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Given: generalized Cartan matrix A = (aij)i ,j∈I : aii = 2, aij ∈ Z≤0 if
i 6= j such that aij = 0 precisely if aji = 0. Further assumptions:

A is symmetrizable: there exist coprime εi ∈ Z>0 (i ∈ I ) such that
εiaij = εjaji ;

A is indecomposable: there is no ∅ ⊂ I ′ ⊂ I such that aij = 0 for all
i ∈ I ′, j ∈ I\I ′.

g = g(A) is the corresponding Kac-Moody algebra, with Cartan
subalgebra h = 〈{hi | i ∈ I}, {ds}〉 of dimension 2|I | − rank(A) and
coweight lattice P∨.

Derived subalgebra: g′ = [g, g] = 〈hi , ei , fi | i ∈ I 〉.
Choose {αi | i ∈ I} ⊂ h∗ such that αj(hi ) = aij , αj(ds) = {0, 1} for
all i , j ∈ I .

Nondegenerate symmetric bilinear form (·, ·) on h defined by
(hi , h) = ε−1

i αi (h) for h ∈ h, i ∈ I , induced form on h∗ given by
(αi , αj) = εiaij for i , j ∈ I .
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For r , s ∈ Z≥0 with r ≤ s we denote

[r ]q =
qr − q−r

q − q−1
, [r ]q! =

r∏
i=1

[i ]q,

(
s

r

)
q

=
[s]q!

[r ]q![s − r ]q!
.

Definition (Drinfeld-Jimbo quantum group)

Let A be a symmetrizable generalized Cartan matrix whose Kac-Moody
algebra is g. Then Uq(g) is the unital associative algebra over C(q)
generated by {x±i | i ∈ I} ∪ {kh |h ∈ P∨} subject to

k0 = 1, khkh′ = kh+h′ , khx
±
i = q±αi (h)x±i kh,

[x+
i , x

−
j ] = δij

k+
i − k−i
qi − q−1

i

for all i , j ∈ I , where qi = qεi , k±i = kεi±hi ,

1−aij∑
r=0

(−1)r
(

1− aij
r

)
qi

(x±i )1−aij−rx±j (x±i )r = 0 for all i , j ∈ I .
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Hopf algebra structure on Uq(g):

∆(x+
i ) = x+

i ⊗ 1 + k+
i ⊗ x+

i , ε(x+
i ) = 0, S(x+

i ) = −k−i x+
i ,

∆(x−i ) = x−i ⊗ k−i + 1⊗ x−i , ε(x−i ) = 0, S(x−i ) = −x−i k+
i ,

∆(kh) = kh ⊗ kh, ε(kh) = 1, S(kh) = k−h,

Hopf subalgebra Uq(g′) = 〈x±i , k
±
i | i ∈ I 〉.
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From now assume A to be of affine type: det(A)=0 and proper principal
minors are positive.

Untwisted affine types:

A
(1)
n≥1 = Ãn≥1, B

(1)
n≥3 = B̃n≥3, C

(1)
n≥2 = C̃n≥2, D

(1)
n≥4 = D̃n≥4

E
(1)
6,7,8 = Ẽ6,7,8, F

(1)
4 = F̃4, G

(1)
2 = G̃2.

Twisted affine types (note that A3
∼= D3):

A
(2)
2n≥2 = B̃Cn≥1, A

(2)
2n−1≥5 = B̃∨n≥3, D

(2)
n+1≥3 = C̃∨n≥2,

E
(2)
6 = F̃∨4 , D

(3)
4 = G̃∨2 .
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Generalized Cartan matrices (KM algebras, Drinfeld-Jimbo quantum
groups, ...) can be graphically enumerated by Dynkin diagrams (I ,A).

Standard labelling for affine diagrams: I = {0, . . . , n} so that I\{0}
indexes corresponding objects of finite type.

Name Diagram Affine Lie algebra

A
(1)
1 0 1

ŝlN=n+1

A
(1)
n≥2

n
0

1
2

B
(1)
n≥3

0

1

2 3 n−2

n−1
n ŝoN=2n+1

C
(1)
n≥2 0

1 2 n−2

n−1
n ŝpN=2n

D
(1)
n≥4

0

1

2 3 n−3

n−2

n−1

n
ŝoN=2n
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Group of diagram automorphisms:

Aut(A) = {σ : I → I bijective |aσ(i)σ(j) = aij for all i , j ∈ I}.
Suppose X ⊂ I is of finite type (AX := (aij)i ,j∈X is of finite type). Then
corresponding Weyl group WX has longest element wX (involution).
−wX permutes ΠX := {αi | i ∈ X}, so induces involution on X .

Definition (Admissible pair)

Let X ⊂ I be of finite type and τ ∈ Aut(A) be an involution. The pair
(X , τ) is called admissible if

1. for all i ∈ X , αi = Θ(αi ) where Θ := −wX ◦ τ : h∗ → h∗

(in particular, X is stable under τ);

2. for all j ∈ I\X , τ(j) = j =⇒ αj(ρ
∨
X ) ∈ Z, where ρ∨X ∈ P∨X is the

half-sum of positive coroots.

S. Kolb, Adv. Math. 267 (2014)

V. Back-Valente, N. Bardy-Panse, H. Ben Massaoud, G. Rousseau, J. Algebra 171 (1995)

Satake diagrams enumerate admissible pairs.
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Examples

1. A of type A
(1)
3 , I = {0, 1, 2, 3}

X = {1, 3}, τ = id
X is of type A1 ×A1 so

wX = r1r3: wX (αi ) = −αi for i ∈ X
ρ∨X = 1

2h1 + 1
2h3.

(X , τ) is admissible since
ατ(i) = −wX (αi ) for i ∈ {1, 3} and

αj(ρ
∨
X ) = 1

2a1j + 1
2a3j = −1 (j ∈ {0, 2}).

2. A of type A
(1)
3 , I = {0, 1, 2, 3}.

X = {1, 2, 3}, τ = (13).
X is of type A3 so

wX = r1r2r3r2r1r2: wX (αi ) = −α4−i for i ∈ X
ρ∨X = 3

2h1 + 2h2 + 3
2h3.

(X , τ) is admissible since ατ(i) = −wX (αi ) for

i ∈ {1, 2, 3} and α0(ρ∨X ) = 3
2a10 + 3

2a30 = −3.

1

2

3

0

0

1

3

2
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More examples

3. A of type D
(1)
5 , I = {0, 1, 2, 3, 4, 5}

X = {1, 3}, τ = (45)
X is of type A1 ×A1 so

wX = r1r3: wX (αi ) = −αi for i ∈ X ,
ρ∨X = 1

2h1 + 1
2h3.

(X , τ) is admissible since ατ(i) = −wX (αi ) = αi for

i ∈ {1, 3} and α2(ρ∨X ) = 1
2a12 + 1

2a32 = −1.

4. A of type B
(1)
4 , I = {0, 1, 2, 3, 4}

X = {1, 3}, τ = id.
X is of type A1 ×A1 so

wX = r1r3: wX (αi ) = −αi for i ∈ X ,
ρ∨X = 1

2h1 + 1
2h3.

As required, ατ(i) = −wX (αi ) = αi for i ∈ {1, 3}
and α2(ρ∨X ) = 1

2a12 + 1
2a32 = −1, but

α4(ρ∨X ) = 1
2a34 = −1

2 . So (X , τ) is not admissible.

0

1

2 3 4

5

0

1

2 3 4
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Let d ∈ {1, 1
2 ,

1
4} as needed. Given c ∈ (C(qd)×)I\X , s ∈ C(qd)I\X , the

coideal subalgebra Bc,s = Bc,s(X , τ) ⊂ Uq(g′) is generated by the
elements

x±i , k
±
i for i ∈ X ;

kµ =
∏

i∈I k
mi
i for those µ =

∑
i∈I miαi ∈ Q such that µ = Θ(µ);

these are the elements k+
i k−τ(i) for i ∈ I such that i 6= τ(i);

bj = x−j + cjθq(x−j k+
j )k−j + sjk

−
j for j ∈ I\X , with the “quantum

involution”

θq = θq(X , τ) := Ad(sX ,τ ) ◦ TwX
◦ tw ◦ τ

Call Bc,s standard if sj = 0 for all j ∈ I\X .

Bc,s is quantum analogon (of enveloping algebra) of certain fixed-point
subalgebra k′ ⊂ g′ if c ∈ C, s ∈ S for suitable C ⊂ (C(qd)×)I\X ,
S ⊂ C(qd)I\X . Bc,s is called a QSP (quantum symmetric pair) algebra.
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Given admissible pair (X , τ), define

Ipair = {(j , τ(j)) ∈ (I\X )2 | j < τ(j), (αj ,Θ(αj)) 6= 0}
= {(j , τ(j)) ∈ (I\X )2 | j < τ(j) and (ajτ(j) 6= 0 or ∃i ∈ X : aij 6= 0)},

Ins = {j ∈ I\X | j = τ(j) and ∀i ∈ X : aij = 0},
Inse = {j ∈ Ins |∀i ∈ Ins : aij ∈ 2Z}

and families of tuples

C = {c ∈ (C(q)×)I\X |cj 6= cτ(j) and j < τ(j) =⇒ (j , τ(j)) ∈ Ipair},

S = {s ∈ C(q)I\X |sj 6= 0 =⇒ j ∈ Inse},

Examples (orbits corresponding to Ipair and Inse in red):

0

1

4

2

3

0

1

2 3
4

0

1

2 3 4

5

0

1

2

3

Ins = Inse = {0}
Ipair = {(2, 3)}

Ins = {3, 4}
Inse = {3}, Ipair = ∅

Ins = Inse = {0}
Ipair = {(4, 5)}

Ins = {0, 1, 2, 3}
Inse = Ipair = ∅
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Hopf algebra automorphisms

For convenience, write

Ûq :=

{
Uq1/2(g′) if g = ŝo2n+1,

Uq(g′) if g = ŝln+1, ŝo2n, ŝp2n.

Note that Aut(A) < AutHopf(Ûq) by means of
σ(x±i ) = x±σ(i), σ(k±i ) = k±σ(i) for i ∈ I .

Define (Ûq)β := {u ∈ Ûq |k+
i uk−i = q(αi ,β)u} for all β ∈ Q. For

s ∈ H̃q := Hom(Q,C(qd)×) define Ad(s) ∈ AutHopf(Ûq) by

Ad(s)(a) = s(β)a for all a ∈ (Ûq)β and β ∈ Q.

In fact, AutHopf(Ûq) = Ad(H̃q) oAut(A).

Let Σ ≤ AutHopf(A) for a Hopf algebra A. Two coideal subalgebras
B,B′ ⊆ A are called Σ-equivalent if there exists σ ∈ Σ such that
σ(B) = B′; if Σ = AutHopf(A) we simply call them equivalent.
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Ûq :=

{
Uq1/2(g′) if g = ŝo2n+1,

Uq(g′) if g = ŝln+1, ŝo2n, ŝp2n.
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Lemma

Suppose Z (u) ∈ End(CN)(u) satisfies [R(u/v),Z (u)⊗ Z (v)] = 0. If
K (u) satisfies

R21(u/v)K1(u)R(uv)K2(v) = K2(v)R21(uv)K1(u)R(u/v)

then for any η ∈ C×, KZ (u) := Z (η/u)−1K (u)Z (ηu) satisfies

R21(u/v)KZ
1 (u)R(uv)KZ

2 (v) = KZ
2 (v)R21(uv)KZ

1 (u)R(u/v).

Similarly for twisted RE, provided we take K̃ (u) := Z (η/u)tK (u)Z (ηu).
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Fix adm. pair (X , τ). Choose I ∗ ⊂ I\X so that it intersects all τ -orbits
in singletons, say

I ∗ := {i ∈ I\X | i ≤ τ(i)}.

Let C,S be algebraic closures of C, S.

The following generalizes S. Kolb, Adv. Math. 267 (2014), Prop. 9.2 (1) :

Proposition

Let c ∈ C, s ∈ S and γ ∈ (C(qd)
×

)I
∗
. There exist xγ,c ∈ H̃q, c ′ ∈ C

and s
′ ∈ S such that Bc

′,s′ = Ad(xγ,c)(Bc,s) and c ′j = γj for all j ∈ I ∗.

Remark

Imposing c ′j = γj for j ∈ I ∗ fixes all entries of c
′ and s

′ except those
c ′τ(j) where (j , τ(j)) ∈ Ipair and those s ′j where j ∈ Inse.

Bart Vlaar Trigonometric reflection matrices



Affine quantum groups and coideal subalgebras Dressing Rotation Classification Generalizations

Fix adm. pair (X , τ). Choose I ∗ ⊂ I\X so that it intersects all τ -orbits
in singletons, say

I ∗ := {i ∈ I\X | i ≤ τ(i)}.

Let C,S be algebraic closures of C, S.
The following generalizes S. Kolb, Adv. Math. 267 (2014), Prop. 9.2 (1) :

Proposition

Let c ∈ C, s ∈ S and γ ∈ (C(qd)
×

)I
∗
. There exist xγ,c ∈ H̃q, c ′ ∈ C

and s
′ ∈ S such that Bc

′,s′ = Ad(xγ,c)(Bc,s) and c ′j = γj for all j ∈ I ∗.

Remark

Imposing c ′j = γj for j ∈ I ∗ fixes all entries of c
′ and s

′ except those
c ′τ(j) where (j , τ(j)) ∈ Ipair and those s ′j where j ∈ Inse.
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Recall representation T of Uq(= Uq(slN),Uq(soN),Uq(spN)) and its

extension Tu : Ûq → End(CN
q )[u, u−1], where CN

q = CN ⊗ C(qd).

For example, for Ûq = Uq(ŝlN=n+1), write Eij for the matrix
(δikδjl)1≤k,l≤N and set

Tu(x+
i ) = Ei ,i+1, Tu(x−i ) = Ei+1,i , Tu(k±i ) =

∑N
j=1 q

±(δij−δi+1,j )Ejj

for 1 ≤ i < N and

Tu(x+
0 ) = uEN1, Tu(x−0 ) = u−1E1N , Tu(k±0 ) =

∑N
j=1 q

±(δjN−δj0)Ejj .

Let ω ∈ (C(qd)×)N if gN = slN and ω ∈ (C(qd)×)n otherwise.

Proposition

Let ω be as above and let η ∈ C(qd)×. There exists yω,η ∈ H̃q and a
diagonal matrix G (ω) ∈ End(CN

q ) such that

G (ω)Tηu(a) = Tu(Ad(yω,η)(a))G (ω) for all a ∈ Uq(ĝN).
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Corollary

Given ω as above, Kω(u) := G (ω)−1K (u)G (ω) satisfies

Kω(u)Tηu(b) = Tη/u(b)Kω(u) for all b ∈ Bc,s

precisely if

K (u)Tu(b) = T1/u(b)K (u) for all b ∈ Ad(yω,η)(Bc,s).

It is always possible to choose ω such that xγ,c = yω,η (recall c ′j = γj for
j ∈ I ∗). Then the second intertwining equation above simplifies:

K (u)Tu(b) = T1/u(b)K (u) for b ∈ Bc
′,s′ .

K (u) is called the bare K-matrix and G (ω)−1K (u)G (ω) the dressed
K-matrix. K (u) only depends on |Ipair|+ |Inse| free parameters (namely,
those c ′τ(j) where (j , τ(j)) ∈ Ipair and those s ′j where j ∈ Inse).
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If (X , τ) is an admissible pair and if σ ∈ Aut(A), then it can be verified
(X σ, τσ) is an admissible pair, where

X σ = σ(X ), τσ = σ ◦ τ ◦ σ−1.

Let (X , τ) be an admissible pair and let σ ∈ Aut(A). Given c ∈ C and
s ∈ S, we have

σ(Bc,s(X , τ)) = Bσ(c),σ(s)(X σ, τσ),

where σ(c) ∈ σ(C) is determined by (σ(c))σ(i) = ci for i ∈ I\X (and
likewise for s).
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σ ∈ Aut(A) is called a symmetry of Tu if ∃Zσ(u) ∈ End(CN
q )(u) such

that
Zσ(u)Tu(σ(a)) = Tu(a)Zσ(u) for all a ∈ Ûq

Symmetries of Tu form subgroup Σ(A) < Aut(A).

Name Diagram Aut(A) Σ(A)

A
(1)
1 0 1 C2 C2

A
(1)
n≥2

n
0

1
2 DN CN (N = n + 1)

B
(1)
n≥3

0

1

2 3 n−2

n−1
n C2 C2

C
(1)
n≥2 0

1 2 n−2

n−1
n C2 C2

D
(1)
4

0

1

2 3

4
S4 D4 Σ(A) = 〈(34), (04)(13)〉

D
(1)
n≥5

0

1

2 3 n−3

n−2

n−1

n
D4 D4
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Type A
(1)
n≥2: “reflections” in the dihedral group Aut(A) ∼= DN

(N = n + 1) are not symmetries of Tu: instead we have “σ-skewed
self-duality” of Tu: ∃C ∈ End(CN

q ) such that

CTu(σ(a)) =
(
T(−q)Nu(S(a))

)t
C for all a ∈ Uq(ĝN),

where σ =
∏bN

2
c

i=1 (i ,N−i) = (1n)(2, n−1) · · · .

Lemma

Suppose A is of type A
(1)
n≥2. If (X ′, τ ′) = (X σ, τσ) for some σ ∈ Aut(A)

then there exists σ̃ ∈ Σ(A) such that (X ′, τ ′) = (X σ̃, τ σ̃).

For A of type A
(1)
n≥1 and σ = (012 . . . n) we can take

Z (u)σ =
∑

1≤i<N

Ei ,i+1 + uEN1.
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Proposition

Let (X , τ) be an admissible pair and let σ ∈ Σ(A). If

K (u)Tηu(b) = Tη/u(b)K (u) for all b ∈ Bc,s

then Kσ(u) := Zσ( ηu )−1K (u)Zσ(ηu) satisfies

Kσ(u)Tηu(b) = Tη/u(b)Kσ(u) for all b ∈ σ(Bc,s).

Example

The bare K-matrix K (u) = q−
1
2E21 − q

1
2E12 + q−

1
2E43 − q

1
2E34 solves

the boundary intertwining equation for the coideal subalgebra given by
1

2

3

0 . The bare K-matrix associated to

1

2

3

0 is given by

Kσ(u) = Zσ(1/u)tK (u)Zσ(u) = q−
1
2E32−q

1
2E23+q−

1
2 u−1E14−q

1
2 uE41.
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1 Affine quantum groups and coideal subalgebras
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Auxiliary terminology

Let τ : I → I be a diagram involution. Let Y ⊂ I be stable under τ . Y
is called lateral w.r.t. τ if it is one of the following types:

i i
i

i ′
or

i

i ′

Y = {i} is
of type B1

Y = {i} is
of type C1

|i − i ′| = 1
Y = {i , i ′} is of type D2

i or i

i

i ′

Y = {i} is a hinge Y = {i , i ′} is a hinge

There are ≤ 2 subsets of I lateral w.r.t. τ , denoted Y1 and Y2.
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Types of admissible pairs:

(X , τ) is said to be of identity type if τ fixes I minus any subsets of
type D2. Two subtypes:

(X , τ) is said to be of plain type if I\X is connected.
(X , τ) is said to be of alternating type if all j ∈ I\X
with ≥ 2 neighbours in I have ≥ 2 neighbours in X .

(X , τ) is said to be of parallel type if τ has at least one hinge. This

is possible in types A
(1)
n≥1, C

(1)
n≥2, D

(1)
n≥4 (also D

(2)
n+1≥3).

A component of X is a subset X ′ ⊆ X such that aij = 0 for all i ∈ X ′,
j ∈ X\X ′. General decomposition of X into components:

X = X1 ∪ Xalt ∪ X2,

where

either Xi = ∅ or Yi ⊂ Xi (i = 1, 2) and

Xalt is of type A×t1 (with t = 0 unless (X , τ) is of alternating type).
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Recall: the pair (X , τ) with X ⊂ I of finite type and τ ∈ Aut(A) an
involution is admissible if:

1. for all i ∈ X , ατ(i) = −wX (αi );

2. for all j ∈ I\X , αj(ρ
∨
X ) ∈ Z if τ(j) = j .

From condition 1. it follows that

if a component of X is of type Dt≥2 then it contains an even
number of τ -orbits;

if (X , τ) is of parallel type, each connected component of X is of
type At≥1, symmetrically arranged around a hinge.

If (X , τ) is of identity type, then condition 2. implies the following:

The components of X are either of type Bt and/or Dt , or of type
A1 and/or Ct . In the latter case each node outside X neighbouring
≥ 2 nodes in I must neighbour 2 nodes in X .

If I has a subset of type B1 then (X , τ) must be of plain type:
and are not admissible.
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Plain (1) Alternating (2) Parallel (3) Exceptional (4)

A

/ /
/ /

/
/

B

/
/

/
Nothing!

C

/

D

/ /
/ /

/
/

/

/

0
1

2
4

3

0
1

2
4

3 0
1

2
4

3
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Quasistandard QSP algebras

Define Iqs as consisting of those elements of Inse of the following type:

Typical elements of Inse\Iqs are:

Definition

A QSP algebra Bc,s is called quasistandard if sj 6= 0 =⇒ j ∈ Iqs.
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Three types of quasistandard QSP algebras:

1. QSP algebras which are “standard by nature”, i.e. Inse = ∅;
2. Nonstandard QSP algebras which have been “standardized” (sj = 0

forced for all j ∈ I\X );

3. QSP algebras for which Iqs 6= ∅.

Nice property of quasistandard QSP algebras: corresponding K-matrices
are of “generalized cross-form”, i.e. given standard basis {v1, . . . , vN} of
CN , there exists involution ψ on {1, . . . ,N} such that

K (u)vi ∈ Cvi ⊕ Cvψ(i) for all i ∈ {1, . . . ,N}.

More precisely, nondiagonal nonzero entries of such K-matrices are
on at most two antidiagonals.

Forcing sj = 0 for such K-matrices does not cause off-diagonal
entries to vanish.
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General formula

For the untwisted cases, the bare K-matrices are of the form

K (u) = Id +
u − u−1

k1(u)

(
D1(u) +

D2(u)

k2(u)

)
where k1(u) and k2(u) are given by

A.3,BCD.1,CD.2 : k1(u) = λµ− u, k2(u) = λ−1 + (µu)−1,

CD.3 : k1(u) = µ−1 − µu, k2(u) = λ+ (λu)−1,

and the matrices D1(u) and D2(u) are defined as follows...
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A.3 : D1(u) =
∑

s<i≤N
Eii ,

D2(u) =
∑

1≤i≤r

(
λEii + λ−1Es−i+1,s−i+1 + Ei ,s−i+1 + Es−i+1,i

)
,

C.1 : D1(u) = 0,

D2(u) =
∑

1≤i≤n

(
λE−i ,−i + λ−1Eii + E−i ,i + Ei ,−i

)
,

D.2 : D1(u) = δo1,1Enn

D2(u) = δo1,1(λ− µ−1u)E−n,−n + δo2,1 (λ+ λ−1)E−1,−1+

+
∑

o2<i<o1

(
λE−i ,−i + λ−1Eii + εi (Ei ,−i+εi + E−i+εi ,i )

)
,

where λ, µ ∈ C× are free parameters, εi = (−1)i+o2 ,
r = (N + o1 + o2)/2− p1 − p2 + 1 and s = N − o1 − 2p1.
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BD.1 : D1(u) =
∑

r̄≤i≤n
(λµuE−i ,−i + Eii ),

D2(u) =
∑
s̄≤i<r̄

(λE−i ,−i + λ−1Eii + E−i ,i + Ei ,−i ),

C.2 : D1(u) =
∑

r̄≤i≤n
(λµuE−i ,−i + Eii ),

D2(u) =
∑
s̄≤i<r̄

(
λE−i ,−i + λ−1Eii + εi (E−i−εi ,i + Ei ,−i−εi )

)
,

where λ = qN/2−s , µ = q−r , εi = (−1)ı̄−r and
(r , s) = (o1 + p1, n − o2 − p2).
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CD.3 : D1(u) =
∑

1≤i≤n
µEii ,

D2(u) =
∑

r̄≤i≤n

(
(λµ)−1E−i ,−i + λµE−ı̄,−ı̄ − E−i ,−ı̄ − E−ı̄,i+

− u−1
(
λµ−1Eii + λ−1µEı̄̄ı − Ei ı̄ − Eı̄i

))
,

where λ = q−n/2+r , µ ∈ C× is a free parameter and r = (n − o)/2− p.
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Additional properties of K-matrices

Assuming irreducibility of Tu|Bc,s , one can derive “unitarity”
K (u)K (u−1) = (scalar)Id.

Similarly, if T±1|Bc,s is irreducible, one can derive “regularity”
K (±1) = (scalar)Id.

R̂(u) = PR(u) satisfies Hecke-type identity:(
R̂(u)− f1(u)Id

)(
R̂(u)− f2(u)Id

)(
R̂(u)− f3(u)Id

)
= 0

for some fi (u) ∈ C(qd)×(u). For all quasistandard K-matrices we
obtain similar identities, of degree ≤ 4.
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Call (X , τ) restrictable if τ(0) = 0 6∈ X . Then (X , τ |{1,...,n}) is an
admissible pair w.r.t. the Cartan matrix A{1,...,n} of finite type. In

this case Kfin := limu→0 K (u) solves the finite refl. eqn.

Rfin
21 K

fin
1 RfinKfin

2 = Kfin
2 Rfin

21 K
fin
1 Rfin

where Rfin = limu→0 R(u). Moreover we always get an affinization
identity, i.e. there exists d±(u) ∈ C(qd)(u) :

K (u) =
d+(u)Kfin + d−(u)(Kfin)−1

d+(u) + d−(u)

and the Hecke-type identity is of degree ≤ 2.
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Non-quasistandard cases. E.g.
(
B

(1)
n

)id

0;n−2
= 0

1

2 3 n−1
n gives

K (u) = Id +
u − u−1

k(u)

∑
−1≤i≤1

ki (u)Di (u)

with a third-order Hecke relation.

q-Onsager cases

“quartic” admissible pairs
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