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Abstract

Im Folgenden wird Claborns Beweis, dass jede abelsche Gruppe
die Klassengruppe eines Dedekindrings ist, betrachtet und im Detail
erkläutert. Nach einem Überblick über einige Grundlagen der kom-
mutativen Algebra wird der Monoid der gebrochenen Ideale und die
Klassengruppe eines Ringes erläutert. Anschließend werden Krullringe
als Verallgemeinerung von Dedekindringen untersucht und schließlich
wird gezeigt, dass jede abelsche Gruppe die Klassengruppe eines Krull-
rings ist. Um abschließend Claborns Theorem zu beweisen, wird für
einen beliebigen Krullring ein Dedekindring mit isomorpher Klassen-
gruppe konstruiert.

Abstract

In this thesis Claborn’s proof of his Theorem, that every abelian
group is the class group of a Dedekind domain, will be re-examined
and explained in detail. After revising some basic knowledge from
commutative algebra, we will explore the concept of the divisor and
class group, as well as Krull domains as a generalisation of Dedekind
domains. We will prove, that every abelian group is isomorphic to the
class group of a Krull domain, and then show, that for every Krull
domain there is a Dedekind domain with an isomorphic class group.

Motivation

While studying algebraic number fields, Dedekind domains naturally occur
as the integral closure of the integers. While they are not exactly unique
factorisation domains, they have a unique factorisation property for their
ideals into powers of prime ideals of height 1. But when is a Dedekind
domain factorial? A useful tool, to determine how close a (completely in-
tegrally closed) domain is to being factorial, is its class group. Specifically,
we will see, that the class group is 0 if and only if the domain is factorial.
Moreover, a domain, whose class group is torsion, is also called “almost
factorial”. Details on this can be seen in [Fos73, p. 33, Chapter II, §6].

Since Dedekind domains fulfil a number of nice properties, one would
hope, that these yield certain restrictions on the class group such that any
Dedekind domain would not be too far off from being a unique factorisation
domain. However, as the title of this thesis suggests, this does not hold
true, since every abelian group can occur as the class group of a Dedekind
domain. More precisely, the main Theorem of this thesis is the following
Theorem by Luther Claborn.

Theorem 0.1 (Claborn).
Every abelian group is isomorphic to the class group of a Dedekind domain.

To prove this Theorem, we will follow the proof he gave in [Cla66]. For
this, it will be necessary to consider Krull domains as a useful generalisation
of both Dedekind domains and factorial rings.
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Krull domains can also be seen as a generalisation of (normal) noetherian
rings, as they fulfil a slightly weaker version of the maximality condition,
which defines, what it means to be noetherian. This point of view also offers
a different take on familiar concepts, such as factorial rings in terms of some
sort of maximum condition. Some of this will be explored in Chapter 1.

In comparison to Dedekind domains, Krull domains offer the advan-
tage of superior stability and allow to consider so called subintersections
of the associate discrete valuation rings. Let us consider a Krull domain
A =

⋂
i∈I Rνi for discrete valuation rings Rνi . Then Nagata’s Theorem will

give us an epimorphism from the class group of A to the class group of a
subintersection B :=

⋂
i∈J Rνi given by some J ⊆ I along with a complete

description of its kernel. This will be a useful tool to compute abstract
class groups by finding unique factorisation domains as a subintersection,
because then the given kernel will be the entirety of the class group. With
this technique it will be possible to construct Krull domains with arbitrary
class groups. To complete the main Theorem of this thesis, we will then ap-
ply our gained knowledge on Krull domains to construct a Dedekind domain
for a pre-existing Krull domain, with the same class group.

However, the constructed Dedekind domain is rather abstract and far
from the integers of a number fields, so the result is not directly applicable
for algebraic number theory. Nonetheless, our results shows, that the class
groups of the integers of a number field are not restricted by the fact, that
they are Dedekind domains. If there are restrictions to these class groups,
they are given by other constraints these Dedekind domains have. This will
be further explored at the end of Chapter 4.

Notation and Requirements

Some basic knowledge in the field of commutative algebra is necessary, such
as the notion of localisation and its prime ideals.

We will only consider commutative rings with 1 in this thesis and the
units of such a ring R will be denoted by R×. More precisely R will usually
be used for a domain with field of fractions K := Frac(R). The localization
S−1R on a multiplicative set S ⊆ R not containing 0 will be identified with
the image of its canonical embedding into K given by a

b 7→
a
b . This also

includes R ∼= {1}−1R. For a prime ideal p ⊆ R let Rp := (R \ p)−1R
denote the localisation at the complement of p. Moreover let Rν denote the
corresponding valuation ring of a valuation ν on a field F .

Some knowledge on polynomial rings over domains (in arbitrary many
variables) is required, like the degree of a polynomial. Some details on this
can be found in [ZS58, p. 18f., Chapter I, §18]. In particular, the element 0
will have degree −∞. For a domain R and a polynomial f ∈ R[Xi | i ∈ I]
let If denote the set of indices of the variables occurring in f .

The span of a subset U ⊆ M of an R-module M will be denoted by
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〈U〉R or just 〈U〉. This notation also includes submodules of R itself, i.e.
ideals, and the set braces may be omitted if U is finite. In the case that
U has only one element a, we will also write aR instead of 〈a〉. If this one
element is just 0, we also write 0 instead of 〈0〉. This notation also includes
groups. Additionally, if M is an R-algebra, the product of two submodules
always references to the span of their pairwise multiplication. Furthermore
submodules of R will be called integral ideals, as the term “ideal” will be
reserved for fractionary ideals, which will be defined in Chapter 2. Both
kinds of ideals will be denoted by a, b and so forth, while prime ideals will
be denoted by p or q. Divisorial ideals will be denoted by the likes of a
and b.

The Krull domains considered later on will usually be referred to by
A or B, where B often serves as a subintersection of A. For the sake of
convenience we will see an empty intersection of discrete valuation rings of a
field as the field itself. The reason for this will become apparent in Chapter
3. Last but not least, a Dedekind domain will usually be denoted by D.

We will have N denote the natural numbers including 0, Z denote the
integers and Q the rational numbers. Additionally C will denote the complex
numbers.

The axiom of choice will be assumed, but only needed in Chapter 4 to
apply the theory of Krull domains to Dedekind domains. In particular we
assume that every integral ideal is contained in a maximal ideal.
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1 Backgrounds

In this Chapter some concepts from commutative algebra will be re-examined
and fleshed out. A reader who is fluent in this language may skip certain
sections and refer back to this Chapter if necessary. Nonetheless, this revi-
sion might be helpful in getting used to the notation, terminology and the
style of this thesis.

1.1 (Partially) Ordered Groups

Partially ordered groups are not only interesting for us in the context of
valuation groups of valuation rings. In Chapter 2.1 we will explore the
realm of the partially ordered monoid of divisors. These will allow us to
define Krull domains in Chapter 3 by demanding the monoid of divisors to
be a lattices.

Moreover, the concepts of maximality and minimality will occur many
times over the course of this thesis in different, yet similar contexts.

Definition 1.1 (Maxima and Minima).
Let (S,≤) be a partially ordered set. For a subset U ⊆ S we say a ∈ S is
an upper (or lower) bound of U , if for every b ∈ U we have b ≤ a (or a ≤ b
respectively). Furthermore b ∈ U is a greatest element, if it is an upper
bound for U . And if b ∈ U is a lower bound for U , then b is called smallest
or lowest element of U . A smallest upper bound is called a supremum and
a greatest lower bound is called an infimum.

We say an element a ∈ U is maximal (or minimal) in U if for b ∈ U
a ≤ b implies a = b (or if b ≤ a implies a = b respectively). In particular, if
U has a smallest or greatest element, it is the unique minimal or maximal
element of U .

Last but not least, a total order ≤ is a well-ordering of S, if every subset
has a smallest element.

Definition 1.2 (Order embedding).
We say a map f : S → T is order embedding , or an order embedding, if
(S,≤) and (T,�) are partially ordered and for all a, b ∈ S we get a ≤ b if
and only if f(a) � f(b).

If f : S → T only satisfies f(a) � f(b) for a ≤ b with a, b ∈ S, we say f
is order preserving . The map f is called order reversing , if for a, b ∈ S with
a ≤ b we get f(b) � f(a).

Definition 1.3 (Ordered groups).
A partially ordered group (or monoid) is an abelian group (or monoid) (G,+)
together with a relation ≤, so that (G,≤) is partially ordered and addition-
ally ≤ is invariant under +, i.e. if a ≤ b for a, b ∈ G, then we have a+c ≤ b+c
for all c ∈ G. In particular we have a ≤ b if and only if −b ≤ −a.
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We say a ∈ G is positive if 0 < a. The set of positive elements will be
denoted by G>0. Moreover, let G≥0 := G>0 ∪ {0} denote the non-negative
elements.

Example 1.4.

(1) For a ring R, the set of (integral) ideals with multiplication of ideals
is a partially ordered monoid, whose order is given by “⊆”.

(2) The natural numbers N are well-ordered by the canonical order.

(3) We know that (Z,+,≤) and (Q,+,≤) are totally ordered groups and
the canonical embedding is an order embedding.

(4) If (Gi,+i,≤i)i∈I is a family of partially ordered group for some index
set I. Then their direct sum G :=

⊕
i∈I Gi can be considered to be a

partially ordered groups, where for a, b ∈ G we have a ≤ b if and only
if ai ≤ bi of for all i ∈ I, where ai and bi denote the projection of a
and b in to Gi.

In the context of Krull domains there is a certain class of partially ordered
groups that we are interested in, namely the following example.

Example 1.5. For an index set I consider the free group

Z(I) :=
⊕
i∈I
Z

together with the partial order described above. Such a partially ordered
group is called a lattice and has the following two properties:

a) Any two elements a, b ∈ Z(I) have a supremum sup(a, b) = (max{ai, bi})i∈I
and an infimum inf(a, b) = (min{ai, bi})i∈I in Z(I).

b) Every non-empty subset of positive elements Z(I)
>0 has a minimal el-

ement, which can be obtained by fixing one element and minimizing
any non zero entry, from which there are only finitely many.

In fact these two conditions give a complete characterisation of lattices
as the next Theorem will show.

Theorem 1.6. Let (G,+,≤) be a partially ordered group. Then G satisfies
the following two conditions

(a) Any two elements a, b ∈ G have a supremum sup(a, b) ∈ G and infi-
mum inf(a, b) ∈ G.

(b) Every non-empty subset of positive elements has a minimal element.
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if and only if

Gmin := {a ∈ G≥0 | a is a mnimal element of G≥0 \ {0}}

is a free generating set such that the canonical isomorphism ϕ : Z(Gmin) → G
is order embedding, i.e. G is (order embedding isomorphic to) a lattice.

Proof. We have seen in Example 1.5 above that every lattice fulfils condi-
tions (a) and (b). Thus we only have to show the converse.

Let G≤0 := {a ∈ G | a ≤ 0} = {−a | a ∈ G≥0}. Now for a fixed a ∈ G we
have sup(a, 0) ∈ G≥0 and inf(a, 0) ∈ G≤0. All of these exist by condition (a).
Furthermore for c := a− sup(a, 0) ∈ G≤0 and c′ := a− inf(a, 0) − a ∈ G≥0
we have

inf(a, 0) = inf(c+ sup(a, 0), 0) ≥ c = a− sup(a, 0)

and
sup(a, 0) = sup(c′ + inf(a, 0), 0) ≤ c′ = a− inf(a, 0),

which shows, that a = inf(a, 0) + sup(a, 0) ∈ G≤0 +G≥0.
Thus it is sufficient to show that Gmin generates G≥0 to show that Gmin

is a system of generators. If G≥0 \ 〈Gmin〉 was non-empty then there is a
minimal element a0 ∈ G≥0 \ 〈Gmin〉 by (b). However, 0 < a0 /∈ Gmin, so
there exists 0 < b0 < a0. Because a0 < a0 + b0, we have 0 < b0, a0 − b0 < a0
and thus by the minimality of a0 we get b0, a0 − b0 ∈ G≥0 ∩ 〈Gmin〉. Since
this contradicts a0 = a0 − b0 + b0 /∈ 〈Gmin〉, we must have G≥0 ⊆ 〈Gmin〉.
Hence Gmin is indeed a system of generators.

Note, that the argument above still works, if we only allow natural num-
bers as coefficients when generating. Hence G≥0 can be generated by Gmin

with only non-negative coefficients.
Now assume there was a non trivial sum

∑
g∈Gmin

ngg = 0 with ng ∈ Z
for g ∈ Gmin not all zero. Then splitting off the positive coefficients yields
(by a small induction) a positive element∑

g∈Gmin
ng>0

ngg =
∑

g∈Gmin
ng<0

−ngg.

with positive coefficients. Take a minimal positive element a =
∑

g∈Gmin
ngg =∑

g∈Gmin
mgg with this property, i.e. for all g ∈ Gmin we have ng,mg ∈ N

not all equal. Then by the minimality of a, if ng > 0, then mg = 0 and
vice versa. Since a > 0, there are g0, g1 ∈ Gmin with ng0 ,mg1 > 0 respec-
tively. We have g0, g1 ≤ a and thus a ≥ sup(g0, g1) = g0 + g1 > 0, where
the last equality is a consequence of the minimality of g0 and g1. Hence
b := a − g0 − g1 < a is non-negative and thus can be written as a sum of
elements in Gmin. But then

0 <
∑

g0 6=g∈Gmin

ngg + (ng0 − 1)g0 = a− g0 = g1 + b < a
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can be written as a sum of elements in Gmin with or without g1, contradicting
the minimality of a.

Hence Gmin is a free generating system. Lastly observe, that for a, b ∈ G
we have

∑
g∈Gmin

ngg = a ≤ b =
∑

g∈Gmin
mgg if and only if

0 ≤ b− a =
∑

g∈Gmin

(mg − ng)g,

which by the uniqueness of the (natural) coefficients of non-negative ele-
ments is the case if and only if we have ng ≤ mg for all g ∈ Gmin.

1.2 Integral Ideals

We will generalise the notion of an (integral) ideal to the notion of a frac-
tionary ideal in Chapter 2.1. However, it will be useful to recall some basics
about this familiar case, as prime ideals will play a significant role in the
divisor group of Krull domains.

Definition 1.7 (Integral ideals).
Let R be a ring and a ⊆ R. Then a is called an integral ideal if a is an
additive subgroup such that for any a ∈ a and for all b ∈ R we have ab ∈ a.
In this case, if a 6= R, we say a is proper and distinguish the following
kinds of integral ideals:

An integral ideal a is called a prime ideal , if the product ab of two
elements a, b ∈ R is an element of p 3 ab only if a or b was an element of p.

An integral ideal a is called maximal ideal , if it is maximal among the
proper integral ideals partially ordered by “⊆”.

Lemma 1.8. For finitely many integral ideals {ai}ni=0 of a ring R for some
n ∈ N, their product is contained in their intersection, i.e.

n∏
i=0

ai ⊆
n⋂
i=0

ai.

Proof. For a :=
∏n
i=0 ai with ai ∈ ai for 0 ≤ i ≤ n and a fixed 0 ≤ j ≤ n

we have a = aj ·
∏n

i=0
i 6=j

ai ∈ aj . Hence a ∈
⋂n
i=0ai. Thus the claim holds,

since
n∏
i=0

ai =

〈{ n∏
i=0

ai

∣∣∣ ∀i ∈ I ai ∈ ai

}〉
.

Lemma 1.9. Let {ai}ni=0 be finitely many integral ideals of a ring R for
some n ∈ N. Then for every prime ideal p of R containing the product of
the integral ideals ∏

i∈I
ai ⊆ p,

there is some 0 ≤ j ≤ n such that aj ⊆ p.
The same holds true for the intersection of the integral ideals

⋂n
i=0ai.
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Proof. If for every 0 ≤ i ≤ n there is some ai ∈ ai \ p, then
∏n
i=0 ai ∈

(
∏n
i=0ai) \p, since p is prime. So the claim is a direct consequence of this

contraposition.
The last assertion is a consequence of Lemma 1.8 above.

Lemma 1.10 (Prime avoidance).
Let {pi}ni=0 be finitely many prime ideals of a ring R for some n ∈ N. Then
every integral ideal a of R contained in the union of these prime ideals

a ⊆
n⋃
i=0

pi

is already contained in one of the prime ideals pj ⊇ a for some 0 ≤ j ≤ n.

Proof. If n = 0 there is nothing to show. Otherwise, if for every 0 ≤ j ≤ n
there is some aj ∈ (a ∩pj) \

⋃
j 6=i∈I pi, then

n−1∏
i=0

ai + an ∈ a \
⋃
i∈I

pi

since all the pi are prime. Thus, there is some 0 ≤ i0 ≤ n with

(a ∩pi0) \
⋃

i0 6=i∈I
pi = a \

⋃
i 6=i0∈I

pi = ∅.

by contraposition. Now the claim holds by the induction hypothesis for

a ⊆
n⋃
i=0
i 6=i0

pi.

1.3 The Maximum Condition

The maximum condition will be a useful tool to generalise certain notions
we will encounter over the course of this thesis such as noetherian domains
or unique factorisation domains.

Definition 1.11 (Maximum condition).
A ring R satisfies the maximum condition for some subset U ⊆ P(R) of the
power set of R, if every non-empty subset of U partially ordered by inclusion
has a maximal element.

Definition 1.12 (Noetherian ring).
We say a ring R is noetherian if it satisfies the maximum condition for
(proper) integral ideals, i.e. every non-empty set of (proper) integral ideals
of R has an “⊆”-maximal element.
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Lemma 1.13. A ring R is noetherian if and only if every ideal is finitely
generated. In particular principal ideal domains are noetherian.

Proof. See [AM69, p.75, Chapter 6, Proposition 6.2] and recall that every
ring is a module over itself.

A first application of the maximum condition will follow in the next
section in the form of a characterisation of unique factorisation domains.

1.4 Prime Factorisations

We will see, that prime elements will be very helpful when studying the class
group of a (Krull) domain, as they do not directly contribute to said class
group. With this in mind, unique factorisations as subintersections of Krull
domains will prove to be a very helpful tool at the end of Chapter 3.

Definition 1.14. (Prime and irreducible elements)
Let R be a domain. Then we say 0 6= a ∈ R is prime if aR is a prime ideal.
If aR is “⊆”-maximal among {bR | b ∈ R \R×} then a is called irreducible.

Lemma 1.15. Let R be a domain and a, a′ ∈ R. Then we have:

i) aR = R ⇐⇒ a ∈ R×

ii) aR = a′R ⇐⇒ ∃e ∈ R× ae = a′

iii) If p is prime, then p is irreducible.

Proof.

i) aR = R ⇐⇒ 1 ∈ aR ⇐⇒ ∃b ∈ R ab = 1

ii) aR = a′R ⇐⇒ e, e′ ∈ R ae = a′ ∧ a′e′ = a ⇐⇒ e ∈ R× ae = a′

iii) Assume pR to be a prime ideal. If pR ⊆ aR, then there is b ∈ R with
ab = p. Hence a ∈ pR and thus aR = pR, or b = cp ∈ pR. In the
second case acp = p and thus ac = 1 as R is a domain. Therefore
aR = R by i). Thus pR is maximal among principal ideals.

Lemma 1.16. Let R be a domain and let a = e
∏n
i=1 pi ∈ R be a product

of prime elements pi ∈ R for 1 ≤ i ≤ n ∈ N and some unit e ∈ R×.
Then this product is unique in the sense, that for any other family of

primes qj for 1 ≤ j ≤ m ∈ N and a unit e′ such that a = e′
∏m
j qj, we

have m = n and there are units ei ∈ R× for 1 ≤ i ≤ n and a bijection
σ : {1, . . . , n} → {1, . . . , n} such that pi = eiqσ(i) for any 1 ≤ i ≤ n and
e = e′

∏n
i=1 ei.
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Proof. We proceed by induction on n ∈ N. For n = 0 and a unit e ∈ R×
we have, if e = e′

∏m
j qj , then qj ∈ R× for 1 ≤ j ≤ m. But by Lemma 1.15

prime elements must not be units, so m = 0 and e = e′.
Now for n > 0 let e

∏n
i=1 pi = e′

∏m
j qj . Then using Lemma 1.9

m∏
j=1

(qjR) =

 m∏
j

qj

R =

(
n∏
i=1

pi

)
R ⊆ p1R

shows that there is some 1 ≤ k ≤ m with qkR ⊆ p1R. But the prime element
qk is irreducible by Lemma 1.15 and thus p1R = qkR. Again by Lemma 1.15,
there is some e1 ∈ R× such that p1 = e1qk. Hence

p1

e′e−11 ·
m∏
j
j 6=k

qj

 = e′e−11 · p1 ·
m∏
j
j 6=k

qj = e′
m∏
j

qj = e
n∏
i=1

pi = p1

(
e

n∏
i=2

pi

)

and since p1 6= 0 and R is a domain

e′e−11 ·
m∏
j
j 6=k

qj = e
n∏
i=2

pi.

As e′e−11 is a unit, the rest is a consequence of the induction hypothesis.

Definition 1.17 (Unique factorisation domains).
Let R be a domain. Then R is a unique factorisation domain or factorial,
if every non-zero element 0 6= a ∈ R can be written as a product of a unit
and prime elements.

Remark 1.18. The definition above coincides with the usual definition
given in [ZS58, p. 21, Chapter I, §14], since if every element has a unique fac-
torisation into irreducible elements, all irreducible elements must be prime.
This can also be seen in [ZS58, p. 21f., Chapter I, §14]. The other direc-
tion is a consequence of Lemma 1.16 and the fact, that prime elements are
irreducible by Lemma 1.15.

Lemma 1.19. For a domain R the following are equivalent:

i) R is a unique factorisation domain.

ii) Every irreducible element of R is prime and R satisfies the maximum
condition for the set {aR | a ∈ R} of principal integral ideals.
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Proof.

“⇒” Let a ∈ R. Then a = e
∏n
i=1 pi for a natural number n ∈ N and prime

elements p1, . . . , pn ∈ R. Then by the uniqueness of the factorisation
given in Lemma 1.16, aR is only contained in the principal integral
ideals

(
e
∏
i∈I pi

)
R, where I is a subset of {1, ..., n}. Thus every prin-

cipal integral ideal is only contained in finitely many principal integral
ideals. Therefore the maximum condition holds. Furthermore a is
irreducible if and only if n = 1, which is equivalent to a being prime.

“⇐” Consider the set of all non-zero non-units, which cannot be written as
a product of irreducible elements,

U := {0 6= a ∈ R \R× | a is not a product of irreduciable elements}.

If U 6= ∅ is non-empty, let a ∈ U be such that aR is “⊆”-maximal in
{bR | b ∈ U}. As a ∈ U , a is neither irreducible nor a unit and thus it
can be written as a = bc for some b ∈ R\R× and c ∈ R with aR ( bR.
Hence c ∈ R \ R× with aR ( cR. Because aR is “⊆”-maximal in U ,
we have b, c /∈ U and so they can be written as a product of irreducible
elements and a unit. But this is a contradiction to a ∈ U , so U must
be empty. Therefore every element of R is a product of prime elements
and a unit, since every irreducible element is prime.

Corollary 1.20. Principal ideal domains are unique factorisation domains.

Proof. Combine the fact that maximal ideals are prime and that principal
ideal domains are noetherian with Lemma 1.19 above.

Lemma 1.21. Let p ∈ R be a prime element of a domain R. Then p ∈ R[X]
is a prime element of the polynomial ring over R.

Proof. As the degree of a product of polynomials is additive, the polynomial
ring R[X] is a domain. Now for two polynomials f, g ∈ R[X] with fg ∈
pR[X] we have f ∈ pR[X] or g ∈ pR[X] by a small induction over the
degree of f and g. So p ∈ R[X] is again prime.

Corollary 1.22. If R is a domain and I is some index set, then a polynomial
f ∈ R[Xi|i ∈ I] in the polynomial ring is prime if and only if for the index
set of variables in f , If ⊆ I the polynomial f ∈ R[Xi | i ∈ If ] is prime.

Proof. Consider the ring homomorphism given by the inclusion R[Xi | i ∈
If ] ⊆ R[Xi | i ∈ I]. This shows, that if fR[Xi | i ∈ I] is a prime ideal, then

fR[Xi | i ∈ If ] = fR[Xi | i ∈ I] ∩R[Xi | i ∈ If ]

is also a prime ideal as a preimage of a prime ideal.
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Conversely, let f ∈ R[Xi | i ∈ If ] be prime and consider a, b ∈ R[Xi | i ∈
I] such that ab ∈ fR[Xi | i ∈ I]. Hence there is some g ∈ R[Xi | i ∈ I] with
ab = fg. Define J := Ia∪Ib∪If∪Ig as the union of the index sets of variables
for the polynomials a, b, g and f , which is again finite. By a small induction
using Lemma 1.21, f ∈ R[Xi | i ∈ J ] is prime and ab = fg ∈ fR[Xi | i ∈ J ].
Therefore

a ∈ fR[Xi | i ∈ J ] or b ∈ fR[Xi | i ∈ J ].

Now the claim is a consequence of fR[Xi | i ∈ J ] ⊆ fR[Xi | i ∈ I].

Lemma 1.23. Let R be a domain and a, b ∈ R with b 6= 0 such that aR ∩
bR = abR. Then bX − a ∈ R[X] is prime.

Proof. We base this proof on [Fos73, p.61, Chapter III, §14, Lemma 14.1].
To show, that bX−a is prime, it suffices to verify, that every polynomial

g ∈ R[X], which has a
b ∈ Frac(R) as a root, already is an element of 〈bX−a〉,

because the roots of a polynomial are multiplicative. If the degree of g is
smaller than 1, g = 0 and the claim is true. Now for the degree n ≥ 1 of
g =

∑n
i=0 aiX

i with g(ab ) = 0 we have

0 = bng(
a

b
) =

n∑
i=0

aia
ibn−i.

Thus ana
n = −

∑n−1
i=0 aia

ibn−i ∈ anR ∩ bR = anbR, where the last equality
is the consequence of a small induction on n. Hence an = a′nb ∈ bR for some
a′n ∈ R and therefore

g = a′n(bX−a)Xn−1 +(a′na+an−1)X
n−1 +

n−2∑
i=0

aiX
i = a′n(bX−a)Xn−1 +g′

for some polynomial g′ ∈ R[X] with zero a
b and a smaller degree. So by

induction g′ ∈ 〈bX − a〉 and thus g ∈ 〈bX − a〉.

Theorem 1.24.
Let R be a unique factorisation domain. Then the polynomial ring R[X] is
also a unique factorisation domain.

Proof. See [ZS58, p. 32, Chapter I, §17, Theorem 10]

Corollary 1.25. If R is a unique factorisation domain and I is some index
set, then the polynomial ring R[Xi | i ∈ I] is again a unique factorisation
domain.

Proof. Let f ∈ R[Xi | i ∈ I] and let If ⊆ I be a finite subset of I such that
f ∈ R[Xi | i ∈ If ] ⊆ R[Xi | i ∈ I]. Then by Theorem 1.24 and a small
induction on the number of variables, R[Xi | i ∈ If ] is a unique factorisation

12



domain and thus f can be written as a product of prime elements and
a unit. By Corollary 1.22 above, these prime factors are again prime in
R[Xi | i ∈ I].

Example 1.26.

(1) Any field K is a unique factorisation domain as every non-zero element
is a unit.

(2) The integers Z are a unique factorisation domain with the prime num-
bers as prime elements up to a sign.

(3) Any polynomial over one of the examples above is a unique factorisa-
tion domain by Corollary 1.25.

1.5 Completely Integrally Closed Domains

We will see in Chapter 2.1, how we can only really talk about a class group
rather than a monoid, if the considered domain is completely integrally
closed. Additionally Dedekind domains occur as the integral closure of Z
in finite field extensions over Q, which makes the notion of integral closure
even more interesting to us.

Definition 1.27 ((Almost) integral elements).
Let R be a subring of a ring R′ and let a ∈ R′.

Then a is integral over R, if there is a monic polynomial p(X) = Xn+1 +∑n
i=0 aiX

i ∈ R[X] with root a, i.e. p(a) = 0.
Furthermore, a ∈ R′ is almost integral over R, if for the R-module

R[a] := 〈{an | n ∈ N}〉 ⊆ R′ there is some d ∈ R \ {0} such that dR[a] ⊆ R.
In other words, there is a d ∈ R such that dan ∈ R for all n ∈ N. Such a d
is called a common denominator of R[a].

Remark 1.28. An element a ∈ Frac(R) is almost integral if and only if
R[a] is a fractionary ideal over R in the sense of Definition 2.1, which will
occur in Chapter 2.

Lemma 1.29. For a subring R of a ring a R′ the set of integral elements
over R, R̄ := {a ∈ R′ | a integral over R}, forms a subring of R′ containing
R.

Proof. See [Nag62, p. 29, Chapter I, 10., (10.2) Corollary].

Lemma 1.30. Let R be a domain with field of fractions K := Frac(R). Let
a ∈ K. The following hold:

i) Every integral element of K is almost integral over R.

ii) If R is noetherian, every almost integral element of K is integral.

13



Proof.

i) Let a ∈ K be integral. Then we have for some n ∈ N an+1 =
∑n

i=0 aia
i.

ThusR[a] = 〈{am | m ∈ N}〉 is generated by {1, a, ..., an}. Now assume
a = c

d for some c, d ∈ R. Then we have dnaj ∈ R for any n ∈ N.

ii) Assume R to be noetherian, a ∈ K to be almost integral and let d
be a common dominator of R[a]. Then dR[a] is an integral ideal and
thus finitely generated. Therefore R[a] is finitely generated and thus
there is some n ∈ N such that R[a] = 〈1, a, . . . , an〉. Hence there are
a0, . . . , an ∈ R such that an+1 =

∑n
i=0 aia

i. From this we get that a
is a root of Xn+1 +

∑n
i=0(−ai)Xi ∈ R[X]. Therefore a is integral over

R.

Definition 1.31 ((Completely) integrally closed domains).
A domain R is called normal or integrally closed, if every integral element
over R of the fraction field K := Frac(R) is already an element of R.

It is called completely integrally closed , if every almost integral element
over R of K is an element of R.

Corollary 1.32. A completely integrally closed domain is normal.

Proof. This is a direct consequence of Lemma 1.30i).

Proposition 1.33. An normal noetherian domain is completely integrally
closed.

Proof. This is a direct consequence of Lemma 1.30ii).

Remark 1.34. We will later see, that the converse is not true as Z[Xn |
n ∈ N] is completely integrally closed but not noetherian.

Another non-noetherian example is a valuation ring with valuation group
Q, which is left as an exercise for the interested reader.

Lemma 1.35. Let (Ri)i∈I be a family of (completely) integrally closed sub-
rings of a domain R′. Then R :=

⋂
i∈I Ri is (completely) integrally closed.

Proof. Let a ∈ Frac(R) ⊆ Frac(R′) be (almost) integral over R. Then a is
(almost) integral over Ri for any i ∈ I as a ∈ Frac(R) ⊆ Frac(Ri). As the
Ri are (completely) integrally closed, a ∈ Ri for any i ∈ I, we have a ∈ R.
Therefore R is also (completely) integrally closed.
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1.6 (Discrete) Valuation Rings

Discrete valuation rings are an important part of the generalisation of Dedekind
domains to Krull domains. While Dedekind domains have the property to
be the intersection of discrete valuation rings, Krull domains can be defined
to be the intersection of discrete valuation rings with a certain finiteness
assumption.

Some claims in this section may stay without proof. These can be found
in [ZS60, p.32-35, Chapter VI, §8].

Definition 1.36 (Valuation ring).
Let (G,+,≤) be a totally ordered group and let K be a field. For later use
extend G with an element ∞ such that ∞ is an upper bound for G and for
a ∈ G a+∞ :=∞+ a :=∞.

Then a valuation is a group homomorphism ν : K× → G such that for
a,−a 6= b ∈ K× we have min{ν(a), ν(b)} ≤ ν(a+ b). In this case we define
ν(0) :=∞.

We call the subring Rν := {a ∈ K | ν(a) ≥ 0} of K a valuation ring for
a valuation ν on K. Moreover, any domain R, for which there is a field K
with a valuation ν such that R = Rν is called a valuation ring.

We say Rν is a discrete valuation ring if the valuation group ν(K×) is
equal to Z with the canonical ordering. In this manner, a valuation is called
a discrete valuation, if it maps surjectively into Z.

Lemma 1.37. Let K be a field with valuation ν : K× → G. Then:

i) ∀a ∈ K× a ∈ Rν ∨ a−1 ∈ Rν

ii) a ∈ R× ⇐⇒ ν(a) = 0

iii) ∀a, b ∈ Rν(ν(a) ≤ ν(b) ⇐⇒ bRν ⊆ aRν)

iv) Rν has the unique maximal ideal m := {a ∈ R | ν(a) > 0}.

Proposition 1.38. A ring R is a valuation ring if and only if R is a domain
and we have a ∈ R or a−1 ∈ R for a ∈ Frac(R)×. In this case, a valuation

with valuation ring Rν is given by the projection into Frac(R)×�R×, where

the order is given by a ≤ b if and only if b
a ∈ R.

Corollary 1.39. Two surjective valuations on a field K, ν : K× → G′ and
ν ′ : K× → G, are equal up to an order embedding isomorphism of G and G′

if and only if their valuation rings are the same.
In this case, if both ν and ν ′ are discrete, we have ν = ν ′, because the

identity is the only order embedding automorphism of Z.

Remark 1.40. Proposition 1.38 and Corollary 1.39 above show, that a
valuation ring Rν of a valuation ν encodes the valuation in sufficient detail.
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Proposition 1.41. Let (G,+,≤) be a totally ordered group and let K :=
Frac(R) be the fraction field of a domain R. Then it is sufficient to to define
a valuation ν : K× → G on R \ {0} as a monoid homomorphism satisfying
ν(a + b) ≥ min{ν(a), ν(b)} for a 6= −b ∈ R \ {0} and extend it uniquely to
K by ν(ab ) := ν(a)− ν(b).

Proof. Assume ν : R \ {0} → G was defined as required. As the map
ν : K× → G is supposed to be a valuation, the extension described above is
the only possibility. It is well defined, since for two fractions a

b ,
c
d ∈ K

×, we
have a

b = c
d if and only if ad = bc and thus ν(a) + ν(d) = ν(ad) = ν(bc) =

ν(b) + ν(c). This is equivalent to ν(a)− ν(b) = ν(c)− ν(d).
Moreover for a

b ,
c
d ∈ K

× we get

ν
(a
b
· c
d

)
= ν

(ac
bd

)
= ν(ac)− ν(bd) = ν(a)− ν(b) + ν(c)− ν(d)

and

ν
(a
b

+
c

d

)
= ν(

ad+ bc

bd
) = ν(ad+ bc)− ν(bd) ≥ ν(ad)− ν(bd) = ν

(a
b

)
,

where without loss of generality ν(ad) ≤ ν(bc).

Lemma 1.42. Let K be a field and let ν : K× → Z be a discrete valuation.
Then the discrete valuation ring Rν is an “⊆”-maximal subring of K.

Proof. Let Rν ( R ⊆ K be a subring of K strictly containing Rν . Then
there is some a ∈ R\Rν and thus ν(a) < 0. As ν is discrete, pick some b ∈ Rν
with ν(b) = −ν(a)−1 so that ν(ab) = −1. Now for any c ∈ Rν \{0} we have
c ∈ R×, since ν(c(ab)ν(c)) = 0. Thus, by Lemma 1.37, c(ab)ν(c) ∈ R×ν ⊆ R×.
Now as for every d ∈ K×, again by Lemma 1.37, we have d ∈ Rν ⊆ R or
d−1 ∈ Rν ⊆ R, so we must have R = K.

Lemma 1.43. A valuation ring R is discrete valuation ring if and only if
it is noetherian and not a field.

Proof. As an easy consequence of Lemma 1.37 every finitely generated ideal
is principal. Thus R is a principal ideal domain if and only if R is noetherian.

Now if R is a discrete valuation ring, then every integral ideal a is
generated by some a ∈ a with ν(a) = minb∈a{ν(b)}, which exists since N is
well-ordered.

Conversely if R is a principal ideal domain, then R is a unique factorisa-
tion domain by Corollary 1.20. Furthermore every prime element generates
the unique maximal ideal of R, since every prime element is irreducible.
So Example 1.46 will show us, how to construct a discrete valuation with
valuation ring R.

Lemma 1.44. Let R be a valuation ring. Then R is normal.
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Proof. Let a ∈ Frac(R) be integral over R, i.e. there is an n ∈ N and ai ∈ R
for 0 ≤ i ≤ n such that an+1 =

∑n
i=0 aia

i. Now by Lemma 1.37, we have
a ∈ R or a−1 ∈ R. In the first case there is nothing to show. In the second
case, we get

a = a−nan+1 =

n∑
i=0

ai(a
−1)n−i ∈ R,

which shows, that R is normal.

Corollary 1.45. Discrete valuation rings are completely integrally closed.

Proof. By Lemma 1.43 and 1.44 above any discrete valuation ring is noethe-
rian and normal. Hence by Proposition 1.33 any discrete valuation ring is
completely integrally closed.

Example 1.46. Let R be a unique factorisation domain with field of frac-
tions K := Frac(R). Then for a prime p ∈ R there is a valuation

νp : K× → Z
a

b
7→ νp(a)− νp(b)

where for a ∈ R the valuation νp(a) := maxn∈N{n | a ∈ pnR} is the maximal
natural number for which a power of p can occur in a prime factorisation of
a.

The valuations obtained in such a way are called essential valuations of
R and and we have the equality Rνp = R〈p〉 for the discrete valuation ring
Rνp .

Furthermore any element of R is a unit in almost all Rνp , i.e. has valu-
ation 0 for almost all prime elements of R and

R =
⋂
p∈R

p prime

Rνp =
⋂
p∈R

p prime

R〈p〉.
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2 The Class Group

The class group of a domain measures, in a certain manner, how far away a
domain is from being a unique factorisation domain. We will establish this
connection at the end of Chapter 3.1 in more detail. As we not only plan
to study the class groups of Dedekind domains, but also the class groups of
Krull domains, we will now define the notion in a more general manner for
a certain class of domains. For this, we will follow the first two sections of
the first Chapter of [Sam64, p.1-4, Chapter I, §1-2].

From now on let R be a domain with field of fractions K := Frac(R) if
not stated otherwise.

2.1 Divisor Groups

Contrary to Dedekind domains, for a general domain it is not sufficient to
consider the monoid of fractionary ideals to define the class group. There-
fore we will now develop the notion of a divisorial ideal and the partially
ordered monoid of divisors. Furthermore we will explore, in which cases this
monoid is a group. We will see in Chapter 4 why this notion is redundant
for Dedekind domains. However, it will be important for studying Krull
domains in Chapter 3.

Definition 2.1 (Fractionary Ideals).
A fractionary ideal, or ideal , of a domain R is an R-module a ⊆ K :=
Frac(R) such that there is some d ∈ R \ {0}, so that da ⊆ R. Such a d is
called a common denominator of a.

A fractionary ideal a is called principal , if there is some a ∈ K gener-
ating a, i.e. a = aR = 〈a〉R. Non-zero fractionary ideals, which are the
intersection of principal ideals, are called divisorial ideals.

For a non-zero fractionary ideal a define

a :=
⋂
a∈K
a⊆aR

aR

to be the smallest divisorial ideal containing a. This intersection exists, as
we have a ⊆ 1

dR for any common denominator d .

Example 2.2. Let R be a domain with field of fration K := Frac(R).

(1) Every integral ideal a ⊆ R ⊆ K is a module over R, so the com-
mon denominator 1 shows that integral ideals are (fractionary) ideals.
Conversely, every fractionary ideal a ⊆ R is an integral ideal.

(2) Any module of the form aR for a ∈ K× is a fractionary ideal, where the
denominator of a is a common denominator of aR. Thus, all modules
of this kind are principal ideals.

18



(3) Intersections, sums and finite product of submodules of the R-module
K are again submodules.

Hence, finite sums and products of ideals are ideals by multiplying
one common denominator each. Moreover, arbitrary intersections of
ideals are ideals, where one can simply take one common denominators
of any one of the intersected ideals as a common denominator of the
intersection.

(4) Any non-zero submodule of K, that is an intersection of principal
ideals, is an ideal and thus divisorial.

(5) Consider the polynomial ring in two variables R := F [X,Y ] over a
field F together with the (integral) ideal 〈X,Y 〉. Then

a :={a ∈ K := Frac(R) | a〈X,Y 〉 ⊆ R}
={a ∈ K | aX ∈ R 3 aY } = R.

We will see in Lemma 2.4 that

〈X,Y 〉 = {a ∈ K | aa ⊆ R} = {a ∈ K | a · 1 ∈ R} = R,

so generally, ideals cannot be assumed to be divisorial.

We will see in Example 3.42 a more interesting example of an integral
ideal contained in an “⊆”-minimal non-zero prime ideal, which is not
divisorial.

Lemma 2.3. Let a be a (fractionary) ideal of a domain R and b 6= 0 6= b′

be submodules of K := Frac(R). Then (a : b) := {x ∈ K | xb ⊆ a} defines
an ideal. Furthermore the following relations hold:

i) For I and J index sets and ideals ai for i ∈ I and submodules 0 6=
bj ⊆ K for j ∈ J we have((⋂

i∈I
ai

)
:
(∑
j∈J

bj

))
=
⋂
i∈I
j∈J

(ai : bj).

ii)
(a : bb′) =

(
(a : b) : b′

)
iii) If 0 6= a ∈ K, then

(b : aR) = a−1b.

iv) If b is also a fractionary ideal, then (a : b) = 0 if and only if a = 0.

v) If a is divisorial and b is an ideal, then (a : b) is divisorial.
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Proof. First of all, we need to establish, that (a : b) is in fact a submodule.
It is closed under the addition of (K,+) as for x, y ∈ (a : b)

(x+ y)b ⊆ xb + yb ⊆ a + a = a

and 0b = 0 ⊆ a. Moreover, for x ∈ (a : b) and r ∈ R the equation
(xr)b = x(rb) ⊆ xb ⊆ a shows that (a : b) is indeed a submodule.

If 0 6= b ⊆ K is an R-module, then b ∩ R 6= 0, since for 0 6= b
a ∈ b

we have 0 6= b = a · ba ∈ b ∩ R. So if d is a common denominator of the
fractionary ideal a and 0 6= b ∈ b ∩R, then

db(a : b) ⊆ db(a : b) ⊆ da ⊆ R

shows, that (a : b) is a fractionary ideal with common denominator db.
Now it remains to verify the relations.

i) From Example 2.2 above we know, that
((⋂

i∈I ai

)
:
(∑

j∈J bj
))

is

well defined and the computation((⋂
i∈I

ai

)
:
(∑
j∈J

bj

))
=

{
x ∈ K

∣∣∣∣∣ ∀i ∈ I x (∑
j∈J

bj

)
⊆ ai

}

=
⋂
i∈I

{
x ∈ K

∣∣∣∣∣ x(∑
j∈J

bj

)
⊆ ai

}
=
⋂
i∈I

⋂
j∈J
{x ∈ K | xbj ⊆ ai} =

⋂
i∈I
j∈J

(ai : bj)

yields the result.

ii) The product of two non-zero submodules is again non-zero. So every-
thing is well defined and furthermore(

a : bb′
)

=
{
x ∈ K | xbb′ ⊆ a

}
=
{
x ∈ K | xb′ ⊆ (a : b)

}
=
(
(a : b) : b′

)
holds.

iii) For 0 6= a ∈ K

(b : aR) = {x ∈ K | x · aR ⊆ b} = {x ∈ K | ax ∈ b}
=
{
x ∈ K | x ∈ a−1b

}
= a−1b

holds.

iv) If a = 0, then (a : b) = 0 because K is a domain and b 6= 0. On
the other hand, if 0 6= a, then 0 6= a ∈ a ∩ R. So if d is a common
denominator of b, then ad ∈ (a : b), since adb ⊆ aR ⊆ a.
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v) Let a =
⋂
i∈I aiR be divisorial and b be an ideal. Then by iv) (a :

b) 6= 0 already holds and

(a : b) =

((⋂
i∈I

aiR
)

:
( ∑

06=b∈b
bR
))

i)
=
⋂
i∈I

0 6=b∈b

(aiR : bR)
iii)
=

⋂
i∈I

0 6=b∈b

aib
−1R

shows, that (a : b) is in fact divisorial.

Lemma 2.4. Let a,b,c 6= 0 be non-zero ideals. Then the following addi-
tional relations hold.

i) b ⊆ a =⇒ (c : a) ⊆ (c : b)

ii) a = (R : (R : a))

iii) (R : (R : (R : a))) = (R : a)

iv) a = b ⇐⇒ (R : a) = (R : b)

Proof.

i) Let b ⊆ a. Let x ∈ K such that xa ⊆ c. Then xb ⊆ xa ⊆ c. Hence
(c : a) ⊆ (c : b).

ii) By Lemma 2.3 v) above, the ideal (R : (R : a)) is divisorial as R = 1R
is principal and thus divisorial. Furthermore

(R : (R : a)) = {x ∈ K | x(R : a) ⊆ R}
= {x ∈ K | ∀y ∈ K ya ⊆ R⇒ xy ∈ R} ⊇ a

and therefore a ⊆ (R : (R : a)).

Now let a ∈ K such that a ⊆ aR. Applying i) two times yields

(R : (R : a))
i)

⊆ (R : (R : aR))
2.3 iii)

= (R : a−1R)
2.3 iii)

= aR

and therefore

a ⊆ (R : (R : a)) ⊆
⋂
a∈K
a⊆aR

aR = a.

iii) As before (R : a) is divisorial by Lemma 2.3v). Hence

(R : a) = (R : a)
ii)
= (R : (R : (R : a))).
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iv) If (R : a) = (R : b) then

a
ii)
= (R : (R : a)) = (R : (R : b))

ii)
= b.

If on the other hand a = b, applying iii) yields

(R : a)
iii)
= (R : (R : (R : a)))

ii)
= (R : a) = (R : b)

ii)+iii)
= (R : b),

which proves the equivalence.

Corollary 2.5. For non-zero ideals a and b of a domain R the smallest
divisorial ideal containing their product

ab = ab

is also the smallest divisorial ideal containing the products of the smallest
divisorial ideals containing a or b respectively.

Proof.

ab
2.4ii)
= (R : (R : ab))

2.3ii)
= (R : ((R : a) : b))

2.4iii)
= (R : ((R : (R : (R : a))) : b))

2.3ii)
= (R : (R : (R : (R : a))b))

2.4ii)
= (R : (R : (R : ab))

2.4ii)
= ab

Therefore
ab = ab = ab.

Definition 2.6 (Divisors).
Let I(R) denote the set of all non-zero (fractionary) ideals of a domain
R. Then (I(R), ·,⊆) is a partially ordered monoid, where · denotes the
multiplication of ideals, with neutral element R. There is an equivalence
relation ∼ on I(R) given by

a ∼ b ⇐⇒ a = b
2.4⇐⇒ (R : a) = (R : b)

for ideals a and b. In this case a and b are called (Artin) equivalent or

“quasi gleich”. Define the divisors of R to be D(R) := I(R)�∼. As two
divisorial ideals are equivalent if and only if they are equal, the divisors
D(R) will be identified with the set of divisorial ideals of R.

Additionally, the abelian monoid structure of I(R), · : I(R) → I(R), is
compatible with ∼ by Corollary 2.5. So an abelian monoid structure

+ : D(R)× D(R)→ D(R)

(a,b) 7→ a + b := ab

22



arises on D(R) from it.
Moreover, applying Lemma 2.4 yields that ∼ is order preserving if the

divisors are partially ordered by ⊆. However, a slightly different partial
order is more suitable. For divisorial ideals a and b define

a ≤ b ⇐⇒ b ⊆ a
2.4⇐⇒ (R : a) ⊆ (R : b)

2.4⇐⇒ (R : a) ⊆ (R : b),

where a and b are representatives of their respective equivalence classes a

and b. In particular, if there are representatives a and b such that b ⊆ a,
then already a ≤ b holds, i.e. ∼ is order reversing.

All in all, (D(R),+,≤) is a (partially) ordered monoid, for which the set
of positive elements D(R)>0 is the set of proper divisorial integral ideals.
From now on, the relation + will only be used in this sense for divisorial
ideals.

Lemma 2.7. Finite intersections of divisorial ideals of a domain R are
divisorial.

Proof. By induction, it suffices to show, that the claim holds for two divi-
sorial ideals a and b. As the intersection of intersections of principal ideals
are an intersection of principal ideals, it suffices to show that the intersection
is non-zero.

Let a and b be common denominators of a and b respectively. Then
d := ab is a common denominator of both ideals. Hence

0 6= da · db
1.8
⊆ da ∩ db = d(a ∩ b)

and thus a ∩ b must not be zero.

Proposition 2.8. For any two divisorial ideals a and b of a domain R
there is a supremum sup(a,b) and an infimum inf(a,b) within (D(R),≤).

Proof. Define sup(a,b) := a ∩ b and inf(a,b) := 〈a,b〉. By Lemma 2.7
above sup(a,b) is indeed divisorial. Hence the claim is a consequence of ∼
being order reversing.

Definition 2.9 (Invertible ideals).
An ideal a ⊆ Frac(R) of a domain R is called invertible, if there is an ideal
a−1 ⊆ Frac(R) such that a ·a−1 = R.

Lemma 2.10. Let a be an ideal of a domain R with field of fraction K :=
Frac(R). If a is invertible, then a−1 = (R : a) and a is divisorial.

Additionally a is finitely generated.
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Proof. Let a be an invertible ideal together with an ideal a−1 ⊆ K such
that a ·a−1 = R. Then a−1 ⊆ (R : a) holds by the definition of (R : a).
Thus

R = a ·a−1 ⊆ a · (R : a) ⊆ R

shows that (R : a) is inverse to a. However, the inverse in a monoid like
I(R) is unique, so that a−1 = (R : a).

On the other hand, a is inverse to (R : a), so that

a = (R : (R : a))
2.4
= a,

which is divisorial.
Lastly, since a · (R : a) = R, we know, that 1 =

∑n
i=0 aibi for some

n ∈ N with ai ∈ a and bi ∈ (R : a) for 0 ≤ i ≤ n. Hence

〈a0, ..., an〉 · (R : a) = R

and, again by the uniqueness of the inverse, 〈a0, ..., an〉 = a. Therefore a is
finitely generated.

Remark 2.11. Lemma 2.10 above justifies the consideration of the monoid
of divisors D(R) of a domain R instead of the monoid of ideals I(R). Because
of this Lemma, only D(R) has any hope of being a group. In the following
Theorem we will examine, in which cases D(R) is a group.

Theorem 2.12.
For a domain R, the monoid of divisors D(R) is a group if and only if R is
completely integrally closed.

Proof. Recall from Definition 1.27, that an element a ∈ K := Frac(R) is
almost integral, if R[a] is a fractionary ideal, i.e there is some d ∈ R such
that for every n ∈ N dan ∈ R, and that R is completely integrally closed, if
every almost integral element is already an element of R.

“⇒” Assume D(R) to be a group and let a ∈ K× be almost integral with
common denominator d. Consider the divisorial ideals

a :=
⋂
n∈N

a−nR 3 d and a−1R
2.10+2.3

= −(aR).

Then

a− (aR) = a · a−1R =
( ⋂
n∈N

a−(n+1)R
)

=
⋂
n∈N

a−(n+1)R ⊇ a

shows, that
a = a− (aR) + aR ≤ a + aR.
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Since D(R) is a group there is some some divisorial ideal −a. Hence

R = a−a ≤ aR+ a−a = aR

and thus a ∈ R, as aR ⊆ R. Since a ∈ K was arbitrary among
non-zero almost integral elements, R is completely integrally closed.

“⇐” Assume R to be completely integrally closed and let a ⊆ R be a
divisorial integral ideal.

Consider the integral ideal a · (R : a) ⊆ R and let a ∈ K such
that a · (R : a) ⊆ aR. Then a 6= 0 since a · (R : a) 6= 0. As
a−1a · (R : a) ⊆ R, we get that

a−1a ⊆ (R : (R : a))
2.4ii)
= a

holds by definition. Therefore, by a simple induction,

(a−1)na = a−na ⊆ a

holds for any natural number n ∈ N. So for any 0 6= b ∈ a we have

ba−n ∈ a−na ⊆ a ⊆ R,

which shows, that a−1 is almost integral over R. Since R is completely
integrally closed, a−1 ∈ R and thus R ⊆ aR.

All in all,

R ⊇ a + (R : a) =
⋂
a∈K

a·(R:a)⊆aR

aR ⊇ R

proves that a is invertible.

If a is divisorial but not necessarily integral, take any common de-
nominator d ∈ R of a and define b := dR+ a = da ⊆ R, so that

a + (dR− b) = b − b = R.

This shows, that D(R) is a group.

Corollary 2.13. A domain R is completely integrally closed if and only if
for every divisorial ideal a

(a : a) = R

holds.

Proof. Theorem 2.12 states that R is completely integrally closed if and only
if D(R) is a group and by the proof, this is the case if and only if for any
divisorial ideal a

R = (R : (R : (R : a) ·a))
2.3ii)
= (R : ((R : (R : a)) : a))

2.4ii)
= (R : (a : a)).
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This is the case if and only if

R = (R : R) = (R : (R : (a : a)))
2.4ii)
= (a : a),

since (a : a) is divisorial by 2.3v).

Remark 2.14. Studying almost integral elements a little more, it becomes
apparent, that a ring R is completely integrally closed if and only if for
any fractionary ideal a, (a : a) = R holds. This can be seen in [Fos73,
p. 12f., Chapter I, §3, Lemma 3.1 and Corollary 3.3] in more detail. So
Corollary 2.13 above is another instance of divisorial ideals carrying similar
information as fractionary ideals. This further justifies the consideration of
divisorial ideals over fractionary ones.

2.2 Class Groups

Whether or not the monoid of divisors is a group, it always contains the
group of principal ideals. We will now establish the notion of the class
group to be a measure of the difference between the divisorial ideals and the
principal ideals. In Chapter 3.1 we will even show, that the class group is
0 if and only if the considered domain is factorial. Because of this, we are
especially interested in the class group of Dedekind domains.

Proposition 2.15. For a domain R let Prin(R) := {aR | a ∈ Frac(R)×}
be the set of non-zero principal ideals. This defines an abelian subgroup of
D(R).

Proof. As principal ideals are divisorial R = 1R ∈ Prin(R) ⊆ D(R) and
aR · bR = (ab)R for a, b ∈ K := Frac(R), Prin(R) is indeed a submonoid.
Furthermore aR · a−1R = (aa−1)R = R for a ∈ K×, so that Prin(R) is
indeed a group.

Definition 2.16 (Class group).
Let R be a completely integrally closed domain and consider the subgroup
Prin(R) from Proposition 2.15 above. Then the class group

Cl(R) := D(R)�Prin(R)

of R is defined as the quotient of D(R) and Prin(R). For a divisorial ideal
a ∈ D(R) let c(a) := a + Prin(R) ∈ Cl(R) denote the class of a, ie.e the
corresponding element in the class group.

Example 2.17. Consider a discrete valuation ring R with surjective valua-
tion ν : K := Frac(R)→ Z∪{∞}. Recall the basic properties of a valuation
ring given in Lemma 1.37, as well as, that R is completely integrally closed
by Corollary 1.45. So D(R) is a group by Theorem 2.12 and we can compute
the class group Cl(R).
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For a ∈ K× the principal ideal aR is comparable to R, because if a ∈ R,
then aR ⊆ R, and R ⊆ aR, if a−1 ∈ R, one of which is true. Hence, the
same holds true for arbitrary intersections of principal ideals and thus for
any divisorial ideal. Therefore, it suffices to consider the non-negative, i.e.
integral, ideals in D(R)≥0 as the other divisorial ideals are just the inverses
of these.

Note that for any two elements a, b ∈ R, ν(a) = ν(b) if and only if
aR = bR, so the unique maximal ideal m is generated by any a ∈ ν−1(1).
Fix such an a0.

Furthermore, for any subset U ⊆ R \ {0} there is a b ∈ U with ν(b) =
mina∈U{ν(a)} since N is well-ordered. Thus⋂

a∈U
aR = bR = a

ν(b)
0 R = (a0R)ν(b)

for any U ⊆ R. This shows, that

D(R) = {an0R | n ∈ Z} = Prin(R)

is the monoid of divisors. Therefore, up to an order embedding isomorphism,
D(R) ∼= Z and Cl(R) ∼= 0.
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3 Theory of Krull Domains

In this Chapter we want to study Krull domains as a useful generalisation of
Dedekind domains. The connection between Dedekind domains and Krull
domains will be discussed in Chapter 4. Krull domains can also be con-
sidered to be generalisations of other important concepts including unique
factorisation domains, which we will see over the course of this Chapter.
After establishing some basic properties, we will proceed to study stability
properties of Krull domains. Ultimately, we will proof, that every abelian
group can be realised as the class group of a Krull domain, up to some
isomorphism.

Throughout this Chapter let A be a Krull domain with F := Frac(A) as
its fraction field, if not stated otherwise.

3.1 Krull Domains

We will start of by describing Krull domains, in a possibly unusual fash-
ion, as completely integrally closed domains with a particularly nice divisor
group. Later on, we will see this definition coinciding with the usual defi-
nition of Krull domains as certain intersections of discrete valuation rings.
Nevertheless, this point of view will be helpful in developing the notions,
which are relevant to the theory of Krull domains. Again we will follow
[Sam64, p. 4-9, Chapter I, §3].

Definition 3.1 (Krull domain).
A Krull domain A is a completely integrally closed domain, such that its
divisor group is order embedding isomorphic to a lattice, i.e.

D(A) ∼= Z(I)

via an embedding the order for some index set I.

Example 3.2. The easiest example of a Krull domain is a field. To account
for this, we will consider an empty intersection of discrete valuation rings of
the field as the field itself. It will become apparent over the course of this
section, why this is useful.

Additionally, we have seen in Example 2.17, that every discrete valuation
ring is a Krull domain.

Proposition 3.3. A completely integrally closed domain A is a Krull do-
main if and only if it satisfies the maximum condition for (proper) divisorial
integral ideals, i.e. any non-empty subset ∅ 6= U ⊆ D(A)>0 of positive divi-
sorial ideals has an “⊆”-maximal element.

In that case, the set P(A) of minimal positive divisorial ideals is a free
generating set of D(A) and the canonical isomorphism

ϕ : D(A)→ Z(P(A))

P(A) 3 p 7→ (δpq)q∈P(A)
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is order embedding.

Proof. By Theorem 1.6, for every partially ordered group G there is an order
embedding isomorphism to some lattice Z(I) if and only if the following two
conditions are met:

(a) For any two elements a, b ∈ G there is a supremum sup(a, b) ∈ G and
an infimum inf(a, b) ∈ G.

(b) Every subset of positive elements has a minimal element.

Proposition 2.8 states that D(A) always satisfies condition (a). Hence D(A)
is a lattice if and only if condition (b) is met, which by the definition of “≤”
is equivalent to the maximum condition for positive divisorial ideals.

The rest of the statement is a direct application of Theorem 1.6.

Remark 3.4. The condition given in Proposition 3.3 is not equivalent to
being noetherian, because the maximum condition is only required for divi-
sorial ideals. A possible example for this phenomenon is the non-noetherian
domain Z[Xn | n ∈ N], for which we will show, that it is a Krull domain.

Corollary 3.5. A normal noetherian domain is a Krull domain.

Proof. By 1.33 a normal noetherian domain is completely integrally closed.
Furthermore, a noetherian domain satisfies the maximum condition for every
set of integral ideals and thus particularly for any set of positive divisorial
ideals. Hence the claim is a consequence of Proposition 3.3 above.

Definition 3.6 (Prime divisors and essential valuations).
Let P(A) denote the set of minimal divisorial ideals above a Krull domain
A, i.e.

P(A) := {a ∈ D(A)>0 | ∀b ∈ D(A) A < b ≤ a⇒ b = a}.

The elements of P(A) are called the prime divisors of A.
Note that P(A) consists only of proper ideals, which form a free gener-

ating set for D(A), as mentioned in Proposition 3.3. Hence, if F := Frac(A)
is the fraction field of A, then for x ∈ F× there is a unique presentation of
xA in terms of the free generating set P(A)

xA =
∑

p∈P(A)

νp(x)p

with νp(x) ∈ Z for every p ∈ P(A), almost all of which are zero. Since

for x, y ∈ F× xyA = xA + yA and (x + y)A ≥ 〈x, y〉 = inf(xA, yA), the
following relations

i) νp(xy) = νp(x) + νp(y) and
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ii) νp(x+ y)
3.3
≥ inf{νp(x), νp(y)} = min{νp(x), νp(y)} for x+ y 6= 0

hold for all p ∈ P(A). Defining νp(0) := ∞ yields, that for every prime
divisor p, νp defines a discrete valuation on F . We will see in Corollary
3.9, that these valuations are in fact surjective, which justifies, that they are
discrete. These valuations are called the essential valuations of A.

Lemma 3.7. For a divisorial ideal a =
∑

p∈P(A) npp of a Krull domain A
we have

a = {x ∈ Frac(A) | ∀p ∈ P(A) np ≤ νp(x)}.

Proof. For any x ∈ Frac(A)

x ∈ a ⇐⇒ xA ⊆ a ⇐⇒ a ≤ xA 3.3⇐⇒ ∀p ∈ P(A) np ≤ νp(x).

For this reason divisorial ideals are also said to be “defined by essential
valuation conditions ”, as it is done by Claborn in [Cla66].

Corollary 3.8. If p ∈ P(A) is a prime divisor of a Krull domain A, then
p is a prime ideal. Because of this, the prime divisors are also called prime
divisorial ideals.

Proof. Since P(A) ⊆ D(A)>0 the prime divisor p is a proper integral ideal.
Now let x, y ∈ A such that xy ∈ p. Then by Lemma 3.7 1 ≤ νp(x) =
νp(x) + νp(y). Hence 1 ≤ νp(x) or 1 ≤ νp(y) and thus again by Lemma 3.7
x ∈ p or y ∈ p. So p is prime.

Corollary 3.9. For any prime divisorial ideal p ∈ P(A) of a Krull domain
A there is some xp ∈ A with νp(xp) = 1.

Proof. Consider a prime divisorial ideal p ∈ P(A). As the divisors D(A)

form a lattice, 2p
1.8
( p. So Lemma 3.7 shows, that

∅ 6= p \ 2p
3.7
={a ∈ A | νp(a) ≥ 1} \ {a ∈ A | νp(a) ≥ 2}

= {a ∈ A | νp(a) = 1}

is non-empty. Hence any x ∈ p \ 2p fulfils the requirements to be xp.

Lemma 3.10. Let 0 6= q be a prime ideal of a Krull domain A. Then

i) the prime ideal q contains some prime divisorial ideal and

ii) the prime ideal q is a prime divisorial ideal if and only if it is of height
1, i.e. there is no non-zero prime ideal p strictly contained in q.
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Proof.

i) For 0 6= x ∈ q the principal ideal xA =
∑

p∈P(A) νp(x)p is a finite
sum with only non-negative summands. Thus∏

p∈P(A)
νp(x)>0

pνp(x) ⊆ xA ⊆ q

and by Lemma 1.9 there is j ∈ J such that pj ⊆ q as q is prime.

ii) Assume q was of height 1. By i) there is a prime divisorial ideal p
such that 0 6= p ⊆ p and thus p = q.

On the other hand, if q was prime divisorial and 0 6= p ⊆ q for some
prime ideal p, then again by i), there is some prime divisorial ideal
q0 ⊆ p. Thus

q = q0 ⊆ p ⊆ q

holds by the minimality of q0.

Corollary 3.11. A divisorial ideal of a Krull domain A is prime divisorial
if and only if it is a prime ideal. In particular, a prime element spans a
prime divisorial ideal.

Proof. Applying Corollary 3.8, it suffices to show, that divisorial ideals,
which are prime, are prime divisorial.

So assume p to be prime and divisorial. By Lemma 3.10 there is a prime
divisorial ideal q ⊆ p and by the minimality of q they must be equal, i.e.
q = p.

As prime elements span principal prime ideals, the second claim is a
direct consequence.

Lemma 3.12. We have Ap = Rνp for a p prime divisorial ideal of a Krull
domain A.

Proof. Since by Corollary 3.8 p is a prime ideal, (A \ p) is indeed multi-
plicatively closed. Let F := Frac(A) denote that field of fractions of A.

“⊆” Let a
b ∈ Ap ⊆ F , so that without loss of generality b /∈ p. By applying

Lemma 3.7 νp(b) = 0. Hence

νp

(a
b

)
= νp(a)− νp(b) = νp(a) ≥ 0

shows, that a
b ∈ Aνp .
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“⊇” Let x ∈ Rνp ⊆ F with xA =
∑

q∈P(A) νq(x)q and define

a :=
∑

q∈P(A)
νq(x)<0

−νq(x)q ⊆ A.

Since 0 ≤ νp(x), the divisorial ideal p and a are not comparable.
Thus for s ∈ a \p 6= ∅ and q ∈ P(A)

νq(sx) = νq(x) + νq(s) ≥ νq(x)− νq(x) = 0.

Hence A ≤ sxA and therefore sx ∈ A, which shows, that x ∈ Ap.

Corollary 3.13. A Krull domain A is an intersection of discrete valuation
rings,

A =
⋂

p∈P(A)

Rνp =
⋂

p prime ideal
of height 1

Ap.

Proof. For x ∈ Frac(A) the equivalence

∀p ∈ P(A) 0 ≤ νp(x) ⇐⇒ A ≤ xA ⇐⇒ xA ⊆ A ⇐⇒ x ∈ A

holds. The rest is a consequence of Lemma 3.10 and 3.12 above.

In fact Corollary 3.13 yields a characterisation of Krull domains as the
following Theorem will show.

Theorem 3.14 (Valuation Criterion).
Let A be a domain. Then the following statements are equivalent:

i) A is a Krull domain

ii) There is a family (νi)i∈I of discrete valuations of F = Frac(A) for
some index set I such that the following two conditions hold:

(a) For x ∈ K we have x ∈ A if and only if 0 ≤ νi(x) for all i ∈ I,
i.e.

A =
⋂
i∈I

Rνi .

(b) For every 0 6= x ∈ A we have νi(x) = 0 for almost any i ∈ I.

If a family of discrete valuations (νi)i∈I satisfies condition ii) for a domain
A, we also say, that (νi)i∈I satisfies the Valuation Criterion for A.

Proof.

“⇒” Taking the essential valuations of A as the family of valuations yields
condition (b) by definition. Then condition (a) is a direct application
of Corollary 3.13 above.
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“⇐” Lemma 1.35 states, that intersections of completely integrally closed
domains are completely integrally closed. Thus, by condition (a), A
is completely integrally closed due to discrete valuation rings being
completely integrally closed, as shown in Corollary 1.45.

By Proposition 3.3, it suffices to verify that A satisfies the maximum
condition for sets of (proper) integral divisorial ideals. Now take x ∈
F×. By definition there is some a ∈ A for y ∈ xA with ax = y and
thus

νi(y) = νi(x) + ν(a) ≥ νi(x)

for every i ∈ I, as 0 ≤ νi(a) by (a). On the other hand, if for y ∈ F
there is some i ∈ I such that νi(x) ≤ νi(y), then 0 ≤ νi(x

−1y) and
thus x−1y ∈ Rνi . So if for every i ∈ I νi(x) ≤ νi(y) then condition (a)
yields, that x−1y ∈ A and thus y = x(x−1y) ∈ xA. Hence for x ∈ F

xA = {y ∈ F | ∀i ∈ I νi(x) ≤ νi(y)}.

Therefore, we have for any integral divisorial ideal a given by U ⊆ F×

a =
⋂
x∈U

xA =
⋂
x∈U
{y ∈ F | ∀i ∈ I νi(x) ≤ νi(y)}

= {y ∈ F | ∀i ∈ I ni := sup
x∈U
{νi(x)} ≤ νi(y)},

where without loss of generality ni ≥ 0 by condition (a). Now by
condition (b) (ni)i∈I ∈ Z(I). Otherwise, i.e. if ni 6= 0 almost all i ∈ I
or one of the ni =∞, the corresponding ideal must be 0 by condition
(b) and thus is not divisorial.

Therefore, there are only finitely many integral divisorial ideals smaller
than, and thus containing, any given divisorial ideal a = {a ∈ A |
ni ≤ νi(a)}. Hence for every non-empty set of integral divisorial ideals
U ⊆ D(A)≥0 and any a ∈ U, there are only finitely many integral
divisorial ideals containing a in U. For a fixed a ∈ U, the inclusion
maximal among these is automatically “⊆”-maximal in U. Therefore,
A satisfies the maximum condition for integral divisorial ideals.

Corollary 3.15. A discrete valuation ν : F → Z is an essential valuation
of a Krull domain A with field of fractions Frac(A) =: F if and only if for
every family (νi)i∈I of discrete valuations satisfying the Valuation Criterion
for A, there is some i ∈ I such that ν = νi.

Proof. It is apparent, that if ν appears in any family of valuations displaying
A as a Krull domain, then it appears in (νp)p∈P(A) and thus is an essential
valuation.

Conversely, let p ∈ P(A) and let qi = A ∩mi, where mi is the unique
maximal ideal of Rνi for i ∈ I. The integral ideal qi is prime, since mi is
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prime and A is a subring of Rνi . Like in the proof of the Valuation Criterion
above, p = {x ∈ K | ∀i ∈ I νi(x) ≥ ni} for some (ni)i∈I ∈ Z(I). Hence∏

i∈I
ni>0

qni
i ⊆ p.

By Lemma 1.9 there is some j ∈ I with nj > 0 and 0 6= qj ⊆ p. Note that
qj 6= 0, because nj 6= 0. Now p is of height 1 by Lemma 3.10 and thus
qj = p. Therefore

Rνp
3.12
= Ap ⊆ Rνj .

Since by Lemma 1.42 discrete valuation rings are maximal proper subrings
of F , both discrete valuation rings are equal, i.e. Rνp = Rνj . Hence by
Corollary 1.39 νp = νj .

Corollary 3.16. A family of discrete valuations (νi)i∈I , that satisfies the
Valuation Criterion for a domain A, such that no valuation can be omitted
from the family (νi)i∈I without destroying this property, is the family of
essential valuations.

Proof. Any family of valuations presenting A as a Krull domain contains the
family of essential valuations by Corollary 3.15 above. On the other hand,
we know, that the family of essential valuations is sufficient to present A as
a Krull domain by Corollary 3.13.

Remark 3.17. The Valuation Criterion and its Corollaries yield an equiv-
alent definition of a Krull domain and its essential valuation.

Corollary 3.18. Any unique factorisation domain R is a Krull domain. In
this case its class group is trivial, i.e. Cl(R) ∼= 0.

Proof. Condition ii) from the Valuation Criterion is an immediate applica-
tion of 1.46 . Taking Corollary 3.15 into account, the prime divisorial ideals
of R are all principal, as they are generated by one of the prime elements
of R each. In fact, the valuations given in Example 1.46 are the essential
valuations of R as an easy consequence of Corollary 3.11.

Hence D(R) ⊆ Prin(R) and thus Cl(A) ∼= 0.

Recalling Example 1.26 we have finally shown, that Z[Xi | i ∈ N] is in-
deed a non-noetherian Krull domain, which is completely integrally closed.
In fact, the characterisation of unique factorisation domains as Krull do-
mains yields many more examples of Krull domains. However, these ex-
amples are not very interesting for us at the moment, because they have
a trivial class group. Nevertheless, the next Theorem will generalise our
observation into a characterisation of unique factorisation domains.
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Theorem 3.19. For a domain R the following are equivalent:

i) R is a Krull domain with Cl(R) ∼= 0.

ii) R is a Krull domain and every prime divisorial ideal is principal.

iii) R is a Krull domain and the intersection of any two (integral) principal
ideals is principal.

iv) Every irreducible element of R is prime and R satisfies the maximum
condition for every set of integral principal ideals, ie. every set of
integral principal ideals has an “⊆”-maximal element.

v) R is a unique factorisation domain.

Proof.

i) ⇔ ii) This is an immediate consequence of Prin(R) being the subgroup of of
principal ideals and therefore Cl(R) ∼= 0 if and only if Prin(R) = D(R).

ii) ⇒ iv) Since every divisorial ideal is principal, any proper integral principal
ideal aR 6= R is “≤”-minimal among proper integral divisorial ideals if
and only if it is “⊆”-maximal among those. Hence the principal ideals
spanned by the irreducible elements are prime divisorial and thus by
Corollary 3.8 prime. Therefore, every irreducible element is prime.

Moreover, because we have seen in Proposition 3.3, that the Krull
domain R satisfies the maximum condition for the set of integral divi-
sorial ideals, R satisfies the maximum condition for integral principal
ideals.

iv) ⇔ v) This is Lemma 1.19.

v) ⇒ i) This is Corollary 3.18 above.

The proof of ii) ⇐⇒ iii) can be found in (the proof of) [Sam64, p. 16f.,
Chapter I, §5, Theorem 5.3], as well as further equivalences.

3.2 Stability Properties of Krull Domains

In this section we will develop the notion of a subintersection of a Krull do-
main and establish a connection between the class groups, namely Nagata’s
Theorem. This relation will turn out to be very useful when constructing
Krull domains with arbitrary class groups. Moreover, we will show, that
any Polynomial ring over a Krull domain is again a Krull domain with an
isomorphic class group.
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Proposition 3.20. Let K be a field and (Aα)α a family of Krull domains, all
of which are contained in K, and let B :=

⋂
αAα. Assume every 0 6= x ∈ B

is a unit in almost all of the Aα, then B is a Krull domain.
In particular finite intersections of Krull domains are Krull domains.

Proof. Any discrete valuation on Kα := Frac(Aα) restricts to a valuation
on F := Frac(B) ⊆ Kα with valuation group (isomorphic to) Z or 0 by
restricting it to the subfield. Now consider the family of valuations, which
restrict from the essential valuations of the Aα’s to discrete valuation on F
after applying some isomorphism. Then the intersection of the correspond-
ing discrete valuation rings is still B. Since 0 6= x ∈ B is a unit in almost
all Aα, x is a unit in almost all of these valuation rings. So B is in fact a
Krull domain by the Valuation Criterion.

Proposition 3.21. Let A be a Krull domain with field of fractions F :=
Frac(A). Let K be a finite field extension of F and let B denote the integral
closure of A in K. Then B is also a Krull domain.

Proof. As this Theorem is not necessary for our main Theorem, and some
notions from Galois Theory are required for this proof, we will just sketch
the proof of [Sam64, p.12, Chapter I, §4, Proposition 4.5].

First note, that without loss of generality the field extension is normal,
because by [ZS58, p. 77, Chapter II, §6, Theorem 14] there is a finite field
extension L of K such that the finite field extension of L over F is normal.
(The finiteness can be seen in the proof on p. 76.) Now if the integral
closure B′ of A in F is a Krull domain, then B = B′ ∩K is a Krull domain
by Proposition 3.20.

So let K be normal over F . In [ZS60, p.13, Chapter VI, §4, Theorem
5’] it is shown, that any valuation of F can be extended to a valuation of
K with the same valuation group. Furthermore, by [ZS60, p.29, Chapter
VI, §7, Corollary 4 to Theorem 12] there are at most finitely many different
extensions of such a valuation, since the field extension is finite. (Note that
to connect the concept of a place and a valuation [ZS60, p.35-39, Chapter
VI, §9] might be helpful.)

Let Φ denote the set of all discrete valuations that are extensions of the
essential valuations of A. Then only the verification, that the valuations in
Φ satisfy the Valuation Criterion for B, remains.

Proposition 3.22. Let T ⊆ P(A) be a set of prime divisorial ideals of a
Krull domain A and define B :=

⋂
p∈T Rp. Then B is a Krull domain with

fraction field Frac(B) = Frac(A) =: F . Furthermore the essential valuations
are given by the prime divisorial ideals p ∈ T .

We will call Krull domains such as B subintersections of A coinciding
with [Fos73].

36



Proof. The concept of a subintersection as well as this proof are based on
[Cla66, p.219, Proposition 1].

Since A ⊆ B ⊆ F , we have F = Frac(A) ⊆ Frac(B) ⊆ Frac(F ) = F .
Now, as a consequence of the Valuation Criterion, B is a valuation ring, as
almost all essential valuations ν of A vanish on any given element a

b ∈ F
×,

because ν
(
a
b

)
= ν(a)− ν(b).

Lastly, if any of the valuations νq for q ∈ T could be omitted from this
family of valuations, then νq could be omitted from the family of essential
valuations (νp)p∈P(A) of A, which is not possible by Corollary 3.15. So by
Corollary 3.16, (νp)p∈T is the family of essential valuations of B.

Remark 3.23. With the notation of Proposition 3.22, the subintersection
B :=

⋂
p∈T Ap actually defines a superset of A :=

⋂
p∈P(A)Rp. So one

might talk about a supintersection instead of a subintersection. However, to
be consistent with the literature, we will stick to the name subintersection.

Example 3.24. Let us examine subintersections of Z. Let P denote the set
of positive prime elements and take a prime number p0 ∈ P. Let T := {pZ |
p0 6= p ∈ P}. Then we have for the subintersection given by T

B :=
⋂
p∈T

Rνp =

{
a

pn0

∣∣∣∣ a ∈ Z and n ∈ N
}

= {pn0}−1n∈NZ.

Generally if T0 ⊆ P and T = {pZ | p ∈ P \ T0} and S is the multiplicatively
generated set by the elements of T0, then

B :=
⋂
p∈T

Rp = S−1Z.

Are these localisations again unique factorisation domains? Is there a con-
nection between subintersections and localisations? Both of these questions
will be answered soon.

From now on B will be used to describe a subintersection of a given
Krull domain A given by some T ⊆ P(A), if not stated otherwise.

Proposition 3.25. Let S ⊂ A\{0} be a multiplicatively closed subset. Then
the localisation S−1A is again a Krull domain and the essential valuations
are given by {p ∈ P(A)|S ∩p = ∅}.

In other words, a non-trivial localisation of a Krull domain can be treated
as a subintersection of A.

Proof. Using Proposition 3.22, it suffices (and is necessary) to verify

S−1A =
⋂

p∈P(A)
p∩S=∅

Rνp .
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“⊆” Let p ∈ P(A) such that p ∩ S = ∅. Then for d ∈ S, νp(d) = 0 by
Lemma 3.7. Thus we have for a ∈ A and d ∈ S

νp(
a

d
) = νp(a)− νp(d) = νp(a) ≥ 0.

Hence S−1A ⊆ Rνp .

“⊇” Let x ∈
⋂

p∈P(A)
p∩S=∅

Rνp and consider Q(x) := {q ∈ P(A) | νq(x) < 0}.
By definition, there is some sq ∈ q∩S for any q ∈ Q(x) and therefore

S 3 s :=
∏

q∈Q(x)

s
−νq(x)
q ∈

∑
q∈Q(x)

−νq(x)q =: a ⊆ A.

As for any a ∈ a and p ∈ P(A) we have νp(a) ≥ −νp(x) the following
relations

νp(sx) = νp(x) + νp(s) ≥ νp(x)− νp(x) = 0

holds for any p ∈ P(A). Hence sx ∈ A and thus⋂
p∈P(A)
p∩S=∅

Rνp ⊆ S−1A ⊆
⋂

p∈P(A)
p∩S=∅

Rνp .

Lemma 3.26. Let B be a subintersection of a Krull domain A given by
T ⊆ P(A). Then there is a bijection π : T → P(B) defined by

T 3 p 7→ {a ∈ B | νp(a) ≥ 1} ∈ P(B).

Proof. Let P ∈ P(B) with νP = νp for some p ∈ T as by Proposition 3.22,
the family of essential valuations of P(B) is given by T . Now Lemma 3.7
shows the surjectivity and well definedness of π via

P = {a ∈ B | νP(a) ≥ 1} = {a ∈ B | νp(a) ≥ 1}.

The injectivity holds since p = π(p) ∩ A by Lemma 3.7 combined with
Corollary 3.13.

Lemma 3.27. Let B be a subintersection of a Krull domain A given by
T ⊆ P(A). Consider p ∈ P(A). Then the following hold:

i) If p /∈ T then pB = B.

ii) If p ∈ T then pB = (B : (B : pB)) = {a ∈ B | νp(a) ≥ 1} ∈ P(B).

Proof. Considering p ∈ P(A), we know that for every q ∈ T ′ := T \ {p},
there is some x ∈ p \ q, since by their minimality they must not contain
one another. By Lemma 3.7 νq(x) = 0 for such an x. Now let us consider
(B : pB).
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i) For p /∈ T we have

(B : pB) = {x ∈ K | ∀q ∈ T νq(x) ≥ 0} = B = (B : B)

by the argument above. This shows pB = B using Lemma 2.4.

ii) By Corollary 3.9 there is some

xp ∈ p ⊆ pB ⊆ {a ∈ B | νp(a) ≥ 1} =: P

with νp(xp) = 1. Hence

(B : pB) = {x ∈ K | ∀q ∈ T ′ νq(x) = 0 ∧ νp(x) ≥ −1} = (B : P)

and applying Lemma 2.4 again shows, that pB = P. Lastly, P =
P ∈ P(B) by Lemma 3.26 above.

Theorem 3.28 (Nagata’s Theorem).
For a Krull domain A and a subintersection B =

⋂
p∈T Rνp given by T ⊆

P(A) the map

π : D(A)→ D(B)

a 7→ aB

is a surjective group homomorphism sending principal ideals to principal
ideals. Furthermore, π induces a surjective group homomorphism.

π̄ : Cl(A)→ Cl(B)

c(a) 7→ c(aB)

The kernel of π and π is generated by (the equivalence classes) of the prime
divisorial ideals p ∈ P(A) \ T .

Proof. This proof is based on the proof given in [Fos73, p. 35, Chapter II,
§7, Theorem 7.1]. Corollary 2.5 shows that

aB + bB = aBbB = abB

for two divisorial ideals a,b ∈ D(A). Hence π is indeed a group homorphism.
Now Lemma 3.26 and 3.27 above state, that p ∈ P(A)\T is in the kernel

of π and T is mapped bijectively to the free generating set P(B) of D(B).
Hence π is a surjective group homomorphism with kernel H := 〈{p | p ∈
P(A) \ T}〉.

Next consider the restriction of π to Prin(A). For x ∈ K×

π(xA) = xAB = xB = xB ∈ Prin(B).
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So the restriction yields a group homomorphism

π |Prin(A) : Prin(A) 7→ Prin(B),

which is surjective as for x ∈ K× xA is a preimage for xB.
Hence the kernel of

π̃ : D(A)→ D(B)→ D(B)�Prin(B) = Cl(B)

a 7→ aB 7→ c(aB)

is ker(π̃) = H + Prin(A), since if π(a) = xB we have a − xA ∈ ker(π) =

H. Therefore, π̃ induces a map π̄ : Cl(A) = D(A)�Prin(A) → Cl(B) since

Prin(A) ⊆ ker(π̃) for which the kernel is

ker(π̄) = (H + Prin(A))�Prin(A) = H�Prin(A).

Corollary 3.29. The class group of a subintersection B of a Krull domain
is a homomorphic image of the class group of A.

Example 3.30. Subintersections of unique factorisation domains are again
unique factorisation domains, in particular the localisations of Z considered
in Example 3.24.

Remark 3.31. Nagata studied Krull domains as they occur as the integral
closure of noetherian domains ([Nag62, p. 118, Chapter V, 33., (33.10) The-
orem]). In this context, he proved, that the localisation at a multiplicatively
closed set S 63 0 of a Krull domain is again a Krull domain, which can be
seen in [Nag62, p.116f., Chapter V, 33., (33.6) Theorem].

Samuel contributes to Nagata a version of this Theorem, which is more
similar to our own, namely [Sam64, p. 21, Chapter I, §6,Theorem 6.3]. This
will be our second version of Nagata’s Theorem.

Theorem 3.32 (Nagata’s Theorem second version).
Let B := S−1A be the localisation of a Krull domain A on a multiplicatively
closed subset S ⊆ A, multiplicatively generated by prime elements. Then the
group homomorphism

π : D(A)→ D(B)

a 7→ aB

induces an isomorphism

π̄ : Cl(A)→ Cl(B)

c(a) 7→ c(aB)

on the class groups, i.e. Cl(A) ∼= Cl(B).
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Proof. By the first version of Nagata’s Theorem above and the character-
isation of localisations as subintersections from Proposition 3.25, the map
π̄ : Cl(A)→ Cl(B) is a surjective group homomorphism with kernel

ker(π) = 〈{p ∈ P (A) | p ∩ S 6= ∅}〉�Prin(A).

Here we used, that 0 /∈ S, because 0 is no product of prime elements.
Now, as described in [Sam64, p. 21, Chapter I, §6, Theorem 6.3], consider

such a prime divisorial ideal p ∈ P(A) with p∩S 6= ∅. Then there are some
prime elements s0, . . . , sn ∈ S for some n ∈ N such that

∏n
i=0 si ∈ p ∩ S.

Since p is prime, there is some 0 ≤ j ≤ n with sj ∈ p. But sjA and p

are both prime divisorial ideals and thus p = sjA ∈ Prin(A) is principal.
Therefore

ker(π) = 〈{p ∈ P (A) | p ∩ S 6= ∅}〉�Prin(A) ⊆
Prin(A)�Prin(A)

∼= 0

shows that π̄ is also injective.

Theorem 3.33. For an index set I the polynomial ring A[Xi | i ∈ I] is
again a Krull domain. Furthermore

ι : D(A)→ D(A[Xi|i ∈ I])

a 7→ aA[Xi | i ∈ I]

is an injective group homomorphism sending prime divisors to prime di-
visors and principal ideals to principal ideals. Furthermore ι induces an
isomorphism

ῑ : Cl(A)→ Cl(A[Xi | i ∈ I])

c(a) 7→ c(aA[Xi | i ∈ I])

of class groups.

Proof. To show that A[Xi | i ∈ I] is again a Krull domain we will follow the
proof of [Sam64, p. 11, Chapter I, §4, Proposition 4.3]. With this in mind,
define for a prime divisorial ideal p ∈ P(A) the map

ν̃p : F [Xi | i ∈ I] \ {0} → Z
n∑
j=1

aj

nj∏
i∈Ij

X
nij
i 7→ min

1≤j≤n
{νp(aj)}

where F = Frac(A) is the field of fractions of A. It is easy to see, that ν̃p is
a monoid homomorphism satisfying the conditions to be a discrete valuation
as νp was a discrete valuation. Thus it can be uniquely extended to a discrete
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valuation on F (Xi | i ∈ I) := Frac(F [Xi | i ∈ I]) = Frac(A[Xi | i ∈ I]) by
Proposition 1.41.

Any given polynomial has only finitely many coefficients, for which only
finitely many valuations νp are non-trivial for p ∈ P(A). Thus almost all
of the valuations ν̃p vanish on any given element of F (Xi | i ∈ I). So the
Valuation Criterion states that

⋂
p∈P(A)Rν̃p is a Krull domain.

By Example 1.26, F [Xi | i ∈ I] is a a unique factorisation domain and
thus a Krull domain by Theorem 3.19. Hence by Proposition 3.20

A[Xi | i ∈ I] = F [Xi | i ∈ I] ∩
⋂

p∈P(A)

Rν̃p =
⋂

q∈P(F [Xi|i∈I])

Rνq ∩
⋂

p∈P(A)

Rν̃p

is a Krull domain. This equality holds, because in the ring on the right hand
side, there are only the polynomials in F [Xi | i ∈ I], whose coefficients are
in A =

⋂
p∈P(A)Rνp .

In fact the valuations ν̃p for p ∈ P(A) are essential valuations by Corol-
lary 3.16, because none of the valuations can be omitted from the intersection
above. Otherwise, the elements of −p 6⊆ A are an element of the intersec-
tion, if any ν̃p was omitted for some p ∈ A, or for a prime polynomial

n∑
j=1

aj
bj

nj∏
i∈Ij

X
nij
i = p ∈ F [Xi | i ∈ I]

the element
(

(
∏n
j=1

1
aj

)p
)−1

/∈ A[Xi | i ∈ I] was in the intersection, if the

valuation ν〈p〉 was omitted. (Recall that every prime divisorial ideal of a
unique factorisation domain is principal.)

Now by similar methods as for the proof of Nagata’s Theorem and its
corresponding Lemmata 3.26 and 3.27, the map ι is indeed a group homo-
morphism sending principal ideals to principal ideals. Furthermore, for a
prime divisorial ideal p ∈ P(A)

pA[Xi | i ∈ I] = {x ∈ A[Xi | i ∈ I] | ν̃p(x) ≥ 1} ∈ P(A[Xi | i ∈ I]),

since ν̃p |A= νp. That ι is injective is again a consequence of p = pA[Xi | i ∈ I]∩
A.

For a prime divisorial ideal p ∈ P(A) let P := {x ∈ A[Xi | i ∈ I] |
ν̃p(x) ≥ 1} be the corresponding prime divisorial ideal in A[Xi | i ∈ I].
Then every principal ideal in the image of ι

fA[Xi|i ∈ I] ∈ im(ι) = 〈{P | p ∈ P(A)}〉 =: H

meets A non-trivially, because this holds true for the generators. Hence
deg(f) = 0 so that f ∈ A and fA[Xi|i ∈ I] = ι(fA). Therefore

ῑ : Cl(A) = D(A)�Prin(A)→
H�Prin(A[Xi|i ∈ I])

c(a) 7→ c(aA[Xi|i ∈ I])
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is an isomorphism.
Last but not least, the unique factorisation domain F [Xi | i ∈ I] is a

subintersection of A[Xi | i ∈ I] with trivial class group by Theorem 3.19.
Hence

Cl(A[Xi | i ∈ I]) = ker
(
π̄ : Cl(A[Xi | i ∈ I])→ Cl(F [Xi | i ∈ I])

)
= H�Prin(A[Xi | i ∈ I])

where the last equality and π̄ come from Nagata’s Theorem. Recall that
π̄(c(p)) = c(pF [Xi | i ∈ I]) for p ∈ P(A[Xi | i ∈ I]). Hence

ῑ : Cl(A) = D(A)�Prin(A)→
H�Prin(A[Xi | i ∈ I]) = Cl(A[Xi | i ∈ I])

is an isomorphism of class groups.

Remark 3.34. In general, we cannot assume for an arbitrary subring R of
a polynomial ring, that the elements of R, which are prime elements of the
polynomial ring, are again prime in R. An instance of this can be seen in
Example 3.37.

So what happens with the additional prime divisorial ideals gained by
considering the polynomial ring A[X] instead of A? A partial answer of this
will be given in Proposition 3.40.

Remark 3.35. In a similar fashion, it can be shown, that the ring of formal
power series A[[X]] over a Krull domain A is again a Krull domain. For this
see [Sam64, p. 12, Chapter I, §4, Proposition 4.4]. However, in this case we
generally just have an injective homomorphism Cl(A) → Cl(A[[X]]). For
this, see [Fos73, p. 35, Chapter II, §6, Corollary 6.13].

3.3 Class Groups of Krull Domains

With our developed tools, we will now be able to construct a Krull domain
with a free class group of arbitrary rank. Afterwards, we will complete our
notion of the class group of a subintersection as a homomorphic image of the
class group of a given Krull domain. In particular, we will show that every
homomorphic image of a class group can itself be realised as the class group
of a subintersection of the polynomial ring in one variable over the Krull
domain. Ultimately, this means, that every abelian group can be realised as
the class group of a Krull domain.

Proposition 3.36. Every free abelian group is the class group of a Krull
domain.

Proof. This proof is based on the proof of [Cla66, p. 221, Proposition 6].
Let I be some index set and K be an arbitrary field. Consider the unique
factorisation domain B := K[Xi, Yi, Zi | i ∈ I] (1.26) and the subrings

Rj := K[Xi, Yi, Zi | j 6= i ∈ I][Xj , Yj , XjZj ]
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for j ∈ I. Note that for every j ∈ I we have Frac(Rj) = Frac(B) =: F . For
every index j ∈ I define the map

νj : Rj → Z
f 7→ max{n ∈ N | f ∈ 〈Xj , Yj〉nRj}

where the maximum always exists, because the elements of 〈Xj , Yj〉nRj ⊆ Rj
have at least degree n. It is easy to see, that νj is a homomorphism of
monoids meeting the requirements to be a discrete valuation, so νj extends
uniquely to a discrete valuation νj on F by Proposition of 1.41. As every
polynomial f ∈ B has only finitely many variables, almost all the valuations
νi with i ∈ I vanish on any given polynomial. Therefore, the same holds true
for the elements of F . Hence

⋂
i∈I Rνi is a Krull domain by the Valuation

Criterion.
Now, in a similar fashion to what we did in the proof of Theorem 3.33,

A := B ∩
⋂
i∈I

Rνi =
⋂

q∈P(B)

Rνq ∩
⋂
i∈I

Rνi

is a Krull domain by Proposition 3.20, whose essential valuations are the
ones given in the intersection. For the last part note that Frac(A) = F , as
for any i ∈ I, Ri ⊆ A, and then utilise Corollary 3.16:

1. If for some i ∈ I the valuation νi is omitted from the intersection, then
Zi /∈ A is an element of the intersection, since

νi(Zi) = νi(
XiZi
Xi

) = νi(ZiXi)− νi(Xi) = 0− 1 = −1.

2. If for i ∈ I the valuation νXiB is omitted from the intersection, then
Yi
Xi

/∈ A is an element of the intersection.

3. If for a prime element p ∈ B with pB 6= XiB for all i ∈ I the valuation
νpB is omitted, then ∏

i∈I
νi(p)>0

X
νi(p)
i

1

p
/∈ A

is an element of the intersection, since p is a unit in all other essential
valuation rings of B.

As every prime divisorial ideal of the unique factorisation domain B is prin-
cipal, the case distinction above is complete. Hence none of the valuations
can be omitted from the intersection.

Now B is a subintersection of A with trivial class group by Theorem 3.19
and thus by Nagata’s Theorem

Cl(A) = (ker(π̄) : Cl(A)→ Cl(B)) = 〈{pi | i ∈ I}〉�Prin(A)
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where pi is the prime divisorial ideal corresponding to νi for i ∈ I. Recall
that π̄(c(p)) = c(pB) for p ∈ P(A) as it was defined in Nagata’s Theorem.

Assume for some finite J ⊆ I and integers nj ∈ Z for j ∈ J that∑
j∈J

njpj = fA ∈ Prin(A)

was principal with f ∈ F×. Now by definition of the valuations, νq(f) = 0
for every prime divisorial ideal q ∈ P(B) and thus f is a unit in B, i.e.

f ∈ B× = K[Xi, Yi, Zi | i ∈ I]× = K× ⊆ A×.

Hence nj = 0 for all j ∈ J as fA = A and {pi | i ∈ I} is a free generating
set of 〈{pi | i ∈ I}〉. All in all,

Cl(A) = 〈{pi | i ∈ I}〉�Prin(A)
∼= 〈{pi | i ∈ I}〉 ∼= Z(I).

Since I was arbitrary, any free abelian group can be realised as the class
group of a Krull domain up to isomorphism.

Example 3.37. Let us construct a Krull domain whose class group is Z.
Consider the index set {0} and leave out the index of the variables X0, Y0
and Z0. Define R0 := K[X,Y,XZ] and recall that the discrete valation ν0
was defined for a ∈ R0 by the maximal power n ∈ N for which a ∈ 〈X,Y 〉nR0

.
Proceeding in the vein of the proof of Proposition 3.36 above, we are

interested in the f ∈ K[X,Y, Z] = K[X,Y ][Z] with ν0(f) ≥ 0. For the
sake of convenience, let us express everything in terms of R-modules with
R := K[X,Y ]. In this manner, let f =

∑n
i=0 fiZ

i ∈ R[Z] with fi ∈ R for
0 ≤ i ≤ n and some n ∈ N. Then

(∗) ν0(f) = ν0(
Xnf

Xn
) = ν0(

n∑
i=0

fiX
n−i(XZ)i)− n.

Hence ν0(f) ≥ 0 if and only if ν0(X
nf) ≥ n, which by the definition of ν0

and Xnf ∈ R0 is equivalent to ν0(fiX
n−i) ≥ n for 0 ≤ i ≤ n. This is the

case if and only if
fi ∈ 〈X,Y 〉iR0

∩R = 〈X,Y 〉iR
for every 0 ≤ i ≤ n. This yields

A := Rν0 ∩K[X,Y, Z] =
∑
n∈N

Zn〈X,Y 〉nR = K[X,Y,XZ, Y Z],

which is a Krull domain as described in the proof of Proposition 3.36 with
a class group isomorphic to Z.
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Let us do a “sanity check”. What is the prime divisorial ideal corre-
sponding to ν0? Equation (∗) yields

p0 := {a ∈ A | ν0(a) ≥ 1} =
∑
n∈N

Zn〈X,Y 〉n+1
R = 〈X,Y 〉A.

More generally, we have k ·p0 = 〈X,Y 〉kA for k ∈ N .
Note that XA 6= A∩XK[X,Y, Z] since XY Z2 ∈ (A∩XK[X,Y, Z])\XA.

So the above does not contradict Example 2.2 (5). In particular X and in a
similar fashion Y , are not prime in A. This can also be seen by computing
ν0(X) = 1 = ν0(Y ). Nonetheless, since X and Y are prime in K[X,Y, Z] ⊇
A, no positive multiple of p0 can be principal.

For the sake of completion and later use, let us compute −p0. First note
that by definition ν0 is the only essential valuation of A, which may become
negative. Thus, we are still looking for a subset of K[X,Y, Z]. Consulting
equation (∗) again, we get

−p0 = {f ∈ K[X,Y, Z] | ν0(f) ≥ −1} =
∑
n∈N

Zn+1〈X,Y 〉nR +R = 〈Z, 1〉A.

More generally, we get

−kp0 =
∑
n∈N

Zk+n〈X,Y 〉nR +

k−1∑
l=0

Z lR = 〈Zn | 0 ≤ n ≤ k〉A

for k ∈ N. It straight forward to check, that every essential valuation of A
vanishes on one of the three elements ZkXk, ZkY k and Xk for every k ∈ N.
Hence

1 ∈ 〈ZkXk, ZkY k, Xk〉A ⊆ kp0 + (−kp0) ⊆ A

after applying Lemma 3.7. Recall that Z /∈ A. Hence no positive multiple
of −p0 can be principal, as we expected.

Theorem 3.38 (Approximation Theorem).
For a Krull domain A and any finite subset Q ⊆ P(A) of the prime divisors
and n = (nq)q∈Q ∈ NQ, there is some xQ ∈ A \ {0} such that for the prime
divisors q ∈ Q νq(xQ) = nq. The element xQ is called an approximation
of Q.

Proof. Our proof will be loosely based on the proof of [Fos73, p. 26, Chapter
I, §5, Theorem 5.8], using the notions we developed in this Chapter.

If Q is empty, xQ := 1 has the desired property. Otherwise, it is sufficient
to show that for every p ∈ Q there is some xp;Q ∈ A such that for q ∈ Q

νq(xp;Q) =

{
1 if q = p

0 else
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as then xQ :=
∏

q∈Q x
nq

q;Q is the desired element.
So for a fixed p ∈ Q take an xp with νp(xp) = 1 as in Corollary 3.9

and let Qp := {q ∈ Q \ {p} | νq(xp) > 0}. As a contraposition of prime

avoidance p2 \
⋃

q′∈Qp
q′ 6= ∅, because p2 is not comparable with any of

the elements of Qp. Hence, we may take yp ∈ p2 \
⋃

q′∈Qp
q′ and for

p 6= q′ ∈ Q \Qp some yq ∈ q \
⋃

q′∈Qp
q′ 6= ∅ by a similar argument. As

any ideal in Qp is prime, the following holds for any q ∈ Q \ {p}

q 63 xp;Q := xp +
∏

q′∈Q\Qp

yq′ ∈ p

as only one of the summands is an element of q. Last but not least, xp;Q ∈
p \p2, since xp ∈ p \p2 and

∏
q′∈Q\Qp

yq′ ∈ p2. So by Lemma 3.7

νq(xp;Q) =

{
1 if q = p

0 else

for any q ∈ Q.

Corollary 3.39. For any integral divisorial ideal a there are some a0, a1 ∈
A \ {0} such that

a = 〈a0, a1〉.

In this case, a0 and a1 are called an approximation of a.

Proof. For a =
∑

p∈P(A) npp let a0 be an approximation of Q0 := {p ∈
P(A) | np > 0} and (np)p∈Q0 ∈ NQ0 . Furthermore, let a1 be an approxima-
tion of Q0 := {p ∈ P(A) | νp(a0) > 0} with (np)p∈Q0 × (0)p∈Q1\Q0

∈ NQ1 .
Then

〈a0, a1〉 = inf(a0A, a1A)
3.3
= a.

Proposition 3.40. Every element c ∈ Cl(A) of the class group of A[X]
has a prime divisorial ideal as its representative.

Proof. For this proof, we will follow the proof of [Fos73, p. 63, Chapter III,
§14, Theorem 14.3].

By Theorem 3.33 there is some divisorial ideal a ∈ D(A) of A such that
c = c(aA[X]) and thus −c = c(−aA[X]) . Without loss of generality
−a is integral, since for a common denominator d ∈ A

c(−aA[X]) = c(dA[X]−aA[X]) = c(d(−a)A[X])

and d(−a) is integral. So a and −a can be replaced by d−1a and d(−a).
By Corollary 3.39 above, there are a0, a1 ∈ A such that −a = 〈a0, a1〉.
Consider the prime element (a1X − a0) ∈ F [X] where F = Frac(A) is the
field of fractions of A and by construction a0 6= 0 6= a1. By the proof of

47



Theorem 3.33 p := (a1X − a0)F [X] ∩ A[X] is a prime divisorial ideal of
A[X]. Note that a = −〈a0, a1〉 = (A : 〈a0, a1〉) = {x ∈ F | a0x, a1x ∈ A}.
Thus

(a1X − a0)F [X] ⊇ (a1X − a0)aA[X] ⊆ A[X]

shows that (a1X − a0)aA[X] ⊆ p. On the other hand, if we have (a1X −
a0)f ∈ p for some f =

∑n
i=0 biX

i ∈ F [X] with n := deg(f), then f ∈
aA[X] by the following induction on the degree n of f .

If n ≤ 0 and therefore f = b0 then a1b0X − a0b0 = (a1X − a0)b0 ∈ A[X]
and thus b0 ∈ a. For n ≥ 1 use that aA[X] is an ideal and thus f ∈ aA[X]
if and only if bi ∈ a for 0 ≤ i ≤ n. Hence it is sufficient to show that bn ∈ a,
as then

(a1X − a0)(f − bnXn) = (a1X − a0)f − (a1X − a0)(bnXn) ∈ A[X],

so that the claim holds for the other bi by the induction hypothesis.
Since

(a1X − a0)f = bna1X
n+1 +

n∑
i=1

(a1bi−1 − a0bi)Xi + a0b0 ∈ A[X],

all the coefficients are in A and thus a1bn ∈ A. It remains to verify that
a0bn ∈ A. Now as A is completely integrally closed and thus by Corollary
1.32 normal, it is enough to show that a0bn is integral over A. For this
consider the polynomial

q(X) := Xn+1 +

n∑
i=1

(
(bna1)

n−i(a1bi−1 − a0bi)Xi
)
− a0b0(a1bn)n ∈ A[X]

for which q(a0bn) = 0, since

n∑
i=1

(
(bna1)

n−i(a1bi−1 − a0bi)(a0bn)i
)

=bnn

n∑
i=0

(ai0a
n−i+1
1 bi−1 − ai+1

0 an−i1 bi)

=bnn

(
n−1∑
i=0

(ai+1
0 an−i1 bi)−

n∑
i=1

(ai+1
0 an−i1 bi)

)
=bnn

(
a0a

n
1b0 − an+1

0 bn
)

= −
(
an+1
0 bn+1

n − a0b0(a1bn)n
)
.

Hence a0bn, a1bn ∈ A and thus bn ∈ a. Hence the claim is a consequence of
induction as described above. Therefore

aA[X] + (a1X − a0)A[X]
2.5
= (a1X − a0)aA[X] = p = p,

which shows that c(aA[X]) = c(aA[X] + (a1X − a0)A[X]) = c(p). This
finishes the proof.
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Proposition 3.41. If G is the class group of a Krull domain A and G′ is
a homomorphic image of G, then there is a Krull domain B, whose class
group is isomorphic to G′.

Proof. We will proceed as in [Cla66, p. 221, Proposition 5].
Consider a surjective group homomorphism ϕ : G → G′ which exists by

assumption and let H be the isomorphic image of the kernel

ker(ϕ) ⊆ G ∼= Cl(A)
3.33∼= Cl(A[X])

in the class group of A[X]. Then ϕ induces an isomorphism Cl(A[X])�H ∼=
G�ker(ϕ)

∼= G′. Now let B :=
⋂

p∈TH Rp be the subintersection given by

TH := {p ∈ P(A[X]) | c(p) /∈ H}.

Then by Nagata’s Theorem the kernel of π̄ : Cl(A)→ Cl(B) is given by

ker(π̄) = 〈{c(p) | p ∈ P(A) \ TH}〉
= 〈{c(p) | p ∈ P(A) ∧c(p) ∈ H}〉
3.40
= 〈H〉 = H.

Recall that π̄(c(p)) = c(pB) for p ∈ P(A) as it was defined in Nagata’s
Theorem. Thus, as π̄ is surjective, it induces an isomorphism

Cl(B) ∼= Cl(A[X])�ker(π̄) = Cl(A[X])�H ∼= G′.

So B is a Krull domain with class group G′.

Example 3.42. Let us construct a Krull domain with class group Z�nZ
for some positive n ∈ N. Fix a field K and recall the Krull domain A =
K[X,Y,XZ, Y Z] from Example 3.37 with essential valuation ν0 and corre-
sponding prime divisorial ideal p0 = 〈X,Y 〉.

Consider the polynomial ringA[V ] and the field of fractions F := Frac(A).
In contrast to our approach for the proof of Proposition 3.41, it is sufficient
to find a prime divisorial ideal of F [V ] with the same class group as np0A[V ].
Then the subintersection leaving out the corresponding prime divisorial ideal
already must have class group Z�nZ, because this class already generates the
desired kernel.

To find such a prime divisorial ideal, we want to approximate −np =
〈Zi〉ni=0 or rather XnA + (〈Zi〉ni=0) = 〈XnZi〉ni=0 ⊆ A. Note that the only
essential valuations not vanishing on all of these generators are ν0 and the
valuations νX := ν〈X〉 and νZ := ν〈Z〉 coming from K[X,Y, Z]. In particular
we have for 0 ≤ i ≤ n:

i = νZ(XnZi) ≥ νZ(Xn) = 0 n = νX(XnZi) ≥ νX(Xn) = n
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n− i = ν0(X
nZi) ≥ νZ(XnZn) = 0

This shows

〈XnZi〉ni=0 ⊆ 〈ZnXn, Xn〉 ⊆ 〈XnZi〉ni=0 = XnA− np0

after applying Lemma 3.7. Therefore

c((−np0)A[V ]) = c(A[V ] ∩ (XnV −XnZn)F [V ])

by the proof of Proposition 3.40. Let T := P(A[V ]) \ {A[V ] ∩ (XnV −
XnZn)F [V ]} and define B =

⋂
p∈T Rνp .

Then the elements of B are of the form f
(XnV−(XZ)n)r for some r ∈ N

and f ∈ F [V ]. These are restricted by the lifts of the essential valuations of
A described in the proof of Theorem 3.33. Out of these, only the valuations
ν̃X , ν̃Z and ν̃0 are of special interest. We have:

ν̃Z
(
(XnV − (XZ)n)r

)
= r · 0 = 0 ν̃0

(
(XnV − (XZ)n)r

)
= r · 0 = 0

ν̃X
(
(XnV − (XZ)n)r

)
= −rn

Since all other lifted essential valuations ν̃ yield ν̃(f) ≥ 0, we get f ∈ A[V ].
More precisely, this shows, that

B =
∑
r∈N

Xrn

(XnV − (XZ)n)r
A[V ] ⊆ Frac(F [V ]).

Theorem 3.43. For every abelian group G there is a Krull domain with an
isomorphic class group.

Proof. By Proposition 3.36 every free abelian group is the class group of
a Krull domain. So in light of Proposition 3.41, it suffices to show that
every abelian group is a homomorphic image of a free group. Now any given
abelian groupG can be realised as the image of the surjective homomorphism

ϕG : Z(G) → G

(ng)g∈G 7→
∑
g∈G

ngg,

whose domain is a free group.
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4 Class Groups of Dedekind Domains

In this Chapter, we will define Dedekind domains and explain their connec-
tion to Krull domains. Then we will proceed to construct, for a given Krull
domain, a Dedekind domain with an isomorphic class group. Together with
Theorem 3.43, this will prove the main Theorem of this thesis.

4.1 Dedekind Domains

Up until now, we have only really seen examples of Krull domains with a
trivial class group in the form of unique factorisation domains, apart from
our artificial construction. This is going to change, as with Dedekind do-
mains we will obtain an important class of examples for Krull domains, for
some of which it is easy to check, that they are not factorial. Addition-
ally we will establish some basic properties of Dedekind domains, which are
consequences of our Theory of Krull domains.

Definition 4.1 (Dedekind domains).
A Dedekind domain is a Krull domain D such that every non-zero prime
ideal is maximal.

Theorem 4.2. For a domain D the following are equivalent:

i) D is a Dedekind domain.

ii) D is a Krull domain and every non-zero prime ideal is of height 1.

iii) Every non-zero fractionary ideal of D is invertible.

iv) D is a Krull domain and every non-zero fractionary ideal is divisorial.

v) D is noetherian, every non-zero prime ideal p of D is of height 1 and
the localisation Dp is a discrete valuation ring.

vi) D is a normal noetherian domain and every non-zero prime ideal is
maximal.

Proof.

i)⇔ ii) If every non-zero ideal is maximal, then no non-zero prime ideal can
contain another one. Conversely, if none non-zero prime ideal contains
another, then every non-zero prime ideal is bound to be maximal.

i)⇒ iii) Let a ⊆ Frac(D) be a non-zero ideal of D. Then a(D : a) ⊆ D is an
integral ideal with a(D : a) = D, because D(D) is a group. But then
a(D : a) must not be contained in any prime divisorial ideal, which
by assumption are the maximal ideals. Thus a(D : a) = D and so a

is invertible.
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iii)⇒ iv) We have seen in Lemma 2.10, that invertible ideals are divisorial and
finitely generated. Hence D(D) is in fact a group, as every divisorial
ideal is invertible, and D is noetherian, since every ideal is finitely gen-
erated. Therefore D is a Krull domain as a consequence of Proposition
3.3.

iv)⇒ v) By Proposition 3.3, A satisfies the maximum condition for integral di-
visorial ideals. Since every ideal is divisorial, D satisfies the maximum
condition for all integral ideals and thus is noetherian.

Furthermore, as any every non-zero ideal is divisorial, every non-zero
prime ideal is divisorial and thus a prime divisorial ideal by Corollary
3.11. Now by Lemma 3.10, every prime divisorial ideal is of height 1.

Lastly, for every prime divisorial ideal p, i.e. non-zero prime ideal, we
have Dp = Rνp is a discrete valuation ring by Lemma 3.12.

v)⇒ vi) Since every non-zero prime ideal of D is of height 1, every non-zero
prime ideal is maximal. Now, since every non-invertible a ∈ D is
element of some maximal ideal we have, that D =

⋂
p maximal

ideal
Dp is an

intersection of valuation rings. (Note that if 〈0〉 is maximal, D is a
field and thus a valuation ring.) Now by Lemma 1.44 valuation rings
are normal and by Lemma 1.35 their intersection D is normal.

vi)⇒ i) By Corollary 3.5 normal noetherian domains are Krull domains.

Remark 4.3. 4.2iii) and iv) shows, that for a Dedekind domain D, it is
sufficient to consider the monoid of non-zero fractionary ideals I(D) to define
the class group.

Corollary 4.4. Every non-zero ideal of a Dedekind domain D has a unique
factorisation into (possibly negative) powers of prime ideals up to permuta-
tion. For integral ideals these powers are always positive.

Proof. This is an immediate consequence of P(D) being a basis of D(D)
4.2iv)

=
I(D).

Corollary 4.5. A Dedekind domain D is a unique factorisation domain if
and only if it is a principal ideal domain.

Proof. By Theorem 3.19, D is a unique factorisation domain if and only if

Cl(D) = 0 which is the case if an only if Prin(D) = D(D)
4.2iv)

= I(D). For
the converse, recall from Corollary 1.20, that principal ideal domains are
always unique factorisation domains.

Corollary 4.6. Any non-zero integral ideal a of a Dedekind domain is
generated by at most two elements.
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Proof. Let a0, a1 ∈ D be an approximation of a by Corollary 3.39 of the
Approximation Theorem. Then

a
4.2iv)

= a = 〈a0, a1〉
4.2iv)

= 〈a0, a1〉.

Example 4.7. The integers Z are a Krull domain for which every non-zero
prime ideal is maximal. Thus Z is a Dedekind domain.

Now consider a finite field extension K over Q = Frac(Z) and let D
denote the integral closure of the integers Z in K. Then by Proposition
3.21 D is a Krull domain. Furthermore going-up and going-down Theorem
([AM69, p.61-64, Chapter 5, Theorem 5.11 and 5.16]) yield, that every non-
zero prime ideal p is of height 1, just like Z∩p. Note, that D is an integral
extension of Z and that both domains are normal, because Krull domains are
normal as a consequence of Corollary 1.32. In other words, D is a Dedekind
domain.

What about the class group of D? Let us examine a specific example.

Example 4.8. Consider Q ⊆ Q(
√
−5). One can show that in this case, the

Dedekind domain described above is

D = Z[
√
−5] := {a+ b

√
−5 | a, b ∈ Z} ⊆ C,

see for example [Mar77, p. 11, Chapter 2, Corollary 2 to Theorem 1].
Note, that the smallest (complex) absolute value of elements in D, that

is not 0 or 1, is 4 and that the only elements with this absolute value are
±2. So 2 must be irreducible, since the absolute value is multiplicative and
the only non-zero elements with smaller absolute value are the units ±1.

However, 〈2〉 ( 〈2, 1 +
√
−5〉 is not a maximal ideal and thus must

not be prime, as every non-zero prime ideal of D is maximal. Note, that
p := 〈2, 1 +

√
−5〉 6= D and that p is in fact prime, since

D�p ∼= Z[X]�〈X2 + 5, 2, X + 1〉 =Z[X]�〈X2 + 5−X(X + 1), 2, X + 1〉

=Z[X]�〈2, X + 1〉 ∼=
Z�2Z.

Therefore, 2 is irreducible but not prime and D must not be a unique
factorisation domain by Lemma 1.19.

In fact, it can be shown that the size of the class group of the integers of
a number field is always finite, see [Neu99, p. 36, Chapter I, §6, (6.3) Theo-
rem], and the bound given in [Neu99, p. 36, Chapter I, §6, Exercise 3] yields,
that the class group of our Dedekind domain has less then three elements.
Since D is no unique factorisation domain by the above, Cl(D) must have
precisely two elements. Hence, up to some isomorphism, the class group
of our Dedekind domain Z[

√
−5] is Z�2Z with generator c(〈2, 1 +

√
−5〉),

because this prime ideal 〈2, 1 +
√
−5〉 is not principal, as 2 is irreducible.
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4.2 Class Groups

Dedekind domains seem rather outstanding among Krull domains, espe-
cially when considering their close connection to discrete valuation rings.
One would hope, that this yields certain restrictions on their class group.
However, for every Krull domain there is a Dedekind domain with an iso-
morphic class group, which we will construct. This indicates, that Dedekind
domains might not be as exceptional among Krull domains as they seem.

Proposition 4.9. For every Krull domain there is a Dedekind domain with
isomorphic class group.

Proof. For this proof we follow the proof of [Cla66, p.222, Theorem 7].
Let A be a Krull domain and consider the polynomial ring AN := A[Xn |

n ∈ N]. By Theorem 3.33 Cl(A) ∼= Cl(AN). For every non-zero prime ideal
q that is not of height 1, choose some 0 6= a ∈ q and

b ∈ q \
⋃

p∈P(AN)

νp(a)>0

p 6= ∅

which exists by a contraposition of prime avoidance and is non-zero. Further-
more choose a variable not occurring in a or b and define fq := bXq−a. Now
by construction abAN = sup{aAN, bAN} = aAN ∩ bAN and this equality re-
stricts to A[Xi | i ∈ Ia∪Ib], where Ia and Ib denote the sets of indices of vari-
ables occurring in a or b respectively. Therefore fq ∈ A[Xi | i ∈ Ia ∪ Ib][Xq]
is prime by Lemma 1.23. So Corollary 1.22 shows that fq ∈ AN is prime.

Now let S be the multiplicatively closed subset of AN generated by the
fq and define D := S−1AN as the localisation. As every prime ideal q that
is not of height 1 meets S non-trivially as fq ∈ S ∩q, every non-zero prime
ideal of D is of height 1. Thus D is a Dedekind domain. Moreover, by the
second version of Nagata’s Theorem

Cl(D) = Cl(S−1AN) ∼= Cl(AN) ∼= Cl(A).

Theorem 4.10 (Claborn).
For every abelian group G there is a Dedekind domain D such that G ∼=
Cl(D).

Proof. By Theorem 3.43 there is a Krull domain A such that Cl(A) ∼= G.
Furthermore, by Proposition 4.9 there is a Dedekind domain D with

Cl(D) ∼= Cl(A) ∼= G.
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4.3 Outlook

We have seen, that every abelian group occurs as the class group of a
Dedekind domain. But what about the Dedekind domains, which occur
in number theory? The Dedekind domains we constructed for arbitrary
class groups are rather artificial as a localisation of a polynomial ring over a
field in infinitely many variables. Yet, we have seen that not all integers of
number fields are unique factorisation domains, so which class groups occur
in this case? Clark has shown with tools from algebraic geometry in [Cla09],
that every abelian group can be realised as the class group of the algebraic
closure of a principal ideal domain in a separable field extension. Clearly,
this construction is a lot closer to the number theoretic case.

Nevertheless, we know that the class group of the integers of a number
field is countably generated, as we have seen in the sketch of the proof of
Proposition 3.21, that these have at most countably many more essential
valuations than Z, which in turn has countably many essential valuations.
As indicated before, a main result of number theory is that every class group
of this kind is not only countably generated, but even finite, see [Neu99,
p. 36, Chapter I, §6, (6.3) Theorem]. Still, these finite class groups behave
rather unpredictable in both their size and structure, as described in [Neu99,
p. 37, Chapter I, §6]. So let us restrict our question to finite class groups of
a field extension of degree two.

Unfortunately, even in this restricted case, the answer to which finite
abelian groups can or cannot occur as class groups is unknown to this day,
as discussed in [hv]. At the very least, restricting even further to imaginary
quadratic number fields yields some restrictions to the possible class groups.
In this case, it is possible to find lower bounds for the size of the class
group depending on the discriminant. Building up on that, some brute
force calculations can show that certain abelian groups do not occur as
the class group of the algebraic integers of an imaginary quadratic field

extension. The smallest example of this phenomenon is
(
Z�3Z

)3
. This

and further examples are explored in [hb]. Nonetheless, not much is known
about the possible class groups of the integers of number fields, even in this
theoretically computable case.
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