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There are known two ways of introducing quantum algebras.
The most known is based on the QG Uq(g).
The other is based on a given braiding R .
Consider a vector space V over the ground field K = C. We call an
invertible linear operator R : V⊗2 → V⊗2 braiding if it satisfies the
so-called braid relation

R12 R23 R12 = R23 R12 R23, R12 = R ⊗ I , R23 = I ⊗ R.
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A braiding R is called involutive symmetry if R2 = I .
A braiding is called Hecke symmetry if it is subject to the Hecke
condition

(q I − R)(q−1 I + R) = 0, q ∈ K.

In particular, such a symmetry comes from the QG Uq(sl(m)).

As for the braidings coming from the QG of other series Bn,Cn,Dn,
each of them has 3 eigenvalues and it is called BMW symmetry.
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The simplest examples are as follows. By fixing a basis {x , y} ∈ V
and the corresponding basis {x ⊗ x , x ⊗ y , y ⊗ x , y ⊗ y} in V⊗2 we
represent Hecke symmetries R by the matrices

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

 ,


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 −q−1

 .

They are deformations of the usual flip and the super-flip
respectively. However, there is a lot of Hecke symmetries which are
deformations neither of flips nor of super-flips.
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In order to classify Hecke symmetries, consider "R-symmetric" and
"R-skew-symmetric" algebras

SymR(V ) = T (V )/〈Im(qI−R)〉,
∧

R
(V ) = T (V )/〈Im(q−1I+R)〉

and the corresponding Poincaré-Hilbert series

P+(t) =
∑
k

dim Sym
(k)
R (V )tk , P−(t) =

∑
k

dim
∧(k)

R
(V )tk ,

where the upper index (k) labels homogenous components of these
quadratic algebras.
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For a generic q the following holds P−(−t)P+(t) = 1.

Proposition. (Phung Ho Hai)

The HP series P−(t) (and hence P+(t)) is a rational function:

P−(t) =
N(t)

D(t)
=

1 + a1 t + ...+ ar t
r

1− b1 t + ...+ (−1)s bs ts
=

∏r
i=1(1 + xi t)∏s
j=1(1− yj t)

,

where ai and bi are positive integers, the polynomials N(t) and
D(t) are coprime, and all the numbers xi and yi are real positive.

We call the couple (r |s) bi-rank. In this sense all Hecke symmetries
are similar to super-flips.
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Examples. If R comes from the QG Uq(sl(m)), then

P−(t) = (1 + t)m.

If R is a deformation of the super-flip Pm|n, then

P−(t) =
(1 + t)m

(1− t)n
.

Also, there exist "exotic" examples: for any m ≥ 2 there exits a
Hecke symmetry such that

P−(t) = 1 + mt + t2.

If P−(t) is a polynomial, R is called even.
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Given an even Hecke symmetry R , how to construct a category,
similar to that Rep − Uq(sl(m)) of finite dimensional modules?
First, it is necessary to extend R = RV up to a braiding

R = RV⊕V ∗
: (V ⊕ V ∗)⊗2 → (V ⊕ V ∗)⊗2,

with the paring 〈 , 〉 : V ⊗ V ∗ → K such that

〈 , 〉23 = 〈 , 〉12R2R1 on W ⊗ V ⊗ V ∗

〈 , 〉12 = 〈 , 〉23R1R2 on V ⊗ V ∗ ⊗W ,

where R = RV⊕V ∗
and W = V or W = V ∗.

We say that this pairing is R-invariant.
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This extension is possible iff there exists an operator
Ψ : V⊗2 → V⊗2 such that

Rkl
ij Ψjq

lp = δqi δ
k
p ,

where R(xi ⊗ xj) = Rkl
ij xk ⊗ xl .

If it is so, R is called skew-invertible. Then it is possible to
construct a quasi-tensor rigid category SW (V ) similar to that
Rep − Uq(sl(m)) (q is generic).
Any two objects of this category U and W are equipped with a
braiding RU,W : U ⊗W →W ⊗ U.
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For a given object U of the category SW (V ) consider the object
End(U) ∼= U ⊗U∗. By using the operator Ψ, it is possible to define
the so-called R-trace TrR : End(U)→ K and R-dimension of U.

Example. If R : V⊗2 → V⊗2 has bi-rank (m|n), then

dimR V = qn−m(m − n)q, kq =
qk − q−k

q − q−1 .

Thus, for a standard R , i.e. coming from Uq(sl(m))

dimRV = q−m mq.

Also, it is tempting to define R-analog gl(VR) of the Lie algebra
gl(m) by putting

[ , ]R : X ⊗ Y → X ◦ Y − ◦REnd(V )(X ⊗ Y ), X ,Y ∈ End(V )

and its enveloping algebra

U(gl(VR)) = T (End(V ))/〈X ⊗ Y − REnd(V )(X ⊗ Y )− [X ,Y ]R〉.
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If R is involutive [Gurevich 1983], the bracket [ , ]R meets 3 axioms:
1. R-skew-symmetry,
2. R-Jacobi,
3. compatibility with REnd(V ): the bracket is R-invariant.

However, if R is Hecke, there is no "natural" R-Jacobi, but an
analog of the Lie algebra gl(VR) and its enveloping algebra
U(gl(VR)) exists.
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By QM algebras I mean the RTT algebra

RT1T2 − T1T2R, T = (t ji ), 1 ≤ i , j ≤ m

and RE algebra

RL1RL1 − L1RL1R = 0, L = (l ji ), 1 ≤ i , j ≤ m.

Also, we consider the so-called modified RE algebra

RL1RL1 − L1RL1R = h(RL1 − L1R),

which is quadratic-linear algebra.
If R is standard, this modified RE algebra is a two parameter
deformation of Sym(gl(m)).
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The corresponding Poisson structure is a Poisson pencil.
Example. The first Poisson bracket is sl(2) bracket:

{h, x} = 2x , {h, y} = −2y , {x , y} = h.

The second one is

{h, x} = 2xh, {h, y} = −2yh, {x , y} = h2.

It is not unimodular. But it can be quantized with a R-trace.

If R comes from a QG of other series, the modified RE algebra is
defined by the same formula, but is not a deformation of Sym(g)
(even the RE algebra is not). [Donin]
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Other properties of the RTT algebra and RE one differ drastically.
One of them: the RTT is a bi-algebra with the coproduct

∆(t ji ) =
∑

tki ⊗ t jk .

The RE is a braided bi-algebra [Majid]

∆(l ji ) =
∑

lki ⊗ l jk ,

∆(l ji l
n
m) = ∆(l ji )∆(lnm) = (

∑
k

lki ⊗ l jk)(
∑
p

lpm ⊗ l lp) =

∑
k,p

lki R
End(V )(l jk ⊗ lpm)l lp

Here l ji are treated to be elements of End(V ).
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Note that in the standard case the QG Uq(sl(m)) acts on the
elements l ji by the adjoint action. Whereas the generators t ji can be
equipped with Uq(sl(m))× Uq(sl(m))op (the action of each factor
is one-sided).
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Another difference in properties is related to the so-called
characteristic subalgebra.
To define it introduce the following notation

L1 = L1, L2 = R1 L1 R
−1
1 , L3 = R2 L2 R

−1
2 = R2 R1 L1 R

−1
1 R−1

2 , ...

In this notation the defining relations of the RE algebra become
similar to the RTT ones

RL1L2 = L1L2R.

Consider the Hecke algebras Hk(q) and their so-called R-matrix
representations (denoted ρR) in the spaces V⊗k realised via a given
Hecke symmetry R .
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Proposition.

For an element x(k) ∈ Hk(q) denote

ch(x(k)) := TrR (1...k)X (k)L1...Lk , where X (k) = ρR(x(k)).

Consider a linear subspace Ch[R] ⊂ L(R) spanned by the unity and
elements ch(x(k)) for all k ≥ 1 and x(k) ∈ Hk(q). The space
Ch[R] is a subalgebra of the center of the algebra L(R). Moreover,
it is covariant with respect to the action of the QG Uq(sl(m)) in
the standard case.

This is also valid for a skew-invertible involutive symmetry, but
Hk(q) should be replaced by K[Sk ].
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Definition
The algebra Ch[R] is called characteristic.

Remark.
In a similar manner the characteristic subalgebra of an RTT algebra
can be defined. The only modification to do is: the product L1...Lk
should be replaced by T1...Tk . However, this subalgebra is not
central. It is only possible to claim that this subalgebra is
commutative.
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In what follows we need the only element of the characteristic
subalgebra: namely, determinant, provided R is even.

Nevertheless, if R has the bi-rank (m|n), analogs of the Berezinian
and determinant can be also defined.
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Also, note that elements TrR(Lk), k = 0, 1, ... are central in the RE
algebra. Besides, in this algebra there is an analog of the
Cayley-Hamilton identity. If R is even of the bi-rank (m|0), the
corresponding CH identity is

Lm + am−1L
m−1 + ...+ a0I = 0,

where ak are central in the RE algebra.
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Pass now to the first application. It arises from differential calculus
on the RE algebra. In a sense a deferential calculus on an RE
algebra is more interesting than that on an RTT algebra
(Woronowicz and others). By passing to the limit q → 1 we
obtained a differential calculus on the enveloping algebras
U(gl(m)h) and their super-analogs.

Here subscribe h means that it is introduced in the Lie bracket in
order to represent the enveloping algebra as result of quantization
of the algebra Sym(gl(m)).
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Below, we define analogs of partial derivatives on the algebra
U(gl(m)h) so that for h = 0 we recover the usual partial derivatives
in generators of Sym(gl(m)).

Also, we define a quantum analog of the differential algebra
Ω(Sym(gl(m)) and this of the de Rham operator. All objects are
deformations of their classical counterparts.
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Given a NC algebra A, the differential algebra Ω(A) on A is usually
defined via the de Rham operator satisfying the classical Leibniz
rule d(a b) = da b + a db but without relation a(db) = (db)a.

This approach leads to the universal differential algebra which is
much bigger than the classical one is, if A is commutative. In our
construction we retrieve the classical differential algebra as h→ 0.
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Fix in the Lie algebra gl(m)h the standard basis {nji }, 1 ≤ i , j ≤ m
and the usual Lie bracket

[nji , n
l
k ] = h(nliδ

j
k − njkδ

j
i ), 1 ≤ i , j , k , l ,≤ m.

Now, define "partial derivatives" on the algebra U(gl(m)h) .

Observe that in the algebra Sym(gl(m)) the partial de derivatives
∂ lk = ∂nkl

are defined via the action on the generators

∂ lk(nji ) = δli δ
j
k (i.e. the partial derivatives span the space dual to

that span(nji )) and the coproduct

∆(∂ lk) = ∂ lk ⊗ 1 + 1⊗ ∂ lk .

Thus, we have the Leibniz rule

∂ lk(ab) = ∂lk(a)b + a∂ lk(b).

Dimitri Gurevich with P.Saponov Quantum matrix algebras and their applications. Braided Yangians



Introduction
Quantum matrix algebras

First application: calculus on U(gl(m)h)
Example: calculus on the algebra U(u(2)h)

Second application: braided Yangians

By passing to the algebra U(gl(m)h) we do not change the first
property (the pairing) and define the new Leibniz rule by means of
the following coproduct

∆(∂ji ) = ∂ji ⊗ 1 + 1⊗ ∂ji + h
∑
k

∂jk ⊗ ∂
k
i .

So, we have

∂ji (ab) = ∂ji (a)b + a∂ji (b) + h
∑
k

∂jk(a)∂ki (b).

Observe that the partial derivatives ∂ji commute with each other.
Denote D commutative algebra generated by them.
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Our next aim is to define an analog of the Weyl algebra
W(Sym(gl(m)). The simplest classical Weyl algebra is
pq − qp = 1. (Note that physicists call it Heisenberg one.)
Our NC Weyl algebra (denoted W(U(gl(m)h)) is generated by two
subalgebras U(gl(m)h) and D, also subject to some permutation
relations.
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Define permutation relations as follows

∂ji ⊗ nlk → (∂ji )1(nlk)⊗ (∂ji )2, where ∆(∂ji ) = (∂ji )1 ⊗ (∂ji )2

in Sweedler’s notation.
Let us exhibit them explicitely

∂ji ⊗ nlk → nlk ⊗ ∂
j
i + δli δ

j
k + h(∂ li δ

j
k − ∂

j
kδ

l
i ).

Note that for h = 0 we get the usual Weyl algebra generated by the
algebra Sym(gl(m)) and the usual partial derivatives.
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Now, we define an analog of the de Rham complex on U(gl(m)h)
as follows.
Introduce "pure differentials" dnji by assuming that they
anti-commute with each other.
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Let
ω = dnj1i1

∧
dnj2i2

∧
...
∧

dnjkik ⊗ f , f ∈ U(gl(m)h)

be a k-differential. Then by definition we put

d ω = dnj1i1

∧
dnj2i2

∧
...
∧

dnjkik

∧∑
i ,j

dnji ⊗ ∂
i
j (f ).

Theorem

d2 = 0

Proof It is so since the pure differentials anticommute and the
partial derivatives commute.
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Now, consider the particular case m = 2 in more detail.
Denote a, b, c , d the standard generators of the algebra U(gl(2)h):

[a, b] = h b, [a, c] = −h c , [a, d ] = 0, ....., [d , c] = h c .

Now, pass to generators of the compact form, namely, U(u(2)h)

t =
1
2

(a + d), x =
i

2
(b + c), y =

1
2

(c − b), z =
i

2
(a− d)

we get the standard u(2)h table of commutators

[x , y ] = h z , [y , z ] = h x , [z , x ] = h y , t is central.

The generator t is called time, x , y , z play the role of spacial
variables.

Dimitri Gurevich with P.Saponov Quantum matrix algebras and their applications. Braided Yangians



Introduction
Quantum matrix algebras

First application: calculus on U(gl(m)h)
Example: calculus on the algebra U(u(2)h)

Second application: braided Yangians

On this algebra the coproduct mentioned above becomes

∆(∂t) = ∂t ⊗1+1⊗∂t +
h

2
(∂t ⊗∂t −∂x ⊗∂x −∂y ⊗∂y −∂z ⊗∂z),

∆(∂x) = ∂x ⊗1+1⊗∂x +
h

2
(∂t⊗∂x +∂x ⊗∂t +∂y ⊗∂z −∂z ⊗∂y ),

∆(∂y ) = ∂y ⊗1+1⊗∂y +
h

2
(∂t⊗∂y +∂y ⊗∂t +∂z ⊗∂x −∂x ⊗∂z),

∆(∂z) = ∂z ⊗1+1⊗∂z +
h

2
(∂t ⊗∂z +∂z ⊗∂t +∂x ⊗∂y −∂y ⊗∂x).
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Also, the corresponding permutation relations are

[∂t , t] =
h

2
∂t +1, [∂t , x ] = −h

2
∂x , [∂t , y ] = −h

2
∂y , [∂t , z ] = −h

2
∂z ,

[∂x , t] =
h

2
∂x , [∂x , x ] =

h

2
∂t + 1, [∂x , y ] =

h

2
∂z , [∂x , z ] = −h

2
∂y ,

[∂y , t] =
h

2
∂y , [∂y , x ] = −h

2
∂z , [∂y , y ] =

h

2
∂t + 1, [∂y , z ] =

h

2
∂x ,

[∂z , t] =
h

2
∂z , [∂z , x ] =

h

2
∂y , [∂z , y ] = −h

2
∂x , [∂z , z ] =

h

2
∂t + 1.

Besides, the generators ∂t ..., ∂z commute with each other and
generate a commutative algebra D. Thus, we get a Weyl algebra
W(U(u(2)h)) generated by two subalgebras U(u(2)h) and D and
the above permutation relations.
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Given permutation relation it is possible to define the partial
derivatives as operators. To this end we also need the counit on D

ε(∂t) = ... = ε(∂z) = 0, ε(1) = 1

extended in the multiplicative way. Then we define ∂(a) by
permutating ∂ and a and by applying ε to the right factor from D.
For instance, in virtue of the permutation relations we have

∂x yz = (y∂x + ~∂z) z = y(z∂x − ~∂y ) + ~(z∂z + ~∂t + 1).

Now, by applying the counit we conclude that ∂x(yz) = ~. This
result turns into the classical one as h = 0.
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Problem: how is it possible to extend the quantum partial
derivatives on fractions a−1 b?
In the classical case if V is a vector field and consequently, it is
subject to the classical Leibniz rule, we have

0 = V (1) = V (aa−1) = V (a)a−1 + aV (a−1).

Thus, we get V (a−1) = −a−1 V (a)a−1.
We succeeded in extending their action to certain fractions.
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Also, we succeeded in extension their actions on the so-called
quantum radius

r~ =
√
x2 + y2 + z2 + ~2, h = 2i~

and all analytical functions f (r~).
This enables us to quantize in a new sense some dynamical models.
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For instance, a "quantum version" of the Klein-Gordon operator is
defined in the classical way

(�−m2) f , � = ∂2
t − ∂2

x − ∂2
y − ∂2

z .

For the Schrodinger type equation(
a∂t + b(∂2

x + ∂2
y + ∂2

z ) +
q

r~

)
f (t, r~) = 0

we have computed a first correction of the ground state energy.
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Let us consider in more detail the Maxwell system and Dirac
magnetic monopole.
The Maxwell system consists of 4 equations. The first couple of
these equations is (we put c = 1)

div H = 0, curl E + ∂tH = 0,

where E = (E1,E2,E3) and H = (H1,H2,H3) are vectors of electric
and magnetic fields respectively. Also, div and curl stand for the
divergence and curl respectively.
The second couple of the Maxwell system in vacuum is

divE = 0, curlH− ∂tE = 0.
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For the Dirac monopole E is trivial and H is stationary. Then, for
H we get

divH = 0, curlH = (0, 0, 0).

In the classical setting one looks for a solution under the form
H = f (r)(x , y , z). Then we get the following equation on f :
3f + r f ′ = 0. This equation has the following general solution
f (r) = g r−3 where g is a real constant.
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More precisely, the field H = g
r3

(x , y , z) is a solution of the
equation divH = 0 only on the set R3 \ (0, 0, 0), whereas, on the
whole space R3 this field meets the equation

divH = 4 gπδ(r),

where δ(r) is the delta-function on the space R3 located at the
point (0, 0, 0).
The second equation of the above system is automatically met by
H = f (r)(x , y , z) with any rational function f (r).
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Now, let us apply our NC quantization to this model. By looking
for a solution the above system under the form H = (x , y , z)f (r~),
where div and curl have the same meaning as above, we have
found the following NC field

H =
g

r~(r2
~ − ~2)

(x , y , z).

We call this solution NC Dirac monopole. Emphasize that for
~→ 0 we retrieve the classical Dirac monopole.
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Let R(u, v) be the Yang current braiding (R-matrix)

R(u, v) = P − I

u − v
.

It meets the QYBE in the following form

R12(u, v)R23(u,w)R12(v ,w) = R23(v ,w)R12(u,w)R23(u, v).

By definition [Drinfeld] the Yangian Y(gl(m)) is defined via
coefficients of the matrix

L(u) =
∑
k≥0

L(k)u−k , or equivalently l ji (u) =
∑
k≥0

l ji (k)u−k ,

(here L(k) = (l ji (k)) and L(0) = I ), subject to

R(u, v)L1(u)L2(v)− L1(v)L2(u)R(u, v) = 0.
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It possesses the following properties.
1. It has the locality property.
2. It has a bi-algebra structure.
3. It has an analog of determinant defined by

detY(L) = Tr1...Trm Am L1(u)L2(u − 1)...Lm(u − (m − 1)),

where Am is the projector of skew-symmetrization.
This element is central.
4. In a similar manner quantum minors can be defined. They form
a commutative family.

Dimitri Gurevich with P.Saponov Quantum matrix algebras and their applications. Braided Yangians



Introduction
Quantum matrix algebras

First application: calculus on U(gl(m)h)
Example: calculus on the algebra U(u(2)h)

Second application: braided Yangians

5. The map (called evaluation morphism)

L(u) 7→ I +
M

u

where M is generating matrix of the Lie algebra gl(m)

M1M2 −M2M1 = M2 −M1

defines a surjective morphism

Y(gl(m))→ U(gl(m)).

Consequently, any U(gl(m))-module becomes Y(gl(m))-module.
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How is it possible to define analogs of Yangians, associated to other
R-matrices R(u, v)?

First, describe Yang-Baxterization procedure.

Proposition.
1. If R is an involutive symmetry,

R(u, v) = R − a

u − v

is an R-matrix.
2. If R is a Hecke symmetry,

R(u, v) = R − (q − q−1)u

u − v

is an R-matrix.
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Definition
Braided Yangian Y(R) is the unital algebra defined by

R(u, v)L1(u)RL1(v) = L1(v)RL1(u)R(u, v)

As usual, L(u) =
∑

k≥0 L(k)u−k and L(0) = I .

Definition
RTT-type Yangian YRTT (R) is the unital algebra defined by

R(u, v)T1(u)T2(v) = T1(v)T2(u)R(u, v)

Also, T (u) =
∑

k≥0 T (k)u−k and T (0) = I .
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For the braided Yangians there are evaluation morphisms. They
have different properties in the cases corresponding to involutive R
and Hecke ones.
Also, in a braided Yangian there is a determinant and it is central.
This enables us to construct a Bethe families by considering a chain
of braided Yangians

Y1 ↪→ Y2 ↪→ ... ↪→ Ym

and the corresponding determinants in the standard case.
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Many thanks

Dimitri Gurevich with P.Saponov Quantum matrix algebras and their applications. Braided Yangians


	Introduction
	Quantum matrix algebras
	First application: calculus on U(gl(m)h)
	Example: calculus on the algebra U(u(2)h)
	Second application: braided Yangians

