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Affine quantum groups and coideal subalgebras

Given: generalized Cartan matrix A = (ajj)ijes: aij = 2, aj € Z<og if
i # j such that a;; = 0 precisely if a;j = 0. Further assumptions:
@ A is symmetrizable: there exist coprime ¢; € Z~o (i € /) such that
€jdjj = €jdaji,
@ Ais indecomposable: there is no ) C I” C I such that a;; = 0 for all
iel,jel\l
g = g(A) is the corresponding Kac-Moody algebra, with Cartan
subalgebra h = ({hj|i € I},{ds}) of dimension 2|/| — rank(A) and
coweight lattice PV.
@ Derived subalgebra: ¢’ = [g,g] = (hi, e, fi|i € 1).
e Choose {aj|i € I} C b* such that aj(h;) = aj, oj(ds) = {0,1} for
all i,j el

e Nondegenerate symmetric bilinear form (-, -) on b defined by
(hiyh) = &; a;(h) for h € b, i € 1, induced form on h* given by
(oz,-,ozj) = gjajj fori,j e l.
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Affine quantum groups and coideal subalgebras

For r,s € Z>q with r < 's we denote

N_d-a =TT s\ __ I[slg!
o= =Tl (7) = o

g—q

Definition (Drinfeld-Jimbo quantum group)
Let A be a symmetrizable generalized Cartan matrix whose Kac-Moody
algebra is g. Then Ug(g) is the unital associative algebra over C(q)
generated by {x"|i € I} U {kn|h € PV} subject to

ko =1, knkn = knyw, knxiE = g xE g,
KH -k - L
[, 7] = 05— foralli,jel, where q; = ¢, ki" = kY ,

! i

1—3,'j
1— aj ) .
Z(—l)f( aJ) ()6 (xT) =0 forall i,jel.
qi

r
r=0
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Affine quantum groups and coideal subalgebras

Hopf algebra structure on Ugq(g):

AN =xt@l+kt@xt,  ex)=0,  S(x')=—k x,
Alx7)=x. @k +1®x, e(x) =0, S(x7) = —x; k',
A(kn) = kn @ kn, e(kn) =1, S(kp) = k_p,

Hopf subalgebra Uy (g') = (x5, ki |i € 1).
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Affine quantum groups and coideal subalgebras

From now assume A to be of affine type: det(A)=0 and proper principal
minors are positive.

Untwisted affine types:

(1)1 - An>1; (1)3 - Bn>3; Cnlz)z = Cn227 DE,1>)4 = ]Sn24

Eg}%,S = E6,7787 Fg_l) = ]:_4‘4_7 Ggl) — G2.

Twisted affine types (note that A3z = D3):

2 = 2 2
Agn)>2 = BCp>1, Agn) 1>5 — Bn>37 DEHZ1>3 = Cn>27
2
EP =Fy, DY =Gy
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Affine quantum groups and coideal subalgebras

Generalized Cartan matrices (KM algebras, Drinfeld-Jimbo quantum
groups, ...) can be graphically enumerated by Dynkin diagrams (/, A).

Standard labelling for affine diagrams: | = {0,..., n} so that /\{0}
indexes corresponding objects of finite type.

Name Diagram Affine Lie algebra
Agl) 00=01 5
0 Sly=ny1

(1) 002 3 n=2 ~
Bn23 S O;Ql=bn S0 N=2n+1
(1) 1 2 n—2 Py
Chso 0000+ O—OfOn SPN—2n
002 3 ~3 On—1
M NS R " -
Dn24 1 PR n 50N:2n
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Affine quantum groups and coideal subalgebras

Group of diagram automorphisms:
Aut(A) = {o : | — I bijective |a,(j),;) = a; foralli,je€l}.

Suppose X C [ is of finite type (Ax := (ajj)i jex is of finite type). Then
corresponding Weyl group Wx has longest element wx (involution).
—wy permutes My := {«;|i € X}, so induces involution on X.
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Affine quantum groups and coideal subalgebras

Group of diagram automorphisms:
Aut(A) = {o : I — I bijective |a,(j,(;y = a; foralli,j € l}.

Suppose X C [ is of finite type (Ax := (ajj)ijex is of finite type). Then
corresponding Weyl group Wx has longest element wx (involution).
—wy permutes My := {«;|i € X}, so induces involution on X.

Definition (Admissible pair)
Let X C I be of finite type and 7 € Aut(A) be an involution. The pair
(X, 1) is called admissible if
1. forall i € X, aj = ©(«a;) where © := —wx o7 : h* — b*
(in particular, X is stable under 7);
2. forall je \X, 7(j) =j = «aj(px) € Z, where py € Py is the
half-sum of positive coroots.

S. Kolb, Adv. Math. 267 (2014)
V. Back-Valente, N. Bardy-Panse, H. Ben Massaoud, G. Rousseau, J. Algebra 171 (1995)

Satake diagrams enumerate admissible pairs.
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Affine quantum groups and coideal subalgebras

Examples

1. Aof type AY, 1=1{0,1,2,3}
X=1{1,3}, r=id
X is of type A1 X Aj so

1

o wx = nn: wx(a;)=—a;forie X

° p;zéhl—k%h:{ 0 2
3

2. Aof type AV, 1 =1{0,1,2,3}.
X ={1,2,3}, 7 = (13). 1
X is of type Az so
o wx = nnnnnh: wx(a;)=—ag_;forie X 0 2
° ps/(:%h1+2h2+%h3. 3
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Affine quantum groups and coideal subalgebras

Examples

1. Aof type AY, 1=1{0,1,2,3}
X=1{1,3}, r=id
X is of type A1 X Aj so

o wx = nn: wx(a;)=—a;forie X .
° py(:%hl—l—%hg,. 0 2
(X, 7) is admissible since g
Qr(i) = —Wx(a,) for i€{1,3} and
aj(px) = 331 + 3335 = —1 (j € {0,2}).
2. Aof type AV, 1 =1{0,1,2,3}.
X ={1,2,3}, 7 = (13). .
X is of type Az so
o wx = nnnnnh: wx(a;)=—ag_;forie X 0 2
° ps/(:%h1+2h2+%h3. 3
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Affine quantum groups and coideal subalgebras

Examples

1. Aof type AY, 1=1{0,1,2,3}
X=1{1,3}, r=id
X is of type A1 X Aj so

1
o wx = nn: wx(a;)=—a;forie X
° p;zéhl—k%h:{ 0 2
(X, 7) is admissible since g
Qr(i) = —Wx(a,) for i€{1,3} and
O{/(PX alj 33] =-1( €{0,2}).
2. Aof type AV, 1 =1{0,1,2,3}.
X ={1,2,3}, 7= (13). .
X is of type Az so
o wx = nnnnnh: wx(a;)=—ag_;forie X 0 2
° p}z%h1+2h2+%h3. 3
(X, 7) is admissible since a(jy = —Wx(a,) for

i €{1,2,3} and ao(p¥) = 2a10 —l— 330 = -3.



Affine quantum groups and coideal subalgebras

More examples

3. Aof type DV, 1 ={0,1,2,3,4,5}
X ={1,3}, 7 = (45)
X is of type A1 x Aq so
o wx =nn: wx(a;) =—q; fori € X,

o px =3+ 3hs. ' °
4. Aof type BY, 1 = {0,1,2,3,4}
X ={1,3}, 7 =id.
XiSOftypeA1XA1$O 0 2 3 4
o wx = rnn: wx(a;) =—a; forieX, 1

o py( — %hl —|— %hg,
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Affine quantum groups and coideal subalgebras

More examples

3. Aof type DV, 1 ={0,1,2,3,4,5}
X ={1,3}, 7 = (45)
X is of type A1 x Aq so

o wx =nn: wx(a;) =—q; fori € X,
o 5 = Thi+ 3hs 1 :
(X, 7) is admissible since a,(jy = —wx(a;) = a; for

i € {1,3} and az(p¥) = a1» + Saz = —1.

4. Aof type B, 1 ={0,1,2,3,4}
X ={1,3}, 7 =id.
XiSOftypeA1XA1$O 0 2 3 4
o wx = rnn: wx(a;) =—a; forieX, 1
o py( — %hl —|— %hg,
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Affine quantum groups and coideal subalgebras

More examples

3. Aof type DV, 1 ={0,1,2,3,4,5}
X ={1,3}, 7 = (45)
X is of type A1 x Aq so

o wx =nn: wx(a;) =—q; fori € X,
o 5 = Thi+ 3hs 1 :
(X, 7) is admissible since aT() = —Wx(a,) = q; for

i € {1 3} and Ozg(px) 312 + 332 —1.
4. Aof type B, 1 ={0,1,2,3,4}

X ={1,3}, 7 =id.

XiSOftypeA1XA1$O 0 2 3 4
o wx = rnn: wx(a;) =—a; forieX, 1
° py = %hl + %h3.

As required, a(jy = Wx(a,) = qo; for i € {1,3}

and az(px) = 1312 —|— 332 = —1, but

aa(py) = 1334 =—3 So (X, 7) is not admissible.
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Affine quantum groups and coideal subalgebras

Let ® € {1, 2,1} as needed. Given c € (C(¢°)*)"\X, s € C(¢°)"\X, the

coideal subalgebra B¢* = BS*(X, 1) C U,y(g') is generated by the

elements

X, ki for i € X;

® ky = [;c; k™ for those u Y i) Miai € Q such that = ©(u);
these are the elements k' k_ ) for i € I such that i # 7(i);

® bj=x; +cjfq(x; kj+)kj + sjk; for j € I\X, with the “quantum
involution”

0 =0q(X,7) :=Ad(sxr)o Tuyotwor

Call B®* standard if s; = 0 for all j € I\ X.
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Affine quantum groups and coideal subalgebras

Let ® € {1, 2,1} as needed. Given c € (C(¢°)*)"\X, s € C(¢°)"\X, the
coideal subalgebra B¢* = BS*(X, 1) C U,y(g') is generated by the
elements
X, ki for i € X;
® ky = [;c; k™ for those u Y i) Miai € Q such that = ©(u);
these are the elements k' k_ ) for i € I such that i # 7(i);

® bj=x; +cjfq(x; kj+)kj + sjk; for j € I\X, with the “quantum
involution”

0 =0q(X,7) :=Ad(sxr)o Tuyotwor

Call B®* standard if s; = 0 for all j € I\ X.

B¢ is quantum analogon (of enveloping algebra) of certain fixed-point
subalgebra ' C ¢ if € € C, s € S for suitable C C (C(g°)*)"\X,
S C C(qg°)\X. BS* is called a QSP (quantum symmetric pair) algebra.
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Given admissible pair (X, 7), define
Ipair = {( ) ( )) (/\X) |./ < 7_(./) (Oéj, ( )) 7& 0}
={(,7()) € (NX)?|j < 7(j) and (ajr(j) # 0 or 3i € X : a5 # 0)},
={jeN\X|j=7()and Vie X : a; =0},
hse = {J € hs|Vi € L : ajj € 27}

and families of tuples
C= {C € (C(q)X)I\X|Cj 7é Cr(j) and j < T(J) = (.a T(J)) € Ipair},
S = {S S (C(CI)I\XISJ‘ #0 = j € Inse}u

Examples (orbits corresponding to Iyair and lyg in red):

12 0
oe 2 3 0 2 3 @4
0 ..\(0—0%4 ‘>o—c<§ 3 1
1 1 5
4 3 2

Ins — Inse — {0} Ins = {374} lns = nse - {O} lns
Ipair - {(27 3)} Inse - {3}1 Ipair - @ Ipai - {(4 5)} Inse
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Affine quantum groups and coideal subalgebras

Hopf algebra automorphisms

For convenience, write

A Uq1/2(9/) if g = 502041,
q Uq(g') if g = 5[n+17‘§\02”’§l\32"'
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Affine quantum groups and coideal subalgebras

Hopf algebra automorphisms

For convenience, write
0, = | Uae(@) i g =50onsa,
Ug(g')  if g =5lnt1,5020, 5P
Note that Aut(A) < AutHOpf(Uq) by means of
o(xF) = a(ki) = k* o foriel.

1

Define (U )5 ={ue U |k uk; = ql@Pu} for all B € Q. For
s € Hq = Hom(Q, C(g°)™) define Ad(s) € AutHopf(U ) by

Ad(s)(a) = s(B)a for all a € (U, q)p and B € Q.
In fact, Autiopr(Ug) = Ad(Hy) x Aut(A).
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Affine quantum groups and coideal subalgebras

Hopf algebra automorphisms

For convenience, write
0o Uq1/2 (g’) if g= 5/\02,,4_1,
q-— . -~ ~ —~
Uq(g') if g=slp41,502,,5ps,-

Note that Aut(A) < AutHOpf(Uq) by means of
o(xF) = a(ki) = k* o foriel.

Define (U )5 ={ue U |k uk; = ql@Pu} for all B € Q. For

s € Hq = Hom(Q, C(g°)™) define Ad(s) € AutHopf(U ) by
Ad(s)(a) = s(p)a for all a € (U q)p and B € Q.

In fact, Autiopr(Ug) = Ad(Hy) x Aut(A).

Let ¥ < Autpept(.A) for a Hopf algebra A. Two coideal subalgebras

B,B' C A are called Y-equivalent if there exists o € ¥ such that

o(B) = B'; if ¥ = Autpope(A) we simply call them equivalent.
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Affine quantum groups and coideal subalgebras

Lemma

Suppose Z(u) € End(CN)(u) satisfies [R(u/v), Z(u) ® Z(v)] = 0. If
K(u) satisfies

Ro1(u/v)Ki(u)R(uv)Ka(v) = Ko(v)Ro1(uv)Ki(u)R(u/v)

then for any n € C*, K%(u) := Z(n/u)"*K(u)Z(nu) satisfies

Roa(u/v)KZ ()R(uv)KZ (v) = KF (v) Roa (uv) KE (u) R(u/v).

Similarly for twisted RE, provided we take K(u) := Z(n/u)'K(u)Z(nu).
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(2 ) Ad(ﬁq)—equivalence and dressing
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Fix adm. pair (X, 7). Choose I* C I\ X so that it intersects all T-orbits
in singletons, say
1= {i e NX|i < 7(i)}.

Let C, S be algebraic closures of C, S.
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Fix adm. pair (X, 7). Choose I* C I\ X so that it intersects all T-orbits
in singletons, say
I*={ie \NX|i<7(i)}.
Let C, S be algebraic closures of C, S.
The following generalizes S. Kolb, Adv. Math. 267 (2014), Prop. 9.2 (1) :

Proposition

letceC seSandvye (C(q)) . There exist xyc € Hy, ¢ €C
and s' € S such that By ¢ = Ad(xy,c)(Bc,s) and cj = v; for all j € I*.
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Fix adm. pair (X, 7). Choose I* C I\ X so that it intersects all T-orbits
in singletons, say
I*={ie \NX|i<7(i)}.
Let C, S be algebraic closures of C, S.
The following generalizes S. Kolb, Adv. Math. 267 (2014), Prop. 9.2 (1) :

Proposition

letceC seSandvye (C(q)) . There exist xyc € Hy, ¢ €C
and s' € S such that By ¢ = Ad(xy,c)(Bc,s) and cj = v; for all j € I*.

Imposing ¢} = ; for j € I* fixes all entries of ¢’ and s’ except those
c;(j) where (j, 7(j)) € lair and those SJ/ where j € .
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Recall representation T of Ug(= Uq(sln), Ug(son), Ug(spn)) and its
extension T, : Uy — End(C)[u, u™], where C)} = CN @ C(q°).

For example, for Uy = Ug(sln=ny1), write Ejj for the matrix
(0ikj1)1<k,;<n and set

Tu(x") = Eiis1, Tu(x) = Eivris Tu(k) = SN, qH 000 E;
for1 <j< N and

TU(XO+) = uEm, TU(X(;) = U_lElN, TU(kgE) = Zszl qi(éjN_(sJO)Ejj'
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Recall representation T of Ug(= Uq(sln), Ug(son), Ug(spn)) and its
extension T, : Uy — End(C)[u, u™], where C)} = CN @ C(q°).

For example, for Uy = Ug(sln=ny1), write Ejj for the matrix
(0ikj1)1<k,;<n and set

Tu(x") = Eiis1, Tu(x) = Eivris Tu(k) = SN, qH 000 E;
for1 <j< N and

Tu(xg) = uEn1, Tulxy) = u By, Tu(ki) = zj’.": L qFON=00) ;.

Let w € (C(g°)*)V if gy = sly and w € (C(g°)*)" otherwise.

Proposition

Let w be as above and let 1 € C(q°)*. There exists y, , € ﬁq and a
diagonal matrix G(w) € End(Cl) such that

G(w)Thu(a) = Tu(Ad(Yw,n)(a))G(w) for all a € Ug(gn)-




Corollary

Given w as above, K, (u) := G(w) 'K(u)G(w) satisfies

Keo(0) Tyu(b) = T, /u(b)Kw(u)  forall b € Bes

precisely if

K(u)Ty(b) = Tyu(b)K(u)  for all b € Ad(ye)(Bes)-

4

It is always possible to choose w such that xy ¢ = yu, 5 (recall ch = ~; for
J € I*). Then the second intertwining equation above simplifies:

K(u)Tu(b) = Ty/u(b)K(u)  for be Beg.

K(u) is called the bare K-matrix and G(w) 'K(u)G(w) the dressed
K-matrix. K(u) only depends on |/pair| + |lnse| free parameters (namely,
those c;(j) where (j,7(j)) € lair and those st where j € lhge).
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© Aut(A)-equivalence and rotation
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If (X, 7) is an admissible pair and if o € Aut(A), then it can be verified
(X7,77) is an admissible pair, where

X7 =o(X), 7 =coToo L.
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If (X, 7) is an admissible pair and if o € Aut(A), then it can be verified
(X7,77) is an admissible pair, where
X7 =o(X), 7 =coToo L.

Let (X, 7) be an admissible pair and let ¢ € Aut(A). Given ¢ € C and
s € S, we have

0(Be,s(X, 7)) = Bo(c),0(s)(X7:77),

where o(c) € o(C) is determined by (o(c))s(j) = ¢i for i € I\X (and
likewise for s).
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o € Aut(A) is called a symmetry of T, if 3Z2(u) € End((CéV)(u) such
that R

Z°(u)Ty(o(a)) = Tu(a)Z%(u) for all a € U,
Symmetries of T, form subgroup L (A) < Aut(A).

Name Diagram Aut(A) X(A)

Agl) 00=01 G G

0

AL, nﬁg Dv v (N=n+1)

1 0002 3 n=2
BE:Z)I% fo\/o—o ----- O—05on G G

CE712)2 OO=)(1)—(2>----’-76§91(=OH G G

002 03
DY > Si Dy X(A) = ((34),(04)(13))

1 0023 nz3 -1
DiZs n=2>on Ds Ds



Type A£,12)2: “reflections” in the dihedral group Aut(A) = Dy
(N = n+ 1) are not symmetries of T,: instead we have “o-skewed
self-duality” of T,: 3C € End(CY) such that

CT.(0(a)) = (T(,q)NU(S(a)))tc for all a € Uy (Gn).

N
where o = T2 (i, N—i) = (1n)(2,n—1) - .
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Type A$712)2: “reflections” in the dihedral group Aut(A) = Dy
(N = n+ 1) are not symmetries of T,: instead we have “o-skewed
self-duality” of T,: 3C € End(CY) such that

CTulo(@) = (Tegna(S(@) € foralla€ Usan)

N
where o = T2 (i, N—i) = (1n)(2,n—1) - .

Suppose A is of type Af,lz)z. If (X', ") = (X7, 77) for some o € Aut(A)
then there exists & € ¥(A) such that (X', 7') = (X%, 79).
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Type A$712)2: “reflections” in the dihedral group Aut(A) = Dy
(N = n+ 1) are not symmetries of T,: instead we have “o-skewed
self-duality” of T,: 3C € End(CY) such that

CTulo(@) = (Tegna(S(@) € foralla€ Usan)

N
where o = T2 (i, N—i) = (1n)(2,n—1) - .

Suppose A is of type Af,lz)z. If (X', ") = (X7, 77) for some o € Aut(A)
then there exists & € ¥(A) such that (X', 7') = (X%, 79).

For A of type Aglz)l and o = (012...n) we can take

Z(u)? = Z Eiit1+ uEn:.
1<i<N
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Proposition

Let (X, T) be an admissible pair and let o € ¥(A). If

K(u) Tyu(b) = T, /u(b)K(u)  forall b€ Bes
then K7(u) := Z°(1)"'K(u)Z°(nu) satisfies

K (u) Tyu(b) = T,,/u(b)K"(u)  for all b e o(Bes).

The bare K-matrix K(u) = q~2 Ey; — q2 Eyp + q~ 2 Eg3 — q2 Es4 solves
the boundary intertwining equation for the coideal subalgebra given by
1

1
0(;}’2 . The bare K-matrix associated to 0?2 is given by

Ko(u) = Z°(1/u) K(u)Z° (u) = q_%E32—q%E23+q_%u_1E14—q%uE41.

Bart Vlaar Trigonometric reflection matrices



Classification

@ Classification

igonometric reflection matrices




Classification

Auxiliary terminology

Let 7 : | — | be a diagram involution. Let Y C [/ be stable under 7. Y
is called lateral w.r.t. 7 if it is one of the following types:

i i
O=0i O&0i < or @@
i’ i’

Y={itis Y={iis i—i' =1
of type By of type C; Y = {i,i'} is of type D,

i

%i or O=0i D
Q)

1
Y = {i} is a hinge Y ={i,'} is a hinge

@ There are < 2 subsets of / lateral w.r.t. 7, denoted Y7 and Y5>.
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Classification

Types of admissible pairs:
e (X,7) is said to be of identity type if T fixes | minus any subsets of
type Dy. Two subtypes:
e (X, 7) is said to be of plain type if I\ X is connected.
e (X, 7) is said to be of alternating type if all j € NX
with > 2 neighbours in / have > 2 neighbours in X.

e (X, ) is said to be of parallel type if T has at least one hinge. This

is possible in types AE,>)1, CE11>)2, E,1>)4 (also DE12J2123).
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Classification

Types of admissible pairs:

e (X,7) is said to be of identity type if T fixes | minus any subsets of
type Dy. Two subtypes:

e (X, 7) is said to be of plain type if I\ X is connected.
e (X, 7) is said to be of alternating type if all j € NX
with > 2 neighbours in / have > 2 neighbours in X.
e (X, ) is said to be of parallel type if T has at least one hinge. This
is possible in types AE,>)1, CE11>)2, E,1>)4 (also DE12J21>3).

A component of X is a subset X" C X such that a; =0 for all i € X/,
Jj € X\X'. General decomposition of X into components:

X = X1 U X U Xo,

where
@ either X; =0 or Y; C X; (i =1,2) and
o Xa is of type A;F (with t = 0 unless (X, 7) is of alternating type).
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Classification

Recall: the pair (X, 7) with X C [ of finite type and 7 € Aut(A) an
involution is admissible if:

1. forall i e X, Qr(iy = —wx(a;j);
2. forall j € \X, aj(py) € Zif T(j) = j.
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Classification

Recall: the pair (X, 7) with X C [ of finite type and 7 € Aut(A) an
involution is admissible if:

1. forall i € X, Qr(iy = —wx(a;j);
2. forall j € \X, aj(py) € Zif T(j) =j.
From condition 1. it follows that

@ if a component of X is of type D;>» then it contains an even
number of 7-orbits;

e if (X, 7) is of parallel type, each connected component of X is of
type A¢>1, symmetrically arranged around a hinge.

Bart Vlaar Trigonometric reflection matrices



Classification

Recall: the pair (X, 7) with X C [ of finite type and 7 € Aut(A) an
involution is admissible if:

1. forall i € X, Qr(iy = —wx(a;j);
2. forall j € \X, aj(py) € Zif T(j) =j.
From condition 1. it follows that

@ if a component of X is of type D;>» then it contains an even
number of 7-orbits;

e if (X, 7) is of parallel type, each connected component of X is of
type A¢>1, symmetrically arranged around a hinge.

If (X, 7) is of identity type, then condition 2. implies the following:

@ The components of X are either of type B; and/or D¢, or of type
A; and/or C;. In the latter case each node outside X neighbouring
> 2 nodes in | must neighbour 2 nodes in X.

@ If / has a subset of type By then (X, 7) must be of plain type:
..o—e%0 and -.o-eode are not admissible.
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Classification

Plain (1) Alternating (2) Parallel (3)  Exceptional (4)
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Classification

Plain (1) Alternating (2) Parallel (3)  Exceptional (4)
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Classification

Quasistandard QSP algebras

Define /s as consisting of those elements of /s of the following type:

e e

Typical elements of e\ /s are:
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Classification

Quasistandard QSP algebras

Define /s as consisting of those elements of /s of the following type:

e e

Typical elements of e\ /s are:

Definition
A QSP algebra B“*® is called quasistandard if s; #0 = j € .
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Classification

Three types of quasistandard QSP algebras:
1. QSP algebras which are “standard by nature”, i.e. lge = 0;

2. Nonstandard QSP algebras which have been “standardized” (s; =0
forced for all j € I\ X);

3. QSP algebras for which Iy # 0.
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Classification

Three types of quasistandard QSP algebras:
1. QSP algebras which are “standard by nature”, i.e. lge = 0;
2. Nonstandard QSP algebras which have been “standardized” (s; =0
forced for all j € I\ X);
3. QSP algebras for which Iy # 0.

Nice property of quasistandard QSP algebras: corresponding K-matrices
are of “generalized cross-form”, i.e. given standard basis {v1,..., vy} of
CN, there exists involution ¢ on {1,..., N} such that

K(u)vi € Cv; @ Cyyj forall i e {1,...,N}.

@ More precisely, nondiagonal nonzero entries of such K-matrices are
on at most two antidiagonals.

@ Forcing s; = 0 for such K-matrices does not cause off-diagonal
entries to vanish.
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Classification
General formula

For the untwisted cases, the bare K-matrices are of the form

u—ut D>(u)
Klu)=Id+ ————(D
() =1+ =0 (1) + kg(u))
where kq(u) and ko(u) are given by
A3,BCD.1,CD.2:  ki(u) = Au—u, ko(u) = X714 (uu) ™,
CD.3: ki(u) =t —pu,  ko(u) =X+ ()7l

and the matrices D;(u) and D;(u) are defined as follows...
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Classification

A3: Dy(u)= Z Eii,

s<i<N
Do(u) = Z (AEij + A Esitasmiv1 + Eisoiv1 + Es_ig1),
1<i<r
C.1: Di(u)=0,
Do(u) = (AE_i—i+ AN 'Ei+Eij+E i),
1<i<n
D.2: Dl(u) = 501,1Enn
Da(u) = 0oy 1 (A = 7 ) E_p —p+ G0yt A+ AT E1 1+

4+ Z (NE_i—i + A Ei + €i(Eimive + E-iter i)

0 <i<or

where A\, u € C* are free parameters, ¢; = (—1)i+°2,
r=(N+o1+2)/2—p1—p2+1lands=N—o; —2p;.
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Classification

BD.1:  Di(u) =Y (AuuE_;_;+ Ey),

Do(u) =Y (NE_i_i+ X 'Ei+E_j;+E_j),

r<i<n
>
s<i<r
C.2: Di(u) = Z (ApuE_j _i + Ej),
r<i<n
>

(/\E_,'7_,' + )\71Eii + € (E—i—e;,i + Ef,—f—ﬂ))’
s<i<F
where A = qN/zfs, w=q " €= (—1)54 and
(r,s) = (o1 + p1,n— 0 — p2).
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Classification

CD.3: Dy(u)= Y uky

1<i<n

Do(u) = ((AM)*IEfi,fi tAME g - B - Bt
r<i<n

—ut ()\u_lE,'; + )\_I,UEH — Ez — Eii))>

where A = g="/24" 1, € C* is a free parameter and r = (n — 0)/2 — p.
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Classification

Additional properties of K-matrices

@ Assuming irreducibility of T,|g,,, one can derive “unitarity”
K(u)K(u™t) = (scalar)Id.
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Classification

Additional properties of K-matrices

@ Assuming irreducibility of T,|g,,, one can derive “unitarity”
K(u)K(u™t) = (scalar)Id.

o Similarly, if T11|p,, is irreducible, one can derive “regularity”
K(£1) = (scalar)Id.
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Classification
Additional properties of K-matrices

@ Assuming irreducibility of T,|g,,, one can derive “unitarity”
K(u)K(u™t) = (scalar)Id.

o Similarly, if T11|p,, is irreducible, one can derive “regularity”
K(£1) = (scalar)Id.

o R(u) = PR(u) satisfies Hecke-type identity:

(/%(u) . fl(u)Id> (/%(u) - fg(u)Id) (fe(u) _ f3(u)Id> -0

for some f;(u) € C(g°)*(u). For all quasistandard K-matrices we
obtain similar identities, of degree < 4.
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Classification

o Call (X, 1) restrictable if 7(0) =0 ¢ X. Then (X, 7|¢1,. ny) is an
admissible pair w.r.t. the Cartan matrix Ag; 1 of finite type. In
this case K := lim,_,0 K(u) solves the finite refl. eqn.

fin j~fin pfin | fin _ p-fin pfin | fin pfin
Ry KR K™ = KM Ry7 KT R

where Rf™ = lim, o R(u). Moreover we always get an affinization
identity, i.e. there exists d*(u) € C(q°)(u) :

di(u)K™ + d_(u)(K"™) "

KW) = =7 d ()

and the Hecke-type identity is of degree < 2.
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© Generalizations
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Generalizations

e Non-quasistandard cases. E.g. (Bs,l))gn_2 = O%e-en gives
u—ut
Ku)=Td+ ——— > ki(u)Di(u)
k(u) —1<i<1

with a third-order Hecke relation.
@ g-Onsager cases

@ “quartic” admissible pairs
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