotient category C/I is a C-linear symmetric monoidal category
with the same objects as C and the morphisms are given by

HomC/I(A,B) := HomC(A,B)/I(A,B).

It can be easily checked that this is well-defined.
Remark 2.5.3. If I is a tensor ideal in a C-linear spherical rigid symmetric monoidal
category C which is invariant under the endofunctor ∗ : C → C, i.e. I∗ = I, then the
quotient category C/I inherits a C-linear spherical rigid symmetric monoidal structure
from C. Note that if evA ∈ I for some A ∈ C, then the triangle identities imply that
idA ∈ I and therefore I = C. The same holds true if I contains coevA or any morphism
which can be composed or tensored with to obtain an isomorphism in C.
Definition 2.5.4. Let C be a C-linear spherical rigid symmetric monoidal category. We
call a morphism f ∈ HomC(A,B) for A,B ∈ Ob(C) negligible, if for every g ∈ HomC(B,A),
we have tr(f ◦ g) = 0. We denote the set of all negligible morphism from A to B by
N (A,B) ⊆ HomC(A,B).
Proposition 2.5.5. The ideal N of negligible morphisms in a C-linear spherical rigid
symmetric monoidal category C is a tensor ideal.
Proof. Assume that f : A → B is a negligible morphism. Let g : C → D. Let
h ⊗ h′ : B ⊗ D → A ⊗ C. We want to show that tr((f ⊗ g) ◦ (h ⊗ h′)) = 0, where
(f ⊗ g) ◦ (h⊗ h′) : B ⊗D → B ⊗D. The axioms of a tensor category imply

tr((f ⊗ g) ◦ (h⊗ h′)) = ev(B⊗D)∗ ◦ (id(B⊗D)∗ ⊗ (f ⊗ g) ◦ (h⊗ h′)) ◦ coevB⊗D.

= evD∗ ◦ (idD∗ ⊗ (g ◦ h′)) ◦ (idD∗ ⊗ evB∗ ⊗ idD)◦
(idD∗ ⊗ idB∗ ⊗ (f ◦ h) ⊗ idD) ◦ (idD∗ ⊗ coevB ⊗ idD) ◦ coevD

= evD∗ ◦ (idD∗ ⊗ (g ◦ h′)) ◦ (idD∗ ⊗ tr(f ◦ h) ⊗ idD) ◦ coevD

= 0,

so f ⊗ g is negligible. Now let i : B → E and j : K → A be morphisms in C. If i′ : E → A
and j′ : B → K then we get by Remark 1.1.13 that

tr(i ◦ f ◦ i′) = tr(i′ ◦ i ◦ f) = tr(f ◦ i′ ◦ i) = 0 and
tr(f ◦ j ◦ j′) = 0,

which concludes the proof.

Definition 2.5.6. Let C be a C-linear spherical rigid symmetric monoidal category and
N its ideal of negligible morphisms. By Proposition 2.5.5 we can define the semisim-
plification of C by the quotient Ĉ := C/N . Its morphism spaces are then of the form
HomĈ(A,B) = HomC(A,B)/N (A,B).
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Remark 2.5.7. Note that the ideal N of negligible morphisms in a C-linear spherical
rigid symmetric monoidal category C satisfies N ∗ = N . One can see this as follows. Let
f, g : A → B be a morphisms in C and f negligible. Then

tr(f∗ ◦ g) = tr(g∗ ◦ f) = tr(f ◦ g∗) = 0,

where the first equality follows from the morphism identities and the sphericality, the
second from Remark 1.1.13 and the third one form the assumption that f is negligible. So
by Remark 2.5.3 the semisimplification Ĉ is a C-linear spherical rigid symmetric monoidal
category. The corresponding quotient functor P : C → C/N is a C-linear full tensor functor.

Definition 2.5.8. A C-linear category is semisimple if each object can be written as a
finite direct sum of simple objects and if all those direct sums exists.

Example 2.5.9. Every semisimple category has all finite biproducts and splittings for its
idempotents, therefore every semisimple category is Karoubi. The representation categories
over the complex numbers of Sn and Hn, Rep(Sn) and Rep(Hn) respectively, are C-linear
spherical rigid symmetric monoidal semisimple categories for all n ∈ N, so the following
proposition applies.

Proposition 2.5.10. There are no non-trivial negligible morphisms in a semisimple tensor
category.

Proof. It is proven in [AKO02][Chapter 7 and Appendix A.2] that if C is a semsimple
tensor category then the tensor ideal, called the radical ideal,

R(A,B) := {f ∈ C(A,B)|∀g ∈ C(B,A), 1A − g ◦ f is invertible.}

is zero.
The ideal of negligible morphisms is then N = 0 because it equals

N (A,B) = iAB(R(1, A∗ ⊗B))

where

iAB :C(1, A∗ ⊗B) → C(A,B)
φ → (evA ⊗ 1B) ◦ (1A ⊗ φ)

Proposition 2.5.11. The image of a morphism f under a full tensor functor is negligible
if and only if f itself is negligible.

Proof. Let K : C → D be a full tensor functor between tensor categories. Let f ∈ HomC(A,B).
Assume first that f is negligible. Let g ∈ HomD(K(B),K(A)). Then there exists a

g′ ∈ HomC(B,A) with K(g′) = g. Because tensor functors preserve traces, see Remark
1.1.15, we get

tr(K(f) ◦ g) = tr(f ◦ g′) = 0,
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2.5 Semisimplification

which implies that K(f) is negligible.
Now assume that K(f) is negligible. Let h ∈ HomC(B,A). Then

tr(f ◦ h) = tr(K(f) ◦ K(h)) = 0

and this implies that f is negligible.

2.5.2 Semisimplification of the interpolation categories for the symmetric
groups

We use the results of previous section to show that the functor F : Rep(Sn) → Rep(Sn)
induces an equivalence F̂ : ̂Rep(Sn) → Rep(Sn). This statement is proven in [Del07,
Theorem 6.2] and [CO11, Theorem 3.24]. The fact that Rep(St) is semisimple for t /∈ N is
proven in [Del07, Theorem 2.18].

Proposition 2.5.12. For all n ∈ N the interpolation functor F : Rep(Sn) → Rep(Sn)
induces a C-linear functor F̂ : R̂ep(Sn) → Rep(Sn), which is an equivalence of categories.
The semisimplification R̂ep(Sn) is semisimple.

Proof. Proposition 2.3.5 and Definition 2.4.1 imply that F is a C-linear full tensor functor.
Then it reflects and preserves negligible morphisms by Proposition 2.5.11. Rep(Sn) is
semisimple, therefore the only negligible morphisms in this category are the zero morphisms.
This implies that the only negligible morphisms in Rep(Sn) are the morphisms that lie in
the kernel of

F = T : HomRep(Sn)([k], [l]) = CP (k, l) → HomSn((Cn)⊗k, (Cn)⊗l)

for all k, l ∈ N. So if N is the tensor ideal of negligible morphisms in the interpolation
category, then it contains all the morphisms in the kernel of F . Therefore we get an induced
C-linear functor

F̂ : ̂Rep(Sn) → Rep(Sn)

which is faithful, full and essentially surjective. So it is an equivalence of categories. The
semisimplicity of Rep(Sn) then implies the semisimplicity of ̂Rep(Sn).

Remark 2.5.13. If we denote the quotient functor corresponding to the semisimplification
by FN : Rep(Sn) → ̂Rep(Sn), we get that F = F̂ ◦ FN .

Remark 2.5.14. Note that the proof shows that the interpolation categories Rep(Sn) are
not semisimple for n ∈ N, because they have nontrivial negligible morphisms.

Remark 2.5.15. Following Remark 2.5.3 and Remark 2.5.7, ̂Rep(Sn) is a C-linear spherical
rigid symmetric monoidal category and the quotient functor FN is a C-linear full tensor
functor. Because F = F̂ ◦ FN is also a C-linear tensor functor, so is F̂ .
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2.5.3 Semisimplification of the interpolation categories in the reflection
representations for the hyperoctahedral groups

Analogous as we did in the previous section, we show that the interpolation functor
G : Rep(Hn) → Rep(Hn) induces an equivalence Ĝ : ̂Rep(Hn) → Rep(Hn). This statement
is proven in [FM21, Proposition 3.17] and we give a short summary of their approach after
we prove the statement without relying on the theory of ∗-categories, see 2.5.11. The fact
that the interpolation categories Rep(Ht) are semisimple if and only if t /∈ N, is proven in
[FM21, Chapter 3].

Proposition 2.5.16. For all n ∈ N the interpolation functor G : Rep(Hn) → Rep(Hn)
induces a C-linear functor Ĝ : ̂Rep(Hn) → Rep(Hn), which is an equivalence of categories.
The semisimplification ̂Rep(Hn) is semisimple.

Proof. Proposition 2.3.11 and Definition 2.4.4 tell us that G is a C-linear full tensor functor
and as a consequence Proposition 2.5.11 implies that it reflects and preserves negligible
properties. Because Rep(Hn) is semisimple, the only negligible morphisms in this category
are the zero morphisms. This implies that the only negligible morphisms in Rep(Hn) are
the morphisms that lie in the kernel of

G = T : HomRep(Hn)([k], [l]) = CPeven(k, l) → HomHn((Cn)⊗k, (Cn)⊗l).

If N is the tensor ideal of negligible morphisms, then it contains all the morphisms in the
kernel of G and we get an induced C-linear functor

Ĝ : ̂Rep(Hn) → Rep(Hn)

which is faithful, full and essentially surjective. So we have an equivalence of categories.
The semisimplicity of Rep(Hn) then implies the semisimplicity of ̂Rep(Hn).

Remark 2.5.17. If we denote the quotient functor corresponding to the semisimplification
by GN : Rep(Hn) → ̂Rep(Hn), we get that G = Ĝ ◦GN .

Remark 2.5.18. Note that the proof shows that the interpolation categories Rep(Hn)
are not semisimple for n ∈ N, because they have nontrivial negligible morphisms.

Remark 2.5.19. Following Remark 2.5.3 and Remark 2.5.7, ̂Rep(Hn) is a C-linear spherical
rigid symmetric monoidal category and the quotient functor GN is a C-linear full tensor
functor. Because G = Ĝ ◦GN is also a C-linear tensor functor, so is Ĝ.

Now we want to take a short look at the approach of [FM21]. First they show that
there exists an equivalence between the semisimplification of Rep(Hn) and Rep(Hn). The
following lemma holds in fact for all C-linear rigid symmetric monoidal categories, see
[AKO02, Proposition 7.1.4].

Lemma 2.5.20. For any t ∈ C, the ideal of negligible morphisms N is the unique maximal
tensor ideal in Rep(Ht).
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Proof. Let f : A → B be a morphism in Rep(Ht) that isn’t negligible. Then there exists a
g : B → A such that tr(f ◦ g) ̸= 0. Recall that the trace is a an endomorphism of [0], in
this case a non-trivial one. Because it is achieved using tensor products and compositions,
any tensor ideal J in Rep(Ht) containing f , will contain this non-trivial endomorphism
and thus the identity on [0]. But this shows us that J will contain all of Rep(Ht), implying
the maximality of N .

Remark 2.5.21. A C*-algebra is a Banach algebra over C with an involution. Every
finite dimensional C*-algebra A is isomorphic to a direct sum of matrix algebras over C
with involution the conjugate transposes.

Lemma 2.5.22. Assume a C-linear Karoubian monoidal category C has finite-dimensional
morphism spaces and admits a positive ∗-operation. Then it is semisimple (and hence,
abelian).

Proof. Because every idempotent splits and the hom-spaces are finite dimensional we know
that every object can be written in an unique way as a finite direct sum of indecomposable
objects. We need to prove that the indecomposable objects have no subobject, which
shows that they are simple. For this it suffices to show that every morphism between
indecomposable objects is either zero or an isomorphism. Then it would be impossible to
have an inclusion of a proper non-trivial subobject in some indecomposable object. So
assume f : A → B is a non-zero morphism between indecomposable objects. Because
the endomorphism algebras of C are finite dimensional C*-algebras without non-trivial
idempotents we see that a := f∗ ◦ f ∈ C(A,A) ∼= C and b := f ◦ f∗ ∈ C(B,B) ∼= C are
scalars. Then fa = f ◦ f∗ ◦ f = bf implies that a = b which implies that f−1 = 1

af
∗ and

that f is an isomorphism.

Remark 2.5.23. The horizontal reflection ∗ of partitions, extended C-antilinearly, induces
a ∗-operation on Rep(Ht) which is the identity on objects and is a contravariant involutive
antilinear monoidal endofunctor.2

Proposition 2.5.24. For any complex number t, assume K : Rep(Ht) → D is a (non-zero)
monoidal ∗-functor, where D is a C-linear Karoubian monoidal category C with finite-
dimensional morphism spaces and a positive ∗-operation. Then K induces an equivalence
between the semisimplification of Rep(Ht) and the image of K.

Proof. We first observe that the image Im(K) is a C-linear Karoubian monoidal subcategory
of D with finite-dimensional morphism spaces and a positive ∗-operation. By Lemma 2.5.22
we see that Im(K) is semisimple, which implies by Proposition 2.5.10 that there are no
non-trivial negligible morphisms. As a consequence all negligible morphisms of Rep(Ht) lie
in the kernel of K, which is a tensor ideal. Then Lemma 2.5.20 implies that the negligible
morphisms are exactly all morphisms in the kernel. Thus the functor K̂ : ̂Rep(Ht) → D is
faithful and well defined. Because it is also full and essentially surjective, it is an equivalence
of the semisimplification and the image of K.

Proposition 2.5.25. For any n ∈ N, the functor G induces an equivalence between the
semisimplification of Rep(Hn) and Rep(Hn).

2Note that the ∗-operation differs from the endofunctor (−)∗, in Proposition 2.2.2, only by the fact that it
is antilinear.
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Proof. We want to apply Proposition 2.5.24 to G and the representation category Rep(Hn).
It is easy to see that G is a monoidal ∗-functor and that Rep(Hn) is a C-linear Karoubian
monoidal category C with finite-dimensional morphism spaces and a positive ∗-operation.
This shows that the induced functor is essentially surjective and fully faithful.

2.5.4 Semisimplification of the interpolation categories in the
permutation representations for the hyperoctahedral groups

Analogous as we did in the previous sections, we show that the interpolation functor
H : Par(Z2, 2n)Kar → Rep(Hn) induces an equivalence Ĥ : ̂Par(Z2, 2n)Kar → Rep(Hn).
This fact was neither mentioned nor proven in [LS21]. The fact that the interpolation
categories Par(Z2, t)Kar are semisimple if and only if t /∈ 2N is proven in [Kno07][p.596,
example 2]. We refer to [LS21, Chapter 9] for more details concerning this statement.

Proposition 2.5.26. For all n ∈ N the interpolation functor H : Par(Z2, 2n)Kar → Rep(Hn)
induces a C-linear functor Ĥ : ̂Par(Z2, 2n)Kar → Rep(Hn), which is an equivalence of
categories. The semisimplification ̂Par(Z2, 2n)Kar is semisimple.

Proof. Proposition 2.3.19 and Definition 2.4.6 imply that H is a C-linear full tensor
functor. Then Proposition 2.5.11 implies that H reflects and preserves negligible properties.
Because Rep(Hn) is semisimple, the only negligible morphisms in this category are the
zero morphisms. This implies again that the only negligible morphisms in Rep(Hn) are
the morphisms that lie in the kernel of

H = T : HomPar(Z2,2n)Kar ([k̃], [l̃]) = CPZ2(k, l) → HomHn((C2n)⊗k, (C2n)⊗l).

If N is the tensor ideal of negligible morphisms, then it contains all the morphisms in the
kernel of H and we get an induced C-linear functor

Ĥ : ̂Par(Z2, 2n)Kar → Rep(Hn)

which is faithful, full and essentially surjective. So we have an equivalence of categories.
The semisimplicity of Rep(Hn) then implies the semisimplicity of ̂Par(Z2, 2n)Kar.

Remark 2.5.27. If we denote the quotient functor corresponding to the semisimplification
by HN : Par(Z2, 2n)Kar → ̂Par(Z2, 2n)Kar, we get that H = Ĥ ◦HN .

Remark 2.5.28. Note that the proof shows that the interpolation categories Par(Z2, 2n)Kar

are not semisimple for n ∈ N, because they have nontrivial negligible morphisms.

Remark 2.5.29. Following Remark 2.5.3 and Remark 2.5.7, ̂Par(Z2, 2n)Kar is a C-linear
spherical rigid symmetric monoidal category and the quotient functor HN is a C-linear full
tensor functor. Because H = Ĥ ◦HN is also a C-linear tensor functor, so is Ĥ.

2.6 Universal properties of the interpolation categories
We describe the interpolation categories by giving isomorphisms to categories which are
defined by generators and relations. This is done in [LS21, Chapter 4] for the interpolation
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categories Rep(St) and Par(Z2, t)Kar. This makes it possible to discuss the universal
properties of the interpolation categories. This was already done in [Del07, Proposition
8.3] for the case Rep(St). The proof we give for the universal properties, is in each case
analogous to the proof in [EH22, Corollary 8.1.3].

2.6.1 Universal properties of the interpolation categories for the
symmetric groups

In this section we describe Rep0(St) using generators and relations and use this result to
give a universal property of Rep(St).

Definition 2.6.1. Par({1})/ ∼t is a strict C-linear monoidal category with a single
generating object W . The generating morphisms are

= idW : W → W

: W ⊗W → W

: W → W ⊗W

: W ⊗W → W ⊗W

: 1 → W

: W → 1

with the following relations:

= = , = = , = = , (2.6.1)

= , = , (2.6.2)

= , = , = , = , (2.6.3)

= , = , = t (2.6.4)

Remark 2.6.2. It can be proven that all the possible horizontal and vertical reflections
of the above relations will also hold, as a consequence of the given relations, see [LS21,
Proposition 4.3].

Remark 2.6.3. Note that we can use the morphism to define swap morphisms
sW ⊗k,W ⊗l : W⊗k ⊗W⊗l → W⊗l ⊗W⊗k for all k, l ∈ N by
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W ⊗ · · · ⊗W

k times

· · ·

···

··· ···

· · ·

···

···
···

···

· · · · · ·

· · · · · ·

W ⊗ · · · ⊗W.

l times

W ⊗ · · · ⊗W W ⊗ · · · ⊗W

l times k times

k
tim

es

k
tim

es

l
ti

m
es

l
ti

m
es

The first relation of 2.6.2 show us that all swap morphisms are isomorphisms. The
second relation of (2.6.2) and the relations in (2.6.3) imply that the above swap morphisms
are natural with respect to the other generating morphisms.

Altogether these relations are equivalent to the statement that Par({1})/ ∼t is a
symmetric monoidal category.

The following statement is already proven in [Com20, Theorem 2.1]. They refer to [Koc03,
Chapter 1.4] in which a similar proof is given for the category 2Cob, a free symmetric
monoidal category generated by a commutative Frobenius algebra. We write this proof
out in the language of Definition 2.6.1. In our case Par({1})/ ∼t is a free symmetric
monoidal category generated by an n-dimensional special commuative Frobenius algebra.
So Par({1})/ ∼t is equivalent to 2Cob with the second and third relation of (2.6.4) added.
The second relation of 2.6.4 tells us that the occuring diagrams will contain no circles. In
the source material this corresponds to saying that the cobordisms have genus 0 or that
they have no handles.
Theorem 2.6.4. The categories Rep0(St) and Par({1})/ ∼t are isomorphic as C-linear
symmetric monoidal categories.
Proof. Define the functor F̃ : Par({1})/ ∼t→ Rep0(St) on objects by W⊗k 7→ [k]. This
makes it clearly bijective on the objects. On the morphisms we define it by sending:

7→ , 7→ , 7→ , 7→ , 7→
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2.6 Universal properties of the interpolation categories

and extending this rule C-linearly. The fact that this choice is a well-defined one, can be
seen by checking that the relations of Definition 2.6.1 are preserved by F̃ and this amounts
to the fact that partition diagrams are the same when the parts are the same.

Let p ∈ P (k, l) be a partition and ϕ(σ)◦p′◦ϕ(ρ) some normal form of p, see Definition 2.1.5.
To show that the functor is full, it suffices to show that the permutation partitions and the
non-crossing form of the partition p lie in the image. The permutation partitions lie in the im-
age because we can define a monoid homomorphism ϕ′ : Sn → HomPar({1})/∼t

(W⊗n,W⊗n)
for all n ∈ N by defining it on the transpositions analogously as we did for ϕ, see Definition
2.1.2. Then F̃ ◦ ϕ′ = ϕ, showing the claim. To prove that the non-crossing forms of a
partition lie in the image, it suffices to show that every one-part partition lies in the image,
because the functor is monoidal. So let q ∈ P (k, l) be a partition of one part. Then it
lies in the image of the so-called star diagram Sl

k ∈ HomPar({1})/∼t
(W⊗k,W⊗l) which is

defined for k, l > 1 by

Star diagram Sl
k

k − 1 times

l − 1 times

For k = 1 or l = 1 we replace respectively the lower part or the upper part of the star
diagram by the identity partition. In case k = 0, we replace the lower part of the star
diagram by . In case l = 0, we replace the upper part of the star diagram by . This
defines Sl

k, for all k, l ∈ N. So for any partition p ∈ P (k, l) with ϕ(σ) ◦ p′ ◦ ϕ(ρ) some
normal form, we see that it is the image of the morphism f := ϕ′(σ) ◦ S ◦ ϕ′(ρ), where S is
a tensor product of star diagrams corresponding to the blocks of p′. We call f a morphism
in normal form, similarly as we did for the partition diagrams.

We are left to prove the faithfulness of the functor F̃ . Note that we have a notion of
parts and the size of parts of a morphism in Par({1})/ ∼t which corresponds to the notion
of parts and the size of parts of its image under F̃ . We first show that for a one-part
morphism f ∈ HomPar({1})/∼t

(W⊗k,W⊗l) with f ∈ P (k, l), it is possible to apply the
relations to get f = Sl

k.
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Case 1 f contains no twists:
We want to move all the down and all the up, using the relations. We can use

the relations (2.6.1) and (2.6.4) to get past any obstacles on the way down. If all of
them are down, we use associativity to get the wanted lower half of the star diagram:

= = == =

= =

, , ,

.

Moving the down.

In a similar fashion we can move all up and get our star diagram.
Case 2 f contains twists: Now we use induction on the number of twists to see how we

can remove all twists. Suppose f contains some twist and looks like

A B

C D

where A,B,C,D are morphisms already in the form of a star diagram. We can assume
either A and B are connected or A and C are connected, because f consists only of one
part.

Lets first assume that A and B are connected. Then we can use associativity and locally
get something of the form ◦ which equals by relation (2.6.4). If we assume
that A and C are connected we see that we locally get an image, maybe after applying
associativity if necessary, that looks like:

= = = =
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2.6 Universal properties of the interpolation categories

so that after applying (2.6.4), (2.6.3), (2.6.1) and (2.6.4) again, the twist is removed and
we are back in case 1. So we have proven that a one part morphism f can be transformed
to a star diagram.

Now we take an arbitrary g ∈ HomPar({1})/∼t
(W⊗k,W⊗l). We can find permutations

σ and ρ such that ϕ(σ) ◦ F̃ (g) ◦ ϕ(ρ) is some non-crossing form of F̃ (g). Then we can of
unknot the interwined parts of ϕ′(σ)−1 ◦ g ◦ ϕ′(ρ)−1 using the twist relations in (2.6.2) and
(2.6.3) to obtain a morphism f1 ⊗ . . .⊗ fr, where the fi have as images the single blocks of
the non-crossing form of F̃ (g). By the previous part we can write each fi as a star diagram
Sli

ki
and we obtain the normal form

g = ϕ′(σ) ◦ Sl1
k1

⊗ . . .⊗ Slr
kr

◦ ϕ′(ρ).

This shows that any two morphisms with the same image under F̃ will be equal to the same
morphism in normal form. Because a C-linear combination of morphisms in Par({1})/ ∼t

will be linearly independent if and only if its image under F̃ linearly independent, is F̃ is
faithful. This concludes the proof that F̃ is an isomorphism between C-linear monoidal
categories. We note that the swap morphisms in Par({1})/ ∼t and Rep0(St) can be
constructed as explained in Remark 2.6.3 by the morphisms and respectively.
Because F̃ is functorial and sends to , it also preserves the swap morphisms. This
shows that F̃ is a C-linear symmetric monoidal functor.

Remark 2.6.5. The isomorphism F̃ induces an isomorphism

F̃Kar : (Par({1})/ ∼t)Kar → Rep(St).

The theorem implies that Par({1})/ ∼t has the structure of a C-linear spherical rigid
symmetric monoidal category and that Rep0(St) satisfies the following universal property:

Theorem 2.6.6. Let t ∈ C. Let C be a C-linear symmetric monoidal category with a
t-dimensional special commutative Frobenius object (A,α, δ, β, ϵ) for an object A ∈ Ob(C),
a multiplication α : A⊗A → A, a comultiplication β : A → A⊗A, a unit δ : 1 → A and a
counit ϵ : A → 1. Let γ := sC

A,A : A⊗A → A⊗A be the swap morphism. These morphisms
satisfy:
1. A is a Frobenius object

α ◦ (idA ⊗ δ) = idA = α ◦ (δ ⊗ idA),
(idA ⊗ ϵ) ◦ β = idA = (ϵ⊗ idA) ◦ β,

(α⊗ idA) ◦ (idA ⊗ β) = β ◦ α = (idA ⊗ α) ◦ (β ⊗ idA).

2. A is commutative

α ◦ γ = α.

3. A is special

α ◦ β = idA.
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4. A has dimension t

ϵ ◦ δ = t.

Then there exists a unique strict C-linear symmetric monoidal functor F ′ : Rep0(St) → C,
with F ′([k]) = A⊗k for all k ∈ N and F ′(F̃ ( )) = α, F ′(F̃ ( )) = β, F ′(F̃ ( )) = γ,
F ′(F̃ ( )) = δ and F ′(F̃ ( )) = ϵ. Furthermore, if C is Karoubi, there exists an up to iso-
morphism unique C-linear symmetric monoidal functor F : Rep(St) → C with F ′ = F ◦ ιF .

Proof. We define the functor F ′′ : Par({1}/ ∼t→ C on objects by F ′′(W⊗k) := A⊗k and
on morphisms by the C-linear extension of F ′′( ) := α,F ′′( ) := β,F ′′( ) := γ,
F ′′( ) := δ and F ′′( ) := ϵ. Because C is a symmetric monoidal category, the relations
(2.6.2) and (2.6.3) hold in this category, see Remark 2.6.7. One checks that all the necessary
relations are satisfied and this implies that the functor F ′′ is indeed a well-defined strict
C-linear symmetric monoidal functor. We then use Theorem 2.6.4 to define the strict
C-linear symmetric monoidal functor F ′ := F ′′ ◦F̃−1. If C is Karoubi, the universal property
of the Karoubian envelope implies the existence of the functor F , see Remark 2.2.4,

Remark 2.6.7. We use the notation of Theorem 2.6.6. Because C is a symmetric monoidal
category, A and the morphisms α, β, γ, δ and ϵ satisfy the following relations. The relation

γ ◦ γ = idA ⊗ idA

expresses that the swap morphisms, which one can describe using γ in a similar way as we
did in Remark 2.6.3, are isomorphisms. The relations

(γ ⊗ idA) ◦ (idA ⊗ γ) ◦ (γ ⊗ idA) = (idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ),
γ ⊗ (idA ⊗ δ) = δ ⊗ idA,

(idA ⊗ ϵ) ◦ γ = ϵ⊗ idA,

(idA ⊗ α) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ) = γ ◦ (α⊗ idA),
(idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ β) = (β ⊗ idA) ◦ γ.

express the naturality of these swap morphisms with respect to α, β, γ, δ and ϵ.

Corollary 2.6.8. Let t ∈ C and C be a C-linear symmetric monoidal Karoubi category.
Then there is an equivalence

Fun⊗,Symm
C (Rep(St), C) ≃ FrobSpec

C (C, t)

between the category Fun⊗,Symm
C (Rep(St), C) of C-linear symmetric monoidal functors from

Rep(St) to C with natural isomorphisms between them, and the subcategory FrobSpec
C (C, t) of

C consisting of t-dimensional special commutative Frobenius objects and their isomorphisms.

Proof. We want to construct an inverse for the functor

Fun⊗,Symm
C (Rep(St), C) → FrobSpec

C (C, t)
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2.6 Universal properties of the interpolation categories

defined by

F 7→ F([1]) for all functors F : Rep(St) → C and
κ 7→ κA for all natural isomorphisms κ : F1 → F2.

Let A be a t-dimensional special commutative Frobenius object in C. Then Theorem
2.6.6 implies the existence of a functor FA : Rep(St) → C with the properties that were
stated in the theorem. Let κ : A → B be an isomorphism in FrobSpec

C (C, t). We define a
natural isomorphism Fκ : FA → FB as followed. First we define a natural isomorphism
Fκ,0 between FA,0 := FA ◦ ιF : Rep0(St) → C and FB,0 := FB ◦ ιF : Rep0(St) → C by

Fκ,0
[k] := κ⊗k : A⊗k → B⊗k

for all k ∈ N. Let f : [k] → [l] be a morphism in Rep0(St). Because κ respects the structure
of A and B, the following square commutes

A⊗k A⊗l

B⊗k B⊗l.

FA,0(f)

κ⊗k κ⊗l

FB,0(f)

This shows that Fk,0 is a natural isomorphism. By the properties of the universal property
of the Karoubian envelope it extends uniquely to a natural isomorphism Fκ : FA → FB

such that Fκ,0 = Fκ ◦ ιF . We obtained an inverse functor

FrobSpec
C (C, t) → Fun⊗,Symm

C (Rep(St), C),

and this shows the equivalence.

Alternative definition of interpolation functor F : Rep0(Sn) → Rep(Sn)

Using the description above we define the interpolation functor F ′ : Rep0(Sn) → Rep(Sn)
in a different way as we did before: by Theorem 2.6.6 we only have to specify the image of
the generating morphisms and check that the necessary relations are functorial.

We define the strict C-linear monoidal functor F ′′ : Par({1})/ ∼n→ Rep(Hn) on objects
by sending W to u′ ∈ Rep(Sn). The images of the generating objects are defined by:

F ′′( ) : u′ ⊗ u′ → u′, ei ⊗ ej 7→ δi,jei,

F ′′( ) : u′ → u′ ⊗ u′, ei 7→ ei ⊗ ei,

F ′′( ) : u′ ⊗ u′ → u′, v ⊗ w 7→ w ⊗ v,

F ′′( ) : 1 = C → u′, 1 7→
∑n

i=1 ei,

F ′′( ) : u′ → C, ei 7→ 1.

The fact that this yields a well-defined functor is proven in [LS21, Theorem 5.1].

The fact that F ′ := F ′′ ◦ F̃−1 indeed yields the same functor as before follows from the
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fact that F ′′ ◦ F̃−1 = T on the basis elements of the morphism spaces of Rep0(Sn).

2.6.2 Universal properties of the interpolation categories in the
permutation representations for the hyperoctahedral groups

In this section we describe Par(Z2, 2n) using generators and relations and use this result to
give a universal property of Par(Z2, 2n)Kar. The description using generators and relations
is already stated in [LS21, Theorem 4.4]. We wrote the proof out using the notation we
introduced. We also elaborated at some points. The fundamental structure of the proof
stays the same. The statement of the universal property in Corollary 2.6.16 is new.

Definition 2.6.9. Par(Z2)/ ∼t is a strict C-linear monoidal category with a single
generating object W . The generating morphisms are

= idW : W → W

: W ⊗W → W

: W → W ⊗W

: W ⊗W → W ⊗W

g : W → W, g ∈ Z2

: 1 → W

: W → 1
: 1 → 1

with the following relations for g, h ∈ Z2:

= = , = = , = = , (2.6.5)

= , = , (2.6.6)

= , = , = , = , (2.6.7)

= , g h = δg,h g , = t, (2.6.8)

h

g = gh , 1 = , g = g , g = g g , g = . (2.6.9)

Remark 2.6.10. It can be proven that all the possible horizontal and vertical reflections
of the above relations will also hold, as a consequence of the given relations, see [LS21,
Proposition 4.3].

Remark 2.6.11. By the same argument as in Remark 2.6.3, Par(Z2)/ ∼t is a symmetric
monoidal category.
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Theorem 2.6.12. Let n ∈ N. The categories Par(Z2, t) and Par(Z2)/ ∼t are isomorphic
as C-linear symmetric monoidal categories.

Proof. Define the functor H̃ : Par(Z2)/ ∼t→ Par(Z2, t) on objects by W⊗k 7→ [k]. This
makes it clearly bijective on the objects. On the morphisms we define it by sending:

7→ , 7→ , 7→ , 7→ , 7→ , g 7→
g

=
g

and extending this rule C-linearly. The fact that this choice is a well-defined one, can
be seen by checking that the relations of Definition 2.6.9 are preserved by H̃ and this
amounts to the fact that Z-coloured partition diagrams are regarded the same when they
are equivalent. Now we want to prove that H̃ is full. Let (p, z) ∈ PZ2(k, l) and let

z1′ zl−1′zl′

· · · ◦ ϕ(σ) ◦ p′ ◦ ϕ(ρ) ◦
z1 zk−1zk

· · ·

be a normal form of (p, z), see Definition 2.1.15. It is clear that

z1′ zl−1′zl′

· · · and
z1 zk−1zk

· · ·

lie in the image of H̃, so it remains to show that p = ϕ(σ) ◦ p′ ◦ ϕ(ρ) lies in the image. We
extend the homomorphism of the proof of Theorem 2.6.4

ϕ′ : Sn ↪→ HomPar({1})/∼t
(W⊗k,W⊗l) ↪→ HomPar(Z2)/∼t

(W⊗k,W⊗l)

by considering Par(1)/ ∼t as a subcategory of Par(Z2)/ ∼t and see that H̃ ◦ ϕ′ = ϕ. We
noted in Remark 2.2.14 that Rep0(St) is a subcategory of Par(Z2, t). By combining these
facts we get that the restriction

H̃|Par({1})/∼t
= F̃ : Par({1})/ ∼t→ Rep0(St) ⊂ Par(Z2, t)

is the full functor of Theorem 2.6.4. This implies that p′ lies in the image of H̃. Putting
everything together we see that (p, z) lies in the image of

f :=
(

z1′ z2′ · · · zl′
)

◦ ϕ′(σ) ◦ S ◦ ϕ′(ρ) ◦
(

z1 z2 · · · zk

)
.

under H̃, where S is a tensor product of star diagrams such that H̃(S) = F̃ (S) = p′.
Similarly as before we call f a morphism in normal form.

Now we prove that the functor H̃ is faithful. Let g ∈ HomPar(Z2)/∼t
(W⊗k,W⊗l) such

that g ∈ PZ2(k, l), meaning that it consists of a single Z2-coloured partition with coefficient
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1. We consider the Z2-coloured partition H̃(g) = (p, z) and its normal form

z1′ zl−1′zl′

· · · ◦ ϕ(σ) ◦ p′ ◦ ϕ(ρ) ◦
z1 zk−1zk

· · · .

We claim that we can obtain(
z1′ z2′ · · · zl′

)
◦ ϕ′(σ) ◦ S ◦ ϕ′(ρ) ◦

(
z1 z2 · · · zk

)
. (2.6.10)

by applying the relations of Definition 2.6.9 to g. To do this we start with moving all the
tokens on the diagram of g to the outer ends. This can be done by applying the relations
in (2.6.8) and (2.6.9), and the corresponding relations which are obtained by reflecting
their diagrams horizontally or vertically. We also need the relations

g = g , g = g ,

which are proven in [LS21, Proposition4.3] for g ∈ Z2. Let

g =
(

y1′ y2′ · · · yl′
)

◦ g′ ◦
(

y1 y2 · · · yk

)
.

be the obtained diagram with y = {y1, . . . , yk, y1′ , . . . , yl′} ∈ Zk+l
2 . Note that the in-

ner part g′ has no tokens and therefore lies in Par({1})/ ∼t⊂ Par(Z2)/ ∼t. Because
F̃ (g′) = H̃(g′) = ϕ(σ) ◦p′ ◦ϕ(ρ) we can then argument similarly as in the proof of Theorem
2.6.4 and apply the relations (2.6.5),(2.6.6),(2.6.7) and (2.6.8) to get that

g′ = ϕ′(σ) ◦ S ◦ ϕ′(ρ)

where S is a tenor product of star diagrams with image the blocks of p′. So we obtained

g =
(

y1′ y2′ · · · yl′
)

◦ ϕ′(σ) ◦ S ◦ ϕ′(ρ) ◦
(

y1 y2 · · · yk

)
. (2.6.11)

Because H̃(g′) = p = ϕ(σ) ◦ S ◦ ϕ(ρ), we see that

y1′ yl−1′yl′

· · · ◦ϕ(σ)◦p′ ◦ϕ(ρ)◦
y1 yk−1yk

· · · = H̃(g) =
z1′ zl−1′zl′

· · · ◦ϕ(σ)◦p′ ◦ϕ(ρ)◦
z1 zk−1zk

· · ·

This implies that y and z are equivalent labelings of p, so (p, z) ≃ (p, y). But by definition
this means that their labelings for a block of p are either equal or differ up to multiplication
by −1 of each label of the block. This means that for some star diagram S′ in the tensor
product S corresponding to a block of p, the tokens that are connected to its outer ends
through the permutation diagrams ϕ′(σ) and ϕ′(ρ), will be either equal in (2.6.11) and
(2.6.10) or differ by a factor of −1 for each end of the star diagram S′. But in both cases
we can transform one case in the other by applying the first and the fourth relation of
(2.6.9) to the star diagram S′, as one can see in the following example.

66



2.6 Universal properties of the interpolation categories

−1 −1
−1

−1

−1

−1
−1

−1

−1

−1
−1

−1 −1

−1
−1

= = = = =

This shows that

g =
(

z1′ z2′ · · · zl′
)

◦ ϕ′(σ) ◦ S ◦ ϕ′(ρ) ◦
(

z1 z2 · · · zk .
)

This shows that any two morphisms with the same image under H̃ will be equal to the same
morphism in normal form. Because a C-linear combination of morphisms in Par(Z2)/ ∼t

will be linearly independent if and only if its image under H̃ linearly independent, therefore
that H̃ is faithful. This concludes the proof that H̃ is an isomorphism between C-linear
monoidal categories. We note that the swap morphisms in Par(Z2)/ ∼t and Par(Z2, t) can
be constructed as explained in Remark 2.6.3 by the morphisms and respectively.
Because H̃ is functorial and sends to , it also preserves the swap morphisms. This
shows that H̃ is a C-linear symmetric monoidal functor.

Remark 2.6.13. The isomorphism H̃ induces an isomorphism

H̃Kar : (Par(Z2)/∼t)Kar→(Par(Z2,t))Kar.

The theorem implies that Par(Z2)/∼t
has the structure of a C-linear spherical rigid

symmetric monoidal category and that Par(Z2, t) satisfies the following universal property.

Theorem 2.6.14. Let t ∈ C. Let C be a C-linear symmetric monoidal category with a
t-dimensional special commutative Frobenius object with involution (A,α, δ, β, ϵ, ζ) for an
object A ∈ Ob(C), a multiplication α : A⊗A → A, a comultiplication β : A → A⊗A, a unit
δ : 1 → A, a counit ϵ : A → 1 and an involution ζ : A → A. Let γ := sC

A,A : A⊗A → A⊗A
be the swap morphism. These morphisms satisfy:
1. A is a Frobenius object

α ◦ (idA ⊗ δ) = idA = α ◦ (δ ⊗ idA),
(idA ⊗ ϵ) ◦ β = idA = (ϵ⊗ idA) ◦ β,

(α⊗ idA) ◦ (idA ⊗ β) = β ◦ α = (idA ⊗ α) ◦ (β ⊗ idA).

2. A is commutative

α ◦ γ = α.

3. A is special

α ◦ β = idA.
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4. A has dimension t

ϵ ◦ δ = t.

5. ζ is an involution

ζ ◦ ζ = idA.

6. As a special commutative Frobenius object, A is compatible with the involution γ3

β ◦ ζ = (ζ ⊗ ζ) ◦ β,
ζ ◦ δ = δ,

α ◦ (ζ ⊗ ζ) ◦ β = ζ,

α ◦ (idA ⊗ ζ) ◦ β = 0 = α ◦ (ζ ⊗ idA) ◦ β.

Then there exists a unique strict C-linear symmetric monoidal functor H′ : Par(Z2, t) → C,
with H′([k̃]) = A⊗k for all k ∈ N and H′(H̃( )) = α, H′(H̃( )) = β, H′(H̃( )) = γ,
H′(H̃( )) = δ, H′(H̃( )) = ϵ and H′(H̃( g )) = ζ. Furthermore, if C is Karoubi, there exists
an up to isomorphism uniqe C-linear symmetric monoidal functor H : Par(Z2, t)Kar → C
with H′ = H ◦ ιH .

Proof. We define the functor H′′ : Par({1}/ ∼t→ C on objects by H′′(W⊗k) := A⊗k and
on morphisms by the C-linear extension of H′′( ) := α,H′′( ) := β,H′′( ) := γ,
H′′( ) := δ, H′′( ) := ϵ and H′′( g ) := ζ. Because C is a symmetric monoidal category
the relations (2.6.6),(2.6.7) and the third relation of (2.6.9) hold, see Remark 2.6.15. A
direct verification shows that all the necessary relations are satisfied. This shows that the
functor H′′ is a well-defined strict C-linear symmetric monoidal functor. We use Theorem
2.6.12 and define H′ := H′′ ◦ H̃−1, which is the wanted C-linear strict symmetric monoidal
functor. If C is Karoubi, the universal property of the Karoubian envelope implies the
existence of the functor H, see Remark 2.2.13,

Remark 2.6.15. We use the notation of Theorem 2.6.14. Because C is a symmetric
monoidal category, A and the morphisms α, β, γ, δ, ϵ and ζ satisfy the following relations.
The relation

γ ◦ γ = idA ⊗ idA

expresses that the swap morphisms, which one can describe using γ in a similar way as we
did in Remark 2.6.3, are isomorphisms. The relations

(γ ⊗ idA) ◦ (idA ⊗ γ) ◦ (γ ⊗ idA) = (idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ),
γ ⊗ (idA ⊗ δ) = δ ⊗ idA,

3The first 2 equations together with γ ◦ (ζ ⊗ idA) = (idA ⊗ ζ) ◦ γ and (ζ ⊗ idA) ◦ γ = γ ◦ (idA ⊗ ζ) say
that the involution is some sort of natural transformation idC → idC which is restricted to the tensor
powers of A and the compositions and tensor products of the morphisms idA, α, β, δ and ϵ. In that case
one would define this ’natural transformation’ as ζA⊗k := ζ⊗k.
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2.6 Universal properties of the interpolation categories

(idA ⊗ ϵ) ◦ γ = ϵ⊗ idA,

(idA ⊗ α) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ) = γ ◦ (α⊗ idA),
(idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ β) = (β ⊗ idA) ◦ γ,
γ ◦ (ζ ⊗ idA) = (idA ⊗ ζ) ◦ γ,
(ζ ⊗ idA) ◦ γ = γ ◦ (idA ⊗ ζ).

express the naturality of the swap morphisms with respect to α, β, γ, δ, ϵ and ζ.

Corollary 2.6.16. Let t ∈ C and C be a C-linear symmetric monoidal Karoubi category.
Then there is an equivalence

Fun⊗,Symm
C (Par(Z2, t)Kar, C) ≃ FrobSpec,inv

C (C, t)

between the category Fun⊗,Symm
C (Par(Z2, t)Kar, C) of C-linear symmetric monoidal functors

from Par(Z2, t)Kar to C with natural isomorphisms between them, and the subcategory
FrobSpec,inv

C (C, t) of C consisting of t-dimensional special commutative Frobenius objects
with involution and their isomorphisms.

Proof. We want to construct an inverse for the functor

Fun⊗,Symm
C (Par(Z2, t)Kar, C) → FrobSpec,inv

C (C, t)

defined by

H 7→ G([1̃]) for all functors H : Par(Z2, t)Kar → C and
κ 7→ κA for all natural isomorphisms κ : H1 → H2.

Let A be a t-dimensional special commutative Frobenius object with involution in C.
Then theorem 2.6.14 implies the existence of a functor HA : Par(Z2, t)Kar → C with
the properties that were stated in the theorem. Let κ : A → B be an isomorphism in
FrobSpec,inv

C (C, t). We define a natural isomorphism Hκ : HA → HB as followed. First
we define a natural isomorphism Hκ,0 between HA,0 := GA ◦ ιH : Par(Z2, t) → C and
HB,0 := HB ◦ ιH : Par(Z2, t) → C by

Hκ,0
[k] := κ⊗k : A⊗k → B⊗k

for all k ∈ N. Let f : [k] → [l] be a morphism in Par(Z2, t). Because κ respects the
structure of A and B, the following square commutes

A⊗k A⊗l

B⊗k B⊗l.

HA,0(f)

κ⊗k κ⊗l

HB,0(f)

This shows that Hk,0 is a natural isomorphism. By the properties of the universal property
of the Karoubian envelope it extends uniquely to a natural isomorphism Hκ : HA → GB
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such that Hκ,0 = Hκ ◦ ιH . We obtained an inverse functor

FrobSpec,inv
C (C, t) → Fun⊗,Symm

C (Par(Z2, t)Kar, C),

and this shows the equivalence.

Alternative definition of interpolation functor H ′ : Par(Z2, 2n) → Rep(Hn)

Using the description above we define the interpolation functor H ′ : Par(Z2, 2n) → Rep(Hn)
in a different way as we did before: we only have to specify the image of the generating
morphisms and check that the necessary relations are functorial.

We define the strict C-linear monoidal functor H ′′ : Par(Z2)/ ∼n→ Rep(Hn) on objects
by sending W to V ∈ Rep(Hn). The images of the generating objects are defined by:

H ′′( ) : V ⊗ V → V, ei
g ⊗ ej

h 7→ δg,hδi,je
i
g,

H ′′( ) : V → V ⊗ V, ei
g 7→ ei

g ⊗ ei
g,

H ′′( ) : V ⊗ V → V, v ⊗ w 7→ w ⊗ v,

H ′′( ) : C → V, 1 7→
∑

g∈G

∑n
i=1 e

i
g,

H ′′( ) : V → C, ei
g 7→ 1,

H ′′( g ) : V → V, ei
h 7→ ei

gh

for g, h ∈ Z2. The fact that this is well-defined is proven in [LS21, Theorem 5.1].

The fact that H ′ := H ′′ ◦ H̃−1 indeed yields the same functor as before follows from the
fact that H ′′ ◦ H̃−1 = T on the generating morphisms and therefore on the basis elements
of the morphism spaces.

2.6.3 Universal properties of the interpolation categories in the reflection
representations for the hyperoctahedral groups

In this section we describe Rep0(Ht) using generators and relations and use this result to
give a universal property of Rep(Ht). The description in Definition 2.6.17 is a new one.
The structure on the generating object is a bit different from the previous cases, but it is
still possible to discuss the universal property of this category, see Corollary 2.6.23, and it
will turn out to be a very useful tool in proving the main theorem of this thesis.
Definition 2.6.17. Part is a strict C-linear monoidal category with a single generating
object W . The generating morphisms are

= idW : W → W

: W ⊗W → W ⊗W

: W ⊗W → 1

: W ⊗W → W ⊗W

: 1 → W ⊗W
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2.6 Universal properties of the interpolation categories

with the following relations and the relations obtained by reflecting them horizontally
and/or vertically:

= , = , = t , = = (2.6.12)

= , = , (2.6.13)

= , = , (2.6.14)

= , = , = , = . (2.6.15)

Remark 2.6.18. By the same argument as in Remark 2.6.3, Part is a symmetric monoidal
category.

Theorem 2.6.19. The categories Rep0(Ht) and Part are isomorphic as C-linear symmetric
monoidal categories.

Proof. Define the functor G̃ : Part → Rep0(Ht) on objects by W⊗k 7→ [k]. This makes it
bijective on the objects. On the morphisms we define it by sending:

7→ , 7→ , 7→ , 7→

and extending this choice C-linearly. The fact that this choice is well-defined, can be seen
by checking that the relations of Definition 2.6.17 are preserved by G̃ and this amounts to
the fact that the partition diagrams are the same when the parts are the same.

Let p ∈ Peven(k, l) for k + l even. We note that every permutation partition is an even
partition, see Definition 2.1.2, so we can restrict the image of ϕ : Sn ↪−→ Peven(n, n) ⊂ P (n, n)
to the even partitions. Now let ϕ(σ) ◦ p′ ◦ ϕ(ρ) be some normal form of p, see Definition
2.1.5, and note that p′ is also an even partition. To show that the functor G̃ is full, it
suffices to show that the permutation partitions and the non-crossing form of the partition
p lie in the image. The permutation partitions lie in the image because we can define a
monoid homomorphism ϕ′ : Sn → HomPart(W⊗n,W⊗n) for all n ∈ N, by defining it on the
transpositions analogously as we did in Definition 2.1.2, such that G̃ ◦ ϕ′ = ϕ. Now we
need to prove that the non-crossing form p′ lies in the image, but because G̃ is monoidal,
we only need to show that any even one-part partition lies in the image. The proof of
Proposition 2.1.8 shows that we can write every even block of size (k, l) with k > l in the
form sk(tk−l+1 ⊗ ⊗ . . .⊗︸ ︷︷ ︸

l − 1 times

). So we only have to show that for all n ∈ N the partitions sn
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and tn lie in the image of G̃. Similar arguments apply then to the cases k ⩽ l. We define
morphisms s′

n and t′n by

s′
n for n even t′ns′

n for n odd

and see that G̃(s′
n) = sn and G̃(t′n) = tn. As a consequence

G̃(s′
l(t′k−l+1 ⊗ ⊗ . . .⊗︸ ︷︷ ︸

l − 1 times

)) = sl(tk−l+1 ⊗ ⊗ . . .⊗︸ ︷︷ ︸
l − 1 times

)

is an even block of size (k, l). We call morphisms of the form s′
l(t′k−l+1 ⊗ ⊗ . . .⊗︸ ︷︷ ︸

l − 1 times

),

and their counterparts for k ⩽ l, even block diagrams. So for any partition p ∈ P (k, l)
with ϕ(σ) ◦ p′ ◦ ϕ(ρ) some normal form, we see that it is the image of the morphism
f := ϕ′(σ) ◦B ◦ ϕ′(ρ), where B is a tensor product of even block diagrams corresponding
to the blocks of p′. We call f a morphism in normal form.

Now we prove that the functor G̃ is faithful. Let g ∈ HomPart(W⊗k,W⊗l) be an even
partition. We can find permutations σ and ρ such that ϕ(σ) ◦ G̃(g) ◦ ϕ(ρ) is some non-
crossing form of G̃(g). Then we can unknot the interwined parts of ϕ′(σ)−1 ◦ g ◦ ϕ′(ρ)−1

using the twist relations in (2.6.14) and (2.6.15) to obtain a morphism f1 ⊗ . . .⊗ fr, where
the fi have as images the single blocks of the non-crossing form of G̃(g). If we can prove
that every fi equals some even block diagram Bi by using the relations, then we have
showed that g equals the normal form

g = ϕ′(σ) ◦B1 ⊗ . . .⊗Br ◦ ϕ′(ρ).

This in its turn shows that any two morphisms with the same image under G̃ will be equal
to the same morphism in normal form. Because a C-linear combination of morphisms in
Part will be linearly independent if and only if its image under G̃ is linearly independent,
G̃ is then faithful.

For k > l we show that it is possible to apply the relations to the one-part morphism
f ∈ HomPart(W⊗k,W⊗l) to obtain an even block diagram of the form s′

l(t′k−l+1⊗ ⊗ . . .⊗︸ ︷︷ ︸
l − 1 times

).

The argument for the cases k ⩽ l is similar.
Step 1: We draw the diagram in such a way that we have a middle part consisting only

of compositions of the morphisms , and . This is done by adding identities, for
example
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=

Step 2: We assume the middle part does not contain any crosses and change it in the
form s′

n by using the first two relations of (2.6.12) and the first one of (2.6.13). This tells
us then that all one-part morphisms of size (k, l) generated only by and are the same
in Partt.

Step 3: Assume there are crosses in the middle part. Firstly we note that the crosses
don’t touch the outer parts by using that the first relation of (2.6.13) or its reflection, for
example

=

Because the morphism exists in one part we can assume by induction on the number of
crosses, as we did in the symmetric group case and after applying the second relation of
(2.6.15) to trivially remove crosses, that a cross will appear in one of the following settings:

The cross can be removed in all these settings by using the second and third relations of
(2.6.15) and the last fact from the previous case. For example:
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= = =

= = =

Step 4: We move all the and to the left using the second relation of (2.6.13) and
its reflection after which we can start removing the superfluous ones using the the third
and fourth relation of (2.6.12). We end without because k > l.

This concludes the proof that G̃ is an isomorphism between C-linear monoidal categories.
We note that the swap morphisms in Part and Rep0(Ht) can be constructed as explained
in Remark 2.6.3 by the morphisms and respectively. Because G̃ is functorial and
sends to , it also preserves the swap morphisms. This shows that G̃ is a C-linear
symmetric monoidal functor.

Remark 2.6.20. The isomorphism G̃ induces an isomorphism G̃Kar : (Part)Kar → Rep(Ht).

The theorem implies that Part has the structure of a C-linear spherical rigid symmetric
monoidal category and that Rep0(Ht) satisfies the following universal property.

Theorem 2.6.21. Let t ∈ C. Let C be a C-linear symmetric monoidal category with a
t-dimensional self-dual rigid object with neutralizer (A,α, β, δ) for an object A ∈ Ob(C),
a neutralizer α : A ⊗ A → A ⊗ A, an evaluation β : A ⊗ A → 1 and a coevaluation
δ : 1 → A⊗A. Let γ := sC

A,A : A⊗A → A⊗A be the swap morphism. These morphisms
satisfy:
1. A is rigid and self-dual

(idA ⊗ β) ◦ (δ ⊗ idA) = idA = (β ⊗ idA) ◦ (idA ⊗ δ).

2. A has dimension t

δ ◦ β = t.

3. α is a neutralizer

α ◦ α = α,
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2.6 Universal properties of the interpolation categories

(idA ⊗ α) ◦ (α⊗ idA) = (α⊗ idA) ◦ (idA ⊗ α).

4. As a rigid object, A is compatible with the neutralizer

α ◦ δ = δ,

β ◦ α = β,

(idA ⊗ α) ◦ (δ ⊗ idA) = (α⊗ idA) ◦ (idA ⊗ δ),
(β ⊗ idA) ◦ (idA ⊗ α) = (idA ⊗ β) ◦ (α⊗ idA).

Then there exists a unique strict C-linear symmetric monoidal functor G′ : Rep0(Hn) → C,

with G′([k]) = A⊗k for all k ∈ N and G′(G̃( )) = α, G′(G̃( )) = β, G′(G̃( )) = γ and

G′(G̃( )) = δ. Furthermore, if C is Karoubi, there exists an up to isomorphism unique
C-linear symmetric monoidal functor G : Rep(Ht) → C with G′ = G ◦ ιG.

Proof. We define the functor G′′ : Part → C on objects by G′′(W⊗k) := A⊗k and on
morphisms by the C-linear extension of G′′( ) := α,G′′( ) := β,G′′( ) := γ and

G′′( ) := δ. Because C is a symmetric monoidal category the relations (2.6.13) and
(2.6.14) hold, see Remark 2.6.22. A direct verification shows that all the necessary relations
are satisfied. This shows that the functor G′′ is a well-defined strict C-linear symmetric
monoidal functor. We use Theorem 2.6.19 to define the strict C-linear symmetric monoidal
functor G′ := G′′ ◦ G̃−1. If C is Karoubi, the universal property of the Karoubian envelope
implies the existence of the functor G, see Remark 2.2.8,

Remark 2.6.22. We use the notation of Theorem 2.6.21. Because C is a symmetric
monoidal category, A and the morphisms α, β, γ and δ satisfy the following relations. The
relation

γ ◦ γ = idA ⊗ idA

expresses that the swap morphisms, which one can describe using γ in a similar way as we
did in Remark 2.6.3, are isomorphisms. The relations

(γ ⊗ idA) ◦ (idA ⊗ γ) ◦ (γ ⊗ idA) = (idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ),
β ◦ γ = β,

γ ◦ δ = γ,

(idA ⊗ β) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ) = β ⊗ idA,

(β ⊗ idA) ◦ (idA ⊗ γ) ◦ (γ ⊗ idA) = idA ⊗ β,

(γ ⊗ idA) ◦ (idA ⊗ γ) ◦ (δ ⊗ idA) = idA ⊗ δ,

(idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ δ) = δ ⊗ idA,

α ◦ γ = α = γ ◦ α,
(idA ⊗ α) ◦ (γ ⊗ idA) ◦ (idA ⊗ γ) = (γ ⊗ idA) ◦ (idA ⊗ γ) ◦ (α⊗ idA),
(α⊗ idA) ◦ (idA ⊗ γ) ◦ (γ ⊗ idA) = (idA ⊗ γ) ◦ (γ ⊗ idA) ◦ (idA ⊗ α)
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express the naturality of the swap morphisms with respect to α, β, γ and δ.
Corollary 2.6.23. Let t ∈ C and C be a C-linear symmetric monoidal Karoubi category.
Then there is an equivalence

Fun⊗,Symm
C (Rep(Ht), C) ≃ Rigsd,neutr

C (C, t)

between the category Fun⊗,Symm
C (Rep(Ht), C) of C-linear symmetric monoidal functors from

Rep(Ht) to C with natural isomorphisms between them, and the subcategory Rigsd,neutr
C (C, t)

of C consisting of t-dimensional rigid self-dual objects with neutralizer and their isomor-
phisms.

Proof. We want to construct an inverse for the functor

Fun⊗,Symm
C (Rep(Ht), C) → Rigsd,neutr

C (C, t)

defined by

G 7→ G([1]) for all functors G : Rep(Ht) → C and
κ 7→ κA for all natural isomorphisms κ : G1 → G2.

Let A be a t-dimensional rigid self-dual object with neutralizer in C. Then theorem
2.6.21 implies the existence of a functor GA : Rep(Ht) → C with the properties that were
stated in the theorem. Let κ : A → B be an isomorphism in Rigsd,neutr

C (C, t). We define a
natural isomorphism Gκ : GA → GB as followed. First we define a natural isomorphism
Gκ,0 between GA,0 := GA ◦ ιG : Rep0(Ht) → C and GB,0 := GB ◦ ιG : Rep0(Ht) → C by

Gκ,0
[k] := κ⊗k : A⊗k → B⊗k

for all k ∈ N. Let f : [k] → [l] be a morphism in Rep0(Ht). Because κ respects the
structure of A and B, the following square commutes

A⊗k A⊗l

B⊗k B⊗l.

GA,0(f)

κ⊗k κ⊗l

GB,0(f)

This shows that Gk,0 is a natural isomorphism. By the properties of the universal property
of the Karoubian envelope it extends uniquely to a natural isomorphism Gκ : GA → GB

such that Gκ,0 = Gκ ◦ ιG. We obtained an inverse functor

Rigsd,neutr
C (C, t) → Fun⊗,Symm

C (Rep(Ht), C),

and this shows the equivalence.

Alternative definition of interpolation functor G′ : Rep0(Hn) → Rep(Hn)

Using the description above we define the interpolation functor G′ : Rep0(Hn) → Rep(Hn)
in a different way as we did before: we only have to specify the image of the generating
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morphisms and check that the necessary relations are functorial.
We define the strict C-linear monoidal functor G′′ : Parn → Rep(Hn) on objects by

sending W to u ∈ Rep(Hn). The images of the generating objects are defined by:

G′′( ) : u⊗ u → u⊗ u, ei ⊗ ej 7→ δi,jei ⊗ ei,

G′′( ) : u⊗ u → C, ei ⊗ ej 7→ δi,j ,

G′′( ) : u⊗ u → u, v ⊗ w 7→ w ⊗ v,

G′′( ) : C → u⊗ u, 1 7→
∑n

i=1 ei ⊗ ei.

The fact that this is well-defined is proven similarly as in [LS21, Theorem 5.1].

The fact that G′ := G′′ ◦ G̃−1 indeed yields the same functor as before follows from the
fact that G′′ ◦ G̃−1 = T on the generating morphisms and therefore on the basis elements
of the morphism spaces.
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Chapter 3

Relating the Interpolation
Categories of the Hyperoctahedral
Groups

In this chapter we want to discuss how the different interpolation categories relate to each
other. We used the sets of partition Peven ⊂ P ⊂ PZ2 to define the morphism spaces. This
inspires the definition of functors Φ : Rep(Ht) → Rep(St) and Ψ : Rep(St) → Par(Z2, t).
Their composition Ψ◦Φ : Rep(St) → Par(Z2, t) however will not be so interesting from a rep-
resentation theoretical point of view. For integer t ∈ N these functors don’t commute with
the interpolation functors G and H. But inspired by the fact that the reflection representa-
tion of the hyperoctahedral group Hn can be considered as a subrepresentation of the permu-
tation representation of Hn, we construct a tensor functor Ω : Rep(Hn) → Par(Z2, 2n)Kar

which is compatible with the functors G and H and turns out to be an equivalence. We
already knew that ̂Rep(Hn) was equivalent to ̂Par(Z2, 2n)Kar, by the composition Ĥ−1 ◦ Ĝ
of the equivalences Ĝ and Ĥ. We show that Ĥ−1 ◦ Ĝ is isomorphic to the functor that is
obtained when Ω descends to a functor between the semisimplifications of the interpolation
categories.

3.1 Construction of a functor Ψ ◦ Φ : Rep(Ht) → Par(Z2, t)Kar

Definition 3.1.1. For all k, l ∈ N we have an inclusion of sets of partitions Peven(k, l) ⊆ P (k, l).
So we can define a faithful functor

Φ0 : Rep0(Ht) → Rep0(St)
[m] 7→ [m]
p 7→ p

for all m ∈ N and for all p ∈ Peven(k, l).

Φ0 is clearly a well-defined faithful strict C-linear tensor functor. By Definition 1.1.25
and Remark 2.2.4 the composition

ιF ◦ Φ0 : Rep0(Ht) → Rep(St)
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is also a faithful strict C-linear tensor functor. By the universal property of Rep0(Ht), see
Remark 2.2.8, and Proposition 1.1.29 there exists a faithful tensor functor

Φ : Rep(Ht) → Rep(St)

such that Φ ◦ ιG = ιF ◦ Φ0. We consider for all n ∈ N the following square:

Proposition 3.1.2. For all n ∈ N the square

Rep(Hn) Rep(Hn)

Rep(Sn) Rep(Sn)

G

Φ ResHn
Sn

F

(3.1.1)

is commutative up to isomorphism.

Proof. We precompose the functors G and Φ with ιG. Then we get

F ◦ Φ ◦ ιG([k]) = F ([k]) = (u′)⊗k and ResHn
Sn

◦G ◦ ιG([k]) = ResHn
Sn

(u⊗k) = (u′)⊗k

for all k ∈ N. For a morphism p ∈ HomRep0(Hn)([k], [l]) = CPeven(k, l) we see that

F ◦ Φ ◦ ιG(p) = F (p) = Tp and ResHn
Sn

◦G ◦ ιG(p) = ResHn
Sn

◦G(p) = ResHn
Sn

(Tp) = Tp.

This proves that F ◦ Φ ◦ ιG = ResHn
Sn

◦ G ◦ ιG. The universal property of Rep(Hn) then
implies by the uniqueness of the induced functor that F ◦Φ ∼= ResHn

Sn
◦G. Hence the square

(3.1.1) is commutative up to isomorphism.

Definition 3.1.3. For all k, l ∈ N we have an inclusion of sets of partitions P (k, l) ⊆ PZ2(k, l).
So we can define a faithful functor

Ψ0 : Rep0(St) → Par(Z2, t)
[m] 7→ [m̃]
p 7→ p

for all m ∈ N and for all p ∈ P (k, l).

Ψ0 is clearly a well-defined faithful strict C-linear tensor functor. By Definition 1.1.25
and Remark 2.2.13 the composition

ιH ◦ Ψ0 : Rep0(St) → Par(Z2, t)Kar

is a faithful strict tensor funtor. By the universal property of Rep0(St), see Remark 2.2.4,
and Proposition 1.1.29 there exists a faithful tensor functor

Ψ : Rep(St) → Par(Z2, t)Kar

such that Ψ ◦ ιF = ιH ◦ Ψ0. Let g, h : ([k], e) → ([l], f) be morphisms in Rep(St), then it
follows directly from the definitions that Φ(g) = Φ(h) implies g = h. So the functor Ψ is
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faithful. In this case we can not hope to build a similar commutative diagram as we did
for Φ. The reason for this is that for an even natural number n ∈ N, our interpolation
functors are

F : Rep(Sn) → Rep(Sn)

with F ([1]) = u and

H : Par(Z2, n)Kar → Rep(Hn
2
)

with H([1̃]) = V . There is no sensible way to associate to every Sn representation a Hn
2

representation. As a consequence the faithful tensor functor

Ψ ◦ Φ : Rep(Ht) → Par(Z2, t)Kar

will not be compatible with our interpolation functors G and H. In the next section we
give another functor which does satisfy this desired property.

3.2 Construction of a functor Ω : Rep(Ht) → Par(Z2, 2t)Kar

3.2.1 Preparation and motivation for Ω

We saw in Remark 1.2.15 that the reflection permutation of the hyperoctahedral group Hn

is isomorphic to a subrepresentation of the permutation representation of Hn:

u ∼= ũ =
n⊕

i=1
C(ei

1 − ei
−1) ⊂ V.

We want to describe the subrepresentation ũ ∼= u as the image of some idempotent
e : V → V . Let α : ũ → V be the inclusion and define β : V → ũ by

ei
1 7→

ei
1 − ei

−1
2 for all i ∈ {1, . . . , n}

ei
−1 7→

−ei
1 + ei

−1
2 for all i ∈ {1, . . . , n}.

Then the morphism e := α ◦ β is an idempotent with a splitting given by α, β and ũ. The
fact that it is an idempotent follows from β ◦ α = idũ, which holds because

(β ◦ α)(ei
1 − ei

−1) = β(ei
1 − ei

−1)
= β(ei

1) − β(ei
−1)

= ei
1 − ei

−1
2 −

−ei
1 + ei

−1
2

= ei
1 − ei

−1 + ei
1 − ei

−1
2
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= 2ei
1 − 2ei

−1
2

= ei
1 − ei

−1.

This implies that e◦e = α◦β◦α◦β = β◦α = e. It has as image im(e) = im(α◦β) = im(β) = ũ.
We proved the following lemma already in Proposition 2.4.7, but in the next proof we

prove it by giving an explicit preimage.

Lemma 3.2.1. The reflection representation ũ of Hn lies in the image of the functor
H : Par(Z2, 2n)Kar → Rep(Hn).

Proof. By definition we know that H ′([1̃]) = V for H ′ : Par(Z2, 2n) → Rep(Hn), the
restriction of H to Par(Z2, 2n) ⊂ Par(Z2, 2n)Kar. Define the idempotent

e′ :=
1

−
−1

2 : [1̃] → [1̃]

in Par(Z2, 2n). It follows directly from the definitions of T that

T (
−1 )(ei

j) = ei
−j

and as a consequence

H ′(e′)(ei
1) =

T (
1

)(ei
1) − T (

−1 )(ei
1)

2 = ei
1 − ei

−1
2 and

H ′(e′)(ei
−1) =

T (
1

)ei
−1 − T (

−1 )ei
−1

2 = −ei
1 + ei

−1
2 ,

for all i ∈ {1, . . . , n}. This implies that H ′(e′) = e.

Let α′ : ([1̃], e′) → ([1̃], id[1̃]) and β′ : ([1̃], id[1̃]) → ([1̃], e′) be the splitting of the
idempotent e′ : ([1̃], id[1̃]) → ([1̃], id[1̃]) in Par(Z2, 2n)Kar. By the universal property of
the Karoubian envelope in Remark 1.1.27, the functor H : Par(Z2, 2n)Kar → Rep(Hn) is
defined by sending a splitting in Par(Z2, 2n)Kar to some chosen splitting in Rep(Hn). So
we can make the following choices for H:

H(([1̃], e′)) = H(im(e′)) := im(e) = ũ,

H(α′) := α and
H(β′) := β.

This concludes the proof.

Remark 3.2.2. The choices at the end of last proof may seem a bit forced, but we are
only interested in our interpolation functors and categories up to isomorphism, so no actual
problems arise here. A more correct statement of last lemma would be ’The reflection repre-
sentation ũ of Hn lies in the essential image of the functor H : Par(Z2, 2n)Kar → Rep(Hn).
But as we have seen in the proof, for some choices of H, it actually lies in the image.
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We now consider the complement of the reflection permutation of the hyperoctahedral
group Hn in the permutation representation of Hn:

ṽ :=
n⊕

i=1
C(ei

1 + ei
−1) ⊂ V.

Let γ : ṽ → V be the inclusion of representations and

δ :V → ṽ

ei
1 7→

ei
1 + ei

−1
2 for all i ∈ {1, . . . , n} for all

ei
−1 7→

ei
1 + ei

−1
2 for all i ∈ {1, . . . , n}.

Then the morphism f := γ ◦ δ is an idempotent with a splitting given by γ, δ and ṽ. The
fact that it is an idempotent follows from δ ◦ γ = idṽ, which holds because

(δ ◦ γ)(ei
1 + ei

−1) = δ(ei
1 + ei

−1)
= δ(ei

1) + δ(ei
−1)

= ei
1 + ei

−1
2 + −ei

1 + ei
−1

2

= ei
1 + ei

−1 + ei
1 + ei

−1
2

= 2ei
1 + 2ei

−1
2

= ei
1 + ei

−1

for all i ∈ {1, . . . , n}. It has image im(f) = im(γ ◦ δ) = im(δ) = ṽ. Note that f = idV − e.
Simlarly as in Lemma 3.2.1 we prove

Lemma 3.2.3. The complement of the reflection representation of Hn, ṽ, lies in the image
of the functor H : Par(Z2, 2n)Kar → Rep(Hn).

Proof. Let e′ : [1̃] → [1̃] be the idempotent defined in Lemma 3.2.1. We consider the
idempotent

id[1] − e′ =
1

+
−1

2 : [1̃] → [1̃]

in Par(Z2, 2n). Because H ′ is a C-linear functor, the assumption H ′(e′) = e implies that
H ′(id[1̃] − e′) = idV − e = f .

Let γ′ : ([1̃], 1 − e′) → ([1̃], id[1̃]) and δ′ : ([1̃], 1 − id[1̃]) → ([1̃], e′) be the splitting of the
idempotent 1 − e : ([1̃], id[1̃]) → ([1̃], id[1̃]) in Par(Z2, 2n)Kar. By a similar argument as in
Lemma 3.2.1 we can make the following choices for H:

H(([1̃], id[1̃] − e′)) = H(im(id[1̃] − e′)) := im(idV − e) = im(f) = ṽ,

H(γ′) := γ and
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H(δ′) := δ.

This concludes the proof.

Remark 3.2.4. If we summarize the last two lemmas we get

H([1̃]) = V,

H(([1̃], e′)) = ũ ∼= u,

H(([1̃], id[1̃] − e′)) = ṽ ∼= v.

Remark 3.2.5. Let t ∈ C . We can define the idempotents

e′ :=
1

−
−1

2 : [1̃] → [1̃] and id[1̃] − e′ :=
1

−
−1

2 : [1̃] → [1̃]

in Par(Z2, 2t)Kar, similarly as above.

Lemma 3.2.6. Let t ∈ C. The object ([1̃], e′) ∈ Par(Z2, 2t)Kar is self-dual and has
categorical dimension t.

Proof. The object ([1̃], e′) is self-dual because

([1̃], e′)∗ = ([1̃]∗, (e′)∗) = ([1̃], e′).

The first equality follows from the choice of rigid symmetric monoidal structure for the
idempotent completion of a rigid symmetric monoidal category, see Proposition 1.1.24.
The second equality follows from the self-duality of [1̃] and the fact that the involution of
e′ is again e′.

Using the rules of composition for Z2-coloured partitions, we find that the categorical
dimension of ([1̃], e′), the trace of id([1̃],e′) = e′, equals

−1 −1 −1−1
− − +1

4

= 1
4

= 1
4(4t) = t.

−1−1+ = 1
4 +

e′ e′=

Remark 3.2.7. Similarly as in Lemma 3.2.6 we can prove that ([1̃], 1−e′) ∈ Par(Z2, 2t)Kar

is also a t-dimensional self-dual object. This makes sense because it is the complement of
([1̃], e′) in [1̃] = ([1̃], id[1̃]), which is 2t-dimensional.
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Remark 3.2.8. By definition of the monoidal structure of the Karoubian envelope of
a category, see proof of Proposition 1.1.24, we see that ([1̃], e′)⊗k = (([k̃], (e′)⊗k). By
definition of the Karoubian envelope the morphism spaces between the tensor products of
([1̃], e′) are defined by

HomPar(Z2,2t)Kar (([1̃], e′)⊗k, ([1̃], e′)⊗l) = (e′)⊗l ◦ HomPar(Z2,2t)([k̃], [l̃]) ◦ (e′)⊗k.

By Theorem 2.6.12 we have a full description of these morphisms in terms of generators
and relations.

In the following we want to use Theorem 2.6.12 to discuss the morphisms in the
Karoubian envelope Par(Z2, 2t)Kar ∼= (Par(Z2)/ ∼2t)Kar. The object in (Par(Z2)/ ∼2t)Kar

corresponding to ([1̃], e′) is (W, e′) where we will set, by abuse of notation,

e′ :=
1 − −1

2 .

There are some interesting relations for the generating morphisms of Par(Z2)/ ∼2t, see
Definition 2.6.9, when we pre- and postcompose them with suitable tensor powers of e′.
Lemma 3.2.9. The following equalities and inequalities hold in (Par(Z2)/ ∼2t)Kar:

0 ̸= e′ ◦ ◦ e′ : (W, e′) → (W, e′)
0 = e′ ◦ ◦ (e′ ⊗ e′) : (W, e′) ⊗ (W, e′) → (W, e′)
0 = (e′ ⊗ e′) ◦ ◦ e′ : (W, e′) → (W, e′) ⊗ (W, e′)
0 ̸= (e′ ⊗ e′) ◦ ◦ (e′ ⊗ e′) : (W, e′) ⊗ (W, e′) → (W, e′) ⊗ (W, e′)
0 ̸= e′ ◦ g ◦ e′ : (W, e′) → (W, e′), g ∈ Z2

0 = e′ ◦ : 1 → (W, e′)
0 = ◦ e′ : (W, e′) → 1

for the compositions of the generating morphisms in Par(Z2)/ ∼2t with the suitable tensor
products of e′. The morphisms

◦ ◦ (e′ ⊗ e′) : (W, e′) ⊗ (W, e′) → 1
(e′ ⊗ e′) ◦ ◦ : 1 → (W, e′) ⊗ (W, e′)
(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′) : (W, e′) ⊗ (W, e′) → (W, e′) ⊗ (W, e′) and
dim((W, e′)) = ◦ ◦ (e′ ⊗ e′) ◦ (e′ ⊗ e′) ◦ ◦ = t : 1 → 1

are non-trivial.
Proof. The equalities and inequalities follow from an easy calculation, using the relations
in Definition 2.6.9. Calculating dim((W, e′)) is analogous to the calculation of dim(([1̃], e′))
we did in Lemma 3.2.6.

Remark 3.2.10. The emerging pattern of the morphisms (W, e′)⊗k → (W, e′)⊗l appearing
in the lemma, is that they are non-trivial whenever k + l is even. The ones for which k + l
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is odd, equal zero. This already hints at some correspondence with Rep(Ht). Lemma 3.2.6
and Lemma 3.2.9 suggest the existence of a functor

Ω0 : Rep0(Ht) → (Par(Z2, 2t))Kar

defined on objects by [k] → (W, e′)⊗k, both self-dual objects of dimension tk, and on
generating morphisms by

→ (e′ ⊗ e′) ◦ ◦ (e′ ⊗ e′) (3.2.1)

→ 2(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′) = 2(e′ ⊗ e′) ◦ ◦ (e′ ⊗ e′) (3.2.2)

→ e′ ◦ ◦ e′ (3.2.3)

→ ◦ ◦ (e′ ⊗ e′) = ◦ (e′ ⊗ e′). (3.2.4)

We applied Theorem 2.6.19 to identify Rep0(Ht) with Part, where we have a description of
the generating morphisms. Consider the relation

e′e′ = (1
4 )− − +−1 −1 −1 −1

= (1
4 )− − +0 0

e′e′

e′e′ e′e′

e′e′

e′e′

e′e′ e′e′ e′e′

e′e′ e′e′

e′e′

e′e′

e′e′

e′e′

−1

= (1
4 )+

e′e′

e′e′

e′e′

e′e′

−1−1
= (1

4 )+

e′e′

e′e′

−e′−e′

e′e′

= (1
4 )+

e′e′

e′e′

e′e′

e′e′

= 1
2

e′e′

e′e′

Here we used that e′ ◦ −1 = −e′ = −1 ◦ e′.This relation explains why the image of the
morphism in (3.2.2) gains a factor 2, namely because we would want Ω0 to be functorial:
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Ω0( ) ◦ Ω0( ) = 2(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′) ◦ 2(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′)

= 4(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′)

= 41
2(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′)

= 2(e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′)

= Ω0( )

= Ω0( ◦ )

and similarly

Ω0( ) ◦ Ω0( ) = ◦ ◦ 2(e′ ⊗ e′) ◦ (e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′)

= 2 ◦ ◦ (e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′)

= 21
2 ◦ ◦ (e′ ⊗ e′)

= Ω0( )

= Ω0( ◦ ).

The lemmata suggest also that Ω0, which is still to be defined, is injective on objects and
fully faithful.

As long as no confusion arises, we will not always mention explicitly when we are
using the isomorphisms Part

∼= Rep0(Ht) and Par(Z2, 2t)) ∼= Par(Z2)/ ∼2t to discuss the
morphism spaces of the interpolation categories in terms of generators and relations. The
discussion above motivates the following definition.

3.2.2 Definition of Ω
Theorem 3.2.11. For all t ∈ C there is a well-defined strict C-linear tensor functor

Ω0 : Part
∼= Rep0(Ht) → (Par(Z2, 2t))Kar ∼= (Par(Z2)/ ∼2t)Kar

which is defined on objects by

Ω0([k]) := ([k̃], (e′)⊗k)

for all k ∈ N. On morphisms it is the C-linear extension of the following rule. Let
f : W⊗k → W⊗l be a morphism in Part which consists of s blocks B1, . . . ,Bs of size
m1, . . . ,ms respectively. Then we set

Ω0(f) := 2
(
∑s

i=1 mi)−2s

2 (e′)⊗l ◦ f ◦ (e′)⊗k,
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where we identify morphisms in Part with the corresponding morphisms in Par(Z2)/ ∼2t

by using the following associations:

→ ,

→ ◦ ,

→ ,

→ ◦ and

→ ◦ .

Proof. It is clear that Ω0 respects the tensor product for objects. For morphisms f : W⊗k1 → W⊗l1

with s1 blocks B1,1, . . . ,Bs,1 of size m1, . . . ,ms1 respectively and g : W⊗k2 → W⊗l2 with
s2 blocks B1,2, . . . ,Bs2,2 of size ms1+1, . . . ,ms1+s2 respectively we see that

Ω0(f ⊗ g) = 2
(
∑s1+s2

i=1 mi)−2(s1+s2)
2 (e′)⊗l1+l2 ◦ f ⊗ g ◦ (e′)⊗k1+k2

= 2
(
∑s1

i=1 mi)−2(s1)
2 2

(
∑s1+s2

i=s1+1 mi)−2(s2)

2 ((e′)⊗l1 ◦ f ◦ (e′)⊗k1) ⊗ ((e′)⊗l2 ◦ g ◦ (e′)⊗k2)

= (2
(
∑s1

i=1 mi)−2(s1)
2 (e′)⊗l1 ◦ f ◦ (e′)⊗k1) ⊗ (2

(
∑s1+s2

i=s1+1 mi)−2(s2)

2 (e′)⊗l2 ◦ g ◦ (e′)⊗k2)
= Ω0(f) ⊗ Ω0(g).

This shows that Ω0 respects the tensor product of morphisms. We will identify the functor
Ω0 : Rep0(Ht) → (Par(Z2, 2t))Kar with the composition

H̃−1 ◦ Ω0 ◦ G̃ : Part → (Par(Z2)/ ∼2t)Kar,

so we can talk easier about the image of the generators and relations of Definition 2.6.17
under the functor Ω0. The definition implies

Ω0( ) = 20(e′ ⊗ e′) ◦ ◦ (e′ ⊗ e′) = (e′ ⊗ e′) ◦ ◦ (e′ ⊗ e′), (3.2.5)

Ω0( ) = 2
4−2

2 (e′ ⊗ e′) ◦ ◦ ◦ (e′ ⊗ e′) = 2(e′ ⊗ e′) ◦ ◦ (e′ ⊗ e′), (3.2.6)

Ω0( ) = 20e′ ◦ ◦ e′ = e′ ◦ ◦ e′, (3.2.7)

Ω0( ) = 20 ◦ ◦ (e′ ⊗ e′) = ◦ (e′ ⊗ e′) and (3.2.8)

Ω0( ) = 20 (e′ ⊗ e′) ◦ ◦ = (e′ ⊗ e′) ◦ . (3.2.9)

Now we want to show that Ω0 is functorial. For this we use Theorem 2.6.21. Note that
Par(Z2)/ ∼2t is a C-linear monoidal category and that the morphisms above will function
respectively as the swap morphism, neutralizer, identity, evaluation and coevalution for
the object (W, e′) of (Par(Z2)/ ∼2t)Kar. We have to show that the object (W, e′) and the
morphisms in (3.2.5), (3.2.6),(3.2.7),(3.2.8) and (3.2.9) in (Par(Z2)/ ∼2t)Kar satisfy the
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relations given in Definition 2.6.17. For the relations = and = saw already

that

Ω0( ) ◦ Ω0( ) = Ω0( ) = Ω0( )

and

Ω0( ) ◦ Ω0( ) = Ω0( ) = Ω0( ).

For the relation = we have

Ω0( ⊗ ) ◦ Ω0( ⊗ ) = 2e′ ⊗ e′ ⊗ e′ ◦ ( ⊗ )2 ◦ e′ ⊗ e′ ⊗ e′ ◦ ( ⊗ ) ◦ e′ ⊗ e′ ⊗ e′

= 22e′ ⊗ e′ ⊗ e′ ◦ ◦ e′ ⊗ e′ ⊗ e′

= 22e′ ⊗ e′ ⊗ e′ ◦ ◦ e′ ⊗ e′ ⊗ e′

= 2e′ ⊗ e′ ⊗ e′ ◦ ( ⊗ )2 ◦ e′ ⊗ e′ ⊗ e′ ◦ ( ⊗ ) ◦ e′ ⊗ e′ ⊗ e′

= Ω0( ⊗ ) ◦ Ω0( ⊗ ).

Note that we use the functor Ω0 to get a shorter expression of the relations but that
these parts are not meaningful to prove that the relations hold for the morphisms between
the tensor powers of (W, e′) in (Par(Z2)/ ∼2t)Kar. The third equality holds because all
relations that holds in Part, also hold in Par(Z2)/ ∼2t. The second and fourth equalities
follow from
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e′e′

e′ e′

e′ e′e′

e′

e′

= e′

e′ e′

e′ e′e′

e′

= 1
2 ( )

e′ e′

e′ e′e′

e′ e′ e′

e′ e′e′

e′

− −1 = 1
2 ( )

e′ e′

e′ e′e′

e′ e′ e′

e′ e′e′

e′

−

−1

−1

= 1
2 ( )

e′ e′

e′ e′e′

e′ e′ e′

e′ e′e′

e′

−

−1

−1

−1

= 1
2 ( )

e′ e′

e′ e′e′

e′ e′ e′

e′ −e′−e′

−e′

−

= 1
2 ( )

e′ e′

e′ e′e′

e′ e′ e′

e′ e′e′

e′

+ =

e′ e′

e′ e′e′

e′.

In a similar fashion we can show that the relations = = and =

and their reflections hold.

We already saw that

Ω0( ) = dim((W, e′))

= ◦ ◦ (e′ ⊗ e′) ◦ (e′ ⊗ e′) ◦ ◦
= t.

From the relation
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e′e′
=

−1 −1 −1 −1
−− +

−1−1 −1 −1

−− +=

e′e′
=

and the fact that the corresponding relations hold in Par(Z2 / ∼2t) we obtain the remaining
relations and their reflections

= , = , = , = , = , = .

(3.2.10)

By Theorem 2.6.21 we see that Ω0 : Part → (Par(Z2 / ∼2t)Kar is a well-defined C-linear
symmetric monoidal functor between C-linear spherical rigid symmetric monoidal categories.
The functor is clearly strict and preserves the different monoidal structures. Therefore it is
a strict C-linear tensor functor.

Corollary 3.2.12. For all t ∈ C there is a well-defined C-linear tensor functor

Ω : Rep(Ht) → (Par(Z2, 2t))Kar

which restricts to Ω ◦ ιG = Ω0.

Proof. Apply Remark 2.2.8 to the functor Ω0 of Theorem 3.2.11.

Remark 3.2.13. It is not immediately clear why something like

Ω0( ⊗ ) ◦ Ω0( ⊗ ⊗ ) ◦ Ω0( ⊗ ) = Ω0(( ⊗ ) ◦ ( ⊗ ⊗ ) ◦ ( ⊗ ))

or
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e′e′

e′ e′ e′ e′

e′e′

e′e′

e′ e′ e′ e′

e′e′

25 =

e′ e′ e′ e′

e′e′ e′e′

23

holds in general. The main advantage of using the universal property of Rep0(Ht) is that
we don’t have to worry again about these complications. But in this particular case, the
diagram on the left side can be modified using the relations of Definition 2.6.17, see the
proof of Theorem 3.2.11. In doing this we will compose e′ ⊗ e′ ◦ ◦ e′ ⊗ e′ two times with
itself and gain a factor 2−2 while changing the diagram of the left side to the one on the
right side of the equality.

3.2.3 Properties of Ω
In this section we show that the functor Ω is an equivalence of categories.

Theorem 3.2.14. The functor Ω0 : Rep0(Ht) → (Par(Z2, 2t))Kar is a full embedding.

Proof. By definition k ̸= l implies that Ω0([k]) = ([k̃], (e′)⊗k) ̸= ([l̃], (e′)⊗l) = Ω0([k]),
showing that functor Ω0 is injective on objects.

Next we want to show that Ω0 is full. The functor Ω0 : Rep0(Ht) → (Par(Z2, 2t))Kar is
given on morphisms by

Ω0(f) = 2
(
∑s

i=1 mi)−2s

2 (e′)⊗l ◦ f ◦ (e′)⊗k,

for some partition f ∈ Peven(k, l) with s blocks of size m1, . . . ,ms and then extended
C-linearly. Remember that f can be considered a Z2-coloured partition where every vertex
is labeled as 1 and that the tensor product of partitions is the horizontal concatenation of
the partitions.

We consider the morphism

f = (e′)⊗l ◦ g ◦ (e′)⊗k ∈ HomPar(Z2,2t)Kar (([k̃], (e′)⊗k), ([l̃], (e′)⊗l))
= (e′)⊗l ◦ HomPar(Z2,2t)([k̃], [l̃]) ◦ (e′)⊗k.

such that g ∈ PZ2(k, l) with labeling (z1, . . . , zk, z1′ , . . . , zl′) ∈ Zk+l
2 . Then

g =
z1′ zl−1′zl′

· · · ◦ g′′ ◦
z1 zk−1zk

· · ·
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and the relation

e′ ◦
−1 = −e′ =

−1 ◦ e′

implies

(e′)⊗l ◦ g ◦ (e′)⊗k = (
∏

j∈{1,...,k,1′,...,l′}
(zj))(e′)⊗l ◦ g′′ ◦ (e′)⊗k

where g′′ is the underlying partition of the Z2-coloured partition g. So we can reduce
the problem to the case where g lies in P (k, l). We first assume that g is a non-even
partition in P (k, l). By Proposition 2.1.4 we can write g = ϕ(σ) ◦ g′ ◦ ϕ(ρ), where g′ is
some non-crossing form of g. Then g′ is the horizontal concatenation of its blocks and
contains an odd block B of size (a, b). For this block we have

(e′)⊗b ◦B ◦ (e′)⊗a = (1
2)a+b

∑
z1,...,za∈Z2
z1′ ...zb′ ∈Z2

(
∏

j∈{1,...,a,1′,...,b′}
(zj))

z1′ zn−1′zb′

· · · ◦B ◦
z1 za−1za

· · ·

= 0.

The last equality follows from the fact that

z1′ zb−1′zb′

· · · ◦B ◦
z1 za−1za

· · · =
−z1′ −zb−1′−zb′

· · · ◦B ◦
−z1 −za−1−za

· · · and

∏
j∈{1,...,a,1′,...,b′}

(zj) = −
∏

j∈{1,...,a,1′,...,b′}
(−zj)

because there is an odd amount of vertices in the block B. This implies (e′)⊗l ◦g′◦(e′)⊗k = 0
and

f = (e′)⊗l ◦ g ◦ (e′)⊗k

= (e′)⊗l ◦ ϕ(σ) ◦ g′ ◦ ϕ(ρ) ◦ (e′)⊗k

= ϕ(σ) ◦ (e′)⊗l ◦ g′ ◦ (e′)⊗k ◦ ϕ(ρ)
= 0,

which lies in the image trivially. The third equality follows from the proven fact that (e′)2

commutes with . Now we can assume that g is an even partition in P (k, l), but then
g ∈ HomRep0(Ht)([k], [l]), so we have that

Ω0(g) = (e′)⊗l ◦ g ◦ (e′)⊗k = f.

This concludes the proof of the fullness of Ω0.
Now we want to show that Ω0 is faithful. Let f ∈ HomRep0(Ht)([k], [l]), we consider
Ω0(f) = (e′)⊗l ◦ f ◦ (e′)⊗k. First assume that f contains only one even block B = f . Then
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similarly as before we see that

(e′)⊗l ◦B ◦ (e′)⊗k = (1
2)k+l

∑
z1,...,zk∈Z2
z1′ ...zl′ ∈Z2

(
∏

j∈{1,...,k,1′,...,l′}
(zj))

z1′ zl−1′zl′

· · · ◦B ◦
z1 zk−1zk

· · ·

= 2(1
2)k+l

∑
z1=1

z2,...,zk∈Z2
z1′ ...zl′ ∈Z2

(
∏

j∈{1,...,k,1′,...,l′}
(zj))

z1′ zl−1′zl′

· · · ◦B ◦
z1 zk−1zk

· · ·

̸= 0.

The inequality follows from the fact that the summands are pairwise different basis elements
of CPZ2(k, l). For the second equality we identify equivalent Z2-coloured partitions, so it
follows from the fact that

z1′ zl−1′zl′

· · · ◦B ◦
z1 zk−1zk

· · · =
−z1′ −zl−1′−zl′

· · · ◦B ◦
−z1 −zk−1−zk

· · · and

∏
j∈{1,...,a,1′,...,b′}

(zj) =
∏

j∈{1,...,a,1′,...,b′}
(−zj)

because we have an even amount of vertices in the block. Now we assume that f is any
even partition. Again by Proposition 2.1.4 we can write f = ϕ(σ) ◦ f ′ ◦ ϕ(ρ) where f ′ is a
non-crossing form of f . Then

Ω0(f) = (e′)⊗l ◦ f ◦ (e′)⊗k

= (e′)⊗l ◦ ϕ(σ) ◦ f ′ ◦ ϕ(ρ) ◦ (e′)⊗k

= ϕ(σ) ◦ (e′)⊗l ◦ f ′ ◦ (e′)⊗k ◦ ϕ(ρ)
̸= 0,

because f ′ is a horizontal concatenation of non-zero even blocks. This shows that Ω0(f) ̸= 0
for all f ∈ Peven, in other words Ω0 is non-zero on the generators of HomRep0(Ht)([k], [l]).
Now assume that the set of even partitions {f1, . . . , fm} ⊂ Peven(k, l) consists of pairwise
non-equivalent even partitions. Then by definition they form a linearly independent set in
HomRep0(Ht)([k], [l]). It follows from the definition of linear independency of the morphism
spaces in Par(Z2, 2t) that the set

{
z1′ zl−1′zl′

· · · ◦ fj ◦
z1 zk−1zk

· · · | j ∈ {1, . . . ,m}, z1 = 1, z2, . . . , zk ∈ Z2, z1′ . . . zl′ ∈ Z2}

is also linearly independent. This implies in its turn that the set {Ω0(f1), . . . ,Ω(fm)} is
linearly independent. This concludes the proof of the faithfulness of Ω0.

Theorem 3.2.15. The functor Ω : Rep(Ht) → Par(Z2, 2t)Kar is fully faithful and essen-
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tially surjective, therefore it is an equivalence.

Proof. We apply Proposition 1.1.29 to Theorem 3.2.14 to show that Ω is fully faithful. We
are left to prove the essential surjectivity of Ω. We want to show that [1̃] lies in the essential
image of Ω. For this we note that [1̃] ∼= ([1̃], e′) ⊕ ([1̃], id[1̃] − e′) and that Ω([1]) = ([1̃], e′)
by definition. We write

e′′ = id[1̃] − e′ =
1

+
−1

2 : [1̃] → [1̃]

and claim that ([1̃], e′′) is isomorphic to the image of ([2], ) under Ω. To prove this it suffices
to show the corresponding claim for (H̃Kar)−1 ◦ Ω ◦ F̃Kar : ParKar

t → (Par(Z2)/ ∼2t)Kar,
namely that

(H̃Kar)−1 ◦ Ω ◦ F̃Kar((W ⊗W, )) ∼= (W, e′′),

where

e′′ =
1 + −1

2 .

and W in the left side of the equation stands for the generating object in Part and in the
right side for the generating object in Par(Z2)/ ∼2t as was done in Definition 2.6.17 and
Definition 2.6.9 respectively. By definition we have that

(H̃Kar)−1 ◦ Ω ◦ F̃Kar((W ⊗W, )) = (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e)).

We define the morphisms

α := 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′) ◦ 2 ◦ e′′ : (W, e′′) → (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)) and

β := e′′ ◦ ◦ 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′) : (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)) → (W, e′′)

and show that they are isomorphisms. We first use the relations in Definition 2.6.9 to
simplify α and β. The equality

e′e′

( )

e′′

= 1
8

−1 −1

−1

−1 −1 −1

−1

−1

−1

−1 −1

−1

− + + +− − −

=
1
4 (

−1 −1

−1

− +− )

implies that
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e′e′

e′e′

e′′

=
2

(
−1

+ )
e′e′ e′e′

α =

Similarly e′e′

e′e′

e′′

=
2

1
2 (

−1

+ )
e′e′ e′e′

β =

.=
e′e′

e′′

=

e′e′

e′′

2

2

Now it is easy to see that

β ◦ α = ◦.
e′e′

e′′ e′e′

e′′

= (
1
2 )− − +−1 −1 −1 −1

e′′
e′′ e′′ e′′

e′′
e′′ e′′ e′′

= (1
2 )+−1 −1

e′′ e′′

e′′ e′′

2

= (1
2 )+

e′′ −e′′

e′′ e′′

= (1
2 )+

e′′

e′′

e′′

e′′

= e′′

and
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◦.
e′e′

e′′ e′e′

e′′

−12α ◦ β = = 2
e′e′

e′e′

1
2 ( +

e′e′

e′e′

)

= 2
e′e′

e′e′

1
2 ( + )

e′e′

e′e′

= 2
e′e′

e′e′

,

which equal id(W,e′′) and id
(W ⊗W,2(e′⊗e′◦ ◦e′⊗e′))

respectively. This proves the claim.

Because Ω is an additive functor we get

Ω([1] ⊕ ([2], )) ∼= Ω([1]) ⊕ Ω(([2], )) ∼= ([1̃], e′) ⊕ ([1̃], id[1̃] − e′) ∼= [1̃] = ([1̃], id[1̃]).

Let ([k̃], f) be any element of Par(Z2, 2t)Kar, where k ∈ N and f : [k̃] → [k̃] is an idempotent.
Because Ω(([1] ⊕ ([2], ))⊗k) ∼= [k̃] = ([k̃], id[k̃]) and Ω is full, there exists a morphism
f ′ : ([1] ⊕ ([2], ))⊗k → ([1] ⊕ ([2], ))⊗k with Ω(f ′) ∼= f . Because Ω is a faithful functor
and

Ω(f ′ ◦ f ′) = Ω(f ′) ◦ Ω(f ′) ∼= f ◦ f = f ∼= Ω(f ′),

the morphism f ′ = f ′ ◦ f ′ is also an idempotent. By definition, see Remark 3.2.16, we get

Ω(([1] ⊕ ([2], ))⊗k, f ′) ∼= ([k̃], f).

This concludes the proof.

3.2.4 Concrete calculation of Ω

In this section we will shortly discuss the special commutative Frobenius algebra with
involution-structure of Ω([1] ⊕ ([2], )) ∼= [1̃]. By Corollary 2.6.16, this description gives us
a C-linear symmetric monoidal functor

Par(Z2, t)Kar → Par(Z2, t)Kar

[1̃] 7→ Ω([1] ⊕ ([2], ))

which is isomorphic to the identity functor idPar(Z2,t)Kar in the endomorphism ring

End⊗,Symm
C (Par(Z2, t)Kar) = Fun⊗,Symm

C (Par(Z2, t)Kar,Par(Z2, t)Kar).

96



3.2 Construction of a functor Ω : Rep(Ht) → Par(Z2, 2t)Kar

Remark 3.2.16. By the universal property of the Karoubian envelope, discussed in
Remark 1.1.27, the functor Ω is only defined up to isomorphism, so there are multiple
choices if we want to define a particular functor. But in this particular case, Ω being a
functor from one Karoubian envelope into another, we can make a canonical choice for the
images of the objects in Rep(Ht), namely

Ω(([k], f)) = ([k̃],Ω0(f)) = ([k̃], (e′)⊗k ◦ f ◦ (e′)⊗k).

For this choices it is possible to show that the functor is injective on objects, not just
essentially injective which follows from the fact that it is fully faithful, see Lemma 1.1.31.
Let

Ω(([k], f)) = (([k̃],Ω0(f)) = ([k̃], (e′)⊗k ◦ f ◦ (e′)⊗k)

equal

Ω(([l], g)) = (([l̃],Ω0(g)) = ([l̃], (e′)⊗l ◦ g ◦ (e′)⊗l).

By the definition of the Karoubian envelope and the strictness of Ω0, this will be equal
if and only if k = l and (e′)⊗k ◦ f ◦ (e′)⊗k = (e′)⊗l ◦ g ◦ (e′)⊗l. Because Ω0 is faithful by
Theorem 3.2.14, this holds if and only if k = l and f = g. This shows that Ω is injective
on objects and thus a full embedding for this particular choice. Note that for this choice
the functor is essentially surjective, as was proven in Theorem 3.2.15, but not surjective.
The reason for this is that ([1̃], 1 − e′) will lie in the image of Ω if and only if we can find a
morphism λ : [1] → [1] such that e′ ◦ λ ◦ e′ = id[1] − e′, which is not possible.

Remark 3.2.17. By spelling out concretely some of the inner mechanisms of the proof of
Theorem 3.2.15, we can see more clearly how it is possible that the image of the functor
Ω has enough morphisms to mimic the behaviour of the morphisms between the tensor
powers of [1̃] in Par(Z2, 2t)Kar, even though these morphism spaces contain morphisms
given by odd partitions. For this discussion we work in the category (Par(Z2)/ ∼2t)Kar and
use the notation of the proof. We set W̃ := (W, 1 − e′) ⊕ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)).

The isomorphism W ∼= (W, e′) ⊕ (W, 1 − e′), given by[
e′

1 − e′

]
: W → (W, e′) ⊕ (W, 1 − e′), and[

e′ 1 − e′
]

: (W, e′) ⊕ (W, 1 − e′) → W,

and the isomorphism (W, e′) ⊕ (W, 1 − e′) ∼= W̃ given by[
e′ 0
0 α

]
: (W, e′) ⊕ (W, 1 − e′) → (W, e′) ⊕ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′))[

e′ 0
0 β

]
: (W, e′) ⊕ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)) → (W, e′) ⊕ (W, 1 − e′),
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compose and tensor to an isomorphism W⊗k ∼= (W̃ )⊗k, given by

α̃k :=
[

e′

α ◦ (1 − e′)

]⊗k

=
[
e′

α

]⊗k

: W⊗k → (W̃ )⊗k and

β̃k :=
[
e′ (1 − e′) ◦ β

]⊗k
=
[
e′ β

]⊗k
: (W̃ )⊗k → W⊗k.

For every morphism ϕ ∈ Hom(Par(Z2)/∼2t)Kar (W⊗k,W⊗l) there is corresponding morphism
ϕ̃ := α̃k ◦ ϕ ◦ β̃k ∈ Hom(Par(Z2)/∼2t)Kar(W̃⊗k, W̃⊗l). For ψ : W⊗l → W⊗m, we see
that ψ̃ ◦ ϕ̃ = ψ̃ ◦ ϕ. So the morphisms, which correspond to the generating morphisms
, , , , , and −1 of (Par(Z2)/ ∼2t), behave exactly the same under composition.
We write these out as an example. For compatibility of the matrix notation with the
different morphisms and their compositions, we stick to the following order of the direct
sumands

W̃ ⊗ W̃ =(W, e′) ⊗ (W, e′)

⊕ (W, e′) ⊗ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′))

⊕ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)) ⊗ (W, e′)

⊕ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)) ⊗ (W ⊗W, 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)).

We calculate ˜ as follows

˜ =
[
e′

α

]⊗2

◦ ◦
[
e′ β

]

=


e′ ⊗ e′

e′ ⊗ α
α⊗ e′

α⊗ α

 ◦
[

◦ e′ ◦ β
]
.

By writing out these diagrams, we obtain
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e′′

e′ e′

e′

e′ ⊗ e′

2e′⊗

e′ e′

e′′

2
e′ e′

e′′
⊗e′

4
e′ e′

e′′

⊗
e′ e′

e′′

◦ =

e′ e′

e′

e′

2

e′ e′

e′′e′

e′

2

e′ e′

e′′ e′

e′

4

e′ e′

e′′

e′ e′

e′′

e′ e′

e′′

e′ e′

e′′

e′ e′

e′′

e′ e′

e′′

e′ e′

2

e′ e′

e′′ e′

2

e′ e′

e′′e′

4

e′ e′

e′′

e′ e′

e′′

e′

2
e′ e′

e′

e′

2
e′ e′

e′

e′

4
e′ e′ e′ e′

e′ e′

e′ e′

e′ e′

e′ e′

2

e′ e′

e′

4

e′ e′ e′ e′

e′ e′

2

e′ e′

e′

e′

2
e′ e′

e′

e′
2
e′ e′

e′

e′ e′

e′ e′

e′ e′

4

e′ e′e′ e′

0
e′ e′

e′

0

0

0

= =
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The proof of Theorem 2.6.4 shows that unlabeled diagrams in Par([Z2])/ ∼2t with only
one part and of the same size, are the same. This implies for example that the non-zero
morphisms in the left column of the above matrix form for ˜, are the same.

It is relatively easy to see that to

˜=

e′ 0
0 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)

 and −̃1 =

−e′ 0
0 2(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)

 .
The others can be calculated in a similarly as we did for ˜, they equal

e′ e′

2

e′ e′ e′ e′

e′

2

e′ e′ e′ e′

e′

e′
e′

0

0 0

0

e′ e′

e′ e′

˜

e′ e′

e′ e′

0

e′ e′

e′ e′

e′ e′

e′ e′
e′

e′

e′ e′e′

e′ e′ e′

e′ e′

e′ e′

0

00

0

0 0

0

0

0

0

0

˜

˜

˜

e′ e′

2

e′ e′

0

0=

=

=

=

2

2

4

Now we can see using matrix multiplication that these morphisms indeed behave as we
expected. For example
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e′ e′e′ e′

e′ e′ e′ e′

e′ e′e′ e′

e′ e′

e′ e′ e′ e′

e′ e′
e′ e′

e′ e′

e′ e′

e′ e′
e′

e′

e′ e′

e′ e′

e′

e′

e′ e′

e′ e′

e′

e′

e′ e′

e′ e′
e′

e′

0 0

0

0

0 0

0

0

2 2

2 2

4 4

˜˜
◦ =

˜

=

3.2.5 Ω and semisimplification

Corollary 3.2.18. The equivalence Ω : Rep(Hn) → Par(Z2, 2n)Kar makes the following
square

Rep(Hn) Rep(Hn)

Par(Z2, 2n)kar Rep(Hn)

G

Ω =

H

(3.2.11)

commute up to isomorphism for all n ∈ N .

Proof. By the universal property of the Karoubian envelope, the corollary will follow
immediately if we can show that

H ◦ Ω0 = G ◦ ιG = G′ : Rep0(Hn) → Rep(Hn)

for some choice of H. We will work with the version of H which sends ([k̃], (e′)⊗k) to u⊗k

for all k ∈ N. This is possible because u⊗k ∼= im(e⊗k), where e : V → V was defined in the
beginning of Section 3.2.

We want to show that the diagram
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Rep0(Hn) Rep(Hn) Rep(Hn)

(Par(Z2, 2n))kar Rep(Hn)

ιG

Ω0

G

=

H

commutes strictly for our choice of H. For an object [k] ∈ Rep0(Hn) it is clear that

H ◦ Ω0([k]) = H(([k̃], id[k̃]) = u⊗k = G([k]) = G ◦ ιG([k])

for this choice of H. Now we want to prove that the diagram commutes for morphisms.
For this we use the alternative descriptions of the functors G′ and H ′ at the end of Section
2.6.3 and Section 2.6.2, using the functors G′′ and H ′′ respectively. The equivalences G̃
and H̃ reduce the problem to showing that the corresponding diagram

Parn (Parn)Kar Rep(Hn)

(Par(Z2)/ ∼2n))kar Rep(Hn)

(G̃Kar)−1◦ιG◦G̃

(H̃Kar)−1◦Ω0◦G̃

G◦G̃Kar

=

H◦H̃Kar

commutes for morphisms. So we have to prove that the images of the generating morphisms
in Definition 2.6.17 under the functors

H ◦ H̃Kar ◦ (H̃Kar)−1 ◦ Ω0 ◦ G̃ = H ◦ Ω0 ◦ G̃

and

G ◦ G̃Kar ◦ (G̃Kar)−1 ◦ ιG ◦ G̃ = G ◦ ιG ◦ G̃ = G′ ◦ G̃ = G′′

are equal. It follows directly from the functoriality of all involved functors that the diagram
commutes for the identity . Now we want to show that the diagram commutes for . We
first see that

G′′( )(ei ⊗ ej) = δi,jei ⊗ ei

for i, j ∈ {1, . . . , n} and ei a canonical basiselement of u. To use the explicit description of
H ′ at the end of Section 2.6.2, we must first consider the case where H sends ([k̃], (e′)⊗k)
to (ũ)⊗k, a tensor powers of ũ, the subrepresentation of V isomorphic to u, see Remark
1.2.15. After we have done this, we can use the isomorphism

ũ → u

ei
1 − ei

−1 7→ ei for i ∈ {1, . . . , n}

to find out the image of under the functor H ◦ H̃Kar ◦ (H̃Kar)−1 ◦ Ω0 ◦ G̃ for our original

choice of H. So we will assume now that H(([k̃], (e′)⊗k)) = (ũ)⊗k until further notice. We
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already saw that the equality

H(e′)((ei
1 − ei

−1)) = 1
2(ei

1 − ei
−1 − ei

−1 + ei
1)

= 1
22(ei

1 − ei
−1)

= (ei
1 − ei

−1)

holds, which is obvious because ei
1 − ei

−1 lies in the image of e = H(e′). Note that
H(e′) = H ′′(e′) where we use the corresponding definitions of e′ in (Par(Z2, 2n))Kar

and Par(Z2)/ ∼2n respectively. We use ιH̃ : Par(Z2)/ ∼2n→ (Par(Z2)/ ∼2n)Kar to
denote the C-linear full embedding of the category into its Karoubian envelope. Then
H ◦ H̃Kar ◦ ιH̃ = H ′ ◦ H̃ = H ′′ implies that

H ◦ H̃Kar ◦ (H̃Kar)−1 ◦ Ω0 ◦ G̃( )((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ◦ H̃Kar(2e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ◦ H̃Kar ◦ ιH̃(2e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ′ ◦ H̃(2e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ′′(2e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= 2H ′′(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= 2H ′′(e′ ⊗ e′ ◦ )((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= 2H ′′(e′ ⊗ e′ ◦ ◦ )((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))
= 2δi,jH

′′(e′ ⊗ e′ ◦ )(ei
1 + ei

−1)
= δi,j2H ′′(e′ ⊗ e′)(ei

1 ⊗ ei
1 + ei

−1 ⊗ ei
−1)

= δi,j21
4(2ei

1 ⊗ ei
1 − 2ei

−1 ⊗ ei
1 − 2ei

1 ⊗ ei
−1 + 2ei

−1 ⊗ ei
−1)

= δi,j
1
22(ei

1 ⊗ ei
1 − ei

−1 ⊗ ei
1 − ei

1 ⊗ ei
−1 + ei

−1 ⊗ ei
−1)

= δi,j(ei
1 − ei

−1) ⊗ (ej
1 − ej

−1),

for i, j ∈ {1, . . . , n}. By the previous remarks this shows that

H ◦ H̃Kar ◦ (H̃Kar)−1 ◦ Ω0 ◦ G̃( )(ei ⊗ ej) = δi,j(ei ⊗ ei) = G′′( )(ei ⊗ ej)

for our original choice of H. This implies the commutativity for . The commutativity for

and is proven similarly. Lastly we want to show the commutativity of the diagram
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for . We see that

G′′( )(ei ⊗ ej) = ej ⊗ ei

and for the choice H(([k̃], (e′)⊗k)) = (ũ)⊗k we see that

H ◦ H̃Kar ◦ (H̃Kar)−1 ◦ Ω0 ◦ G̃( )((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ◦ H̃Kar(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ◦ H̃Kar ◦ ιH̃(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ′ ◦ H̃(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ′′(e′ ⊗ e′ ◦ ◦ e′ ⊗ e′)((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ′′(e′ ⊗ e′ ◦ )((ei
1 − ei

−1) ⊗ (ej
1 − ej

−1))

= H ′′(e′ ⊗ e′)((ej
1 − ej

−1) ⊗ (ei
1 − ei

−1))
= (ej

1 − ej
−1) ⊗ (ei

1 − ei
−1)

for all i, j ∈ {1, . . . , n}. By the same arguments that we used to prove the commutativity
for , this shows the commutativity for and we conclude the proof.

Corollary 3.2.19. The functor Ω induces a C-linear tensor functor

Ω̂ : ̂Rep(Hn) → ̂Par(Z2, 2n)Kar

which is an equivalence.

Proof. Ω is a C-linear full tensor functor, so we can apply Proposition 2.5.11. Because the
image of a negligible morphism under Ω is again a neglible morphisms the C-linear functor
Ω̂ : ̂Rep(Hn) → ̂Par(Z2, 2n)Kar exists and is well-defined. It is full because Ω is full. It
is faithful because Ω is faithful and because only negligible morphisms have negligible
morphisms as their image. The image of the objects under Ω̂ is the same as for Ω by
definition. Because the isomorphisms stay isomorphisms after semisimplification, also the
essential image of Ω̂ stays the same, showing that Ω̂ is essentially surjective. Because Ĝ
and Ĥ are tensor functors and equivalences and the diagram

̂Rep(Hn) Rep(Hn)

̂Par(Z2, 2n)kar Rep(Hn)

Ĝ

Ω̂ =

Ĥ

commutes, Ω̂ is also a tensor functor respecting the given monoidal structures of the
semisimplifications of the interpolation categories for the hyperoctahedral group Hn.
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3.3 Image of indecomposable objects under Ω

Knop showed in [Kno07, Theorem 6.1] that in the semisimple case t ̸= 2N, the irreducible
objects in Par(Z2, t)Kar are classified by the set of all bipartitions, see also [LS21, Chapter
9]. We extend this result to the classification of the indecomposable objects in Par(Z2, t)Kar

for the non-semisimple cases t ∈ 2N \{0} .

3.3.1 Classyfying the indecomposables

We will not introduce the language that is used in [FM21] again. We do note that the set
of even partitions Peven is a so-called category of partitions, see [FM21, Section 2.1], and
that the partitions that we use to classify the indecomposable objects are so-called integer
partitions. They state the following proposition, see [FM21, Proposition 5.12].

Proposition 3.3.1. Let t ∈ C \{0}. Then there is a bijection between the set of bipartitions
λ = (λ1, λ2) of arbitrary size and the set of isomorphism classes of non-zero indecomposable
objects in Rep(Ht).

Theorem 3.3.2. Let t ∈ C \{0}. Then there is a bijection between the set of of bipartitions
λ = (λ1, λ2) of arbitrary size and the set of isomorphism classes of non-zero indecomposable
objects in Par(Z2, t)Kar.

Proof. Any equivalence between categories induces a bijection between the isomorphism
classes of the indecomposable objects. The statement follows therefore immediately from
Proposition 3.3.1 and Theorem 3.2.15.

3.3.2 Concrete examples of indecomposable objects

Instead of presenting a revised proof of Proposition 3.3.1, tailored to the particular
case for the even partitions Peven, we explain how the bijection works by associating
an indecomposable object in Par(Z2, 2t)Kar to an arbitrary bipartition λ = (λ1, λ2) for
t ∈ C \{0}. It is proven in [FM21, Chapter 4 and 5] why this indeed yields a bijection.

It is a well-known fact that there is a bijection between partitions µ of size d and
irreducible representations of the d-th symmetric group Sd. The reason for this is that we
can associate to every partition µ a primitive idempotent 1

nµ
cµ ∈ CSd and an irreducible

representation CSd
1

nµ
cµ. Let {eg| g ∈ Sd} be a basis of the group algebra CSd. The Young

symmetrizer is defined by cµ := aµbµ, where aµ = ∑
g∈P eg and bµ = ∑

g∈Q sgn(g)eg. Here
P is the set of all elements in Sd of which the action preserves the rows for some Young
Tableaux corresponding to µ and Q is the set of all elements in Sd of which the action
preserves the columns of the same Young Tableaux.

Let t ∈ C \{0} and λ = (λ1, λ2) an arbitrary bipartition of size (k1, k2). Let 1
nλ1

cλ1 ∈ CSk1

and 1
nλ2

cλ2 ∈ CSk2 be the corresponding idempotents. We define the morphisms

p1 := ⊗k1 ∈ EndRep(Ht)([k1]) and

p2 := ⊗k2 ∈ EndRep(Ht)([2k2]).
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Let eσ ∈ CSk1 and eρ ∈ CSk2 . Then we set

eσ · p1 := ϕ(σ) : [k1] → [k1] and
eρ · p2 := ⊗k2 ◦ ϕ(ρ) ◦ ⊗k2 : [k2] → [k2],

and extend this definition C-linearly. The morphism ϕ : Sd → Peven(d, d) was defined in
Definition 2.1.2 and as we noted already, the image of ϕ consists of even partitions only.
Let k := k1 + 2k2. Then the object

([k], ( 1
nλ1

cλ1 · p1) ⊗ ( 1
nλ2

cλ2 · p2))

is indecomposable in Rep(Ht). By Remark 3.2.16, the indecomposable object in Par(Z2, 2n)Kar

corresponding to the bipartition λ is given by

Ω(([k], ( 1
nλ1

cλ1 · p1) ⊗ ( 1
nλ2

cλ2 · p2))) = ([k̃],Ω0(( 1
nλ1

cλ1 · p1) ⊗ ( 1
nλ2

cλ2 · p2)))

= ([k̃], (e′)⊗k ◦ (( 1
nλ1

cλ1 · p1) ⊗ ( 1
nλ2

cλ2 · p2)) ◦ (e′)⊗k).

The objects which correspond to the bipartitions (1, 0) and (0, 1) are

Ω(([1], )) = Ω0([k]) = ([1̃], e′) and
Ω(([2], ) = ([2̃], 2e′ ⊗ e′ ◦ ◦ e′ ⊗ e′) ∼= ([1̃], id[1̃] − e′)

respectively. This shows that ([1̃], e′) and ([1̃], id[1̃] − e′) are indecomposable objects in
Par(Z2, 2t)Kar. As a last example we give a description of the indecomposable object
corresponding to the bipartition λ = (λ1, λ2) of size (3, 2), where λ1 = {{1, 2}, {3}} and
λ2 = {{1, 2}}.
The following preparations
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λ =

3
1 2

1 2

aλ1 = (12) + id

bλ1 = −(13) + id

cλ1 = aλbλ = id + (12) − (13) − (123)

λ1 = λ2 =

aλ2 = (12) + id

bλ2 = id

cλ2 = id+ (12)

nλ1 = 3 nλ2 = 2

p1 = ⊗ ⊗ p2 = ⊗

1
nλ1

cλ1p1 = 1
3( + − − )⊗ ⊗ ⊗

1
nλ2

cλ2p2 = 1
2( + )⊗

give us the indecomposable object in Par(Z2, 2t)Kar corresponding to the bipartition
λ = (λ1, λ2):

Indecomposable object corresponding to λ.

⊗ ⊗

⊗ ⊗

⊗

⊗⊗ ⊗⊗

⊗⊗ ⊗

⊗ ⊗

⊗

+ − ⊗ ⊗⊗

− + +

− −

( [̃7], 1
6(e′)⊗7 ◦ (

) ◦ (e′)⊗7).
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