Towards a classification of trigonometric reflection matrices (Part 2)

Bart Vlaar

School of Mathematical Sciences University of Nottingham

Algebra and Geometry seminar, University of Newcastle, 27/04/2016

- 1 Affine quantum groups and coideal subalgebras
- 2 $\operatorname{Ad}(\widetilde{H}_q)$ -equivalence and dressing
- 3 Aut(A)-equivalence and rotation
- 4 Classification
- 5 Generalizations

V. Regelskis and B. Vlaar, "Classification of reflection matrices for quasistandard quantum affine Kac-Moody pairs of classical type". Preprint at arXiv:1602.08471.

Given: generalized Cartan matrix $A = (a_{ij})_{i,j \in I}$: $a_{ii} = 2$, $a_{ij} \in \mathbb{Z}_{\leq 0}$ if $i \neq j$ such that $a_{ij} = 0$ precisely if $a_{ji} = 0$. Further assumptions:

- A is symmetrizable: there exist coprime $\varepsilon_i \in \mathbb{Z}_{>0}$ $(i \in I)$ such that $\varepsilon_i a_{ij} = \varepsilon_j a_{ji}$;
- A is indecomposable: there is no $\emptyset \subset I' \subset I$ such that $a_{ij} = 0$ for all $i \in I'$, $j \in I \setminus I'$.

 $\mathfrak{g} = \mathfrak{g}(A)$ is the corresponding Kac-Moody algebra, with Cartan subalgebra $\mathfrak{h} = \langle \{h_i | i \in I\}, \{d_s\} \rangle$ of dimension $2|I| - \operatorname{rank}(A)$ and coweight lattice P^{\vee} .

- Derived subalgebra: $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}] = \langle h_i, e_i, f_i | i \in I \rangle.$
- Choose $\{\alpha_i | i \in I\} \subset \mathfrak{h}^*$ such that $\alpha_j(h_i) = a_{ij}, \alpha_j(d_s) = \{0, 1\}$ for all $i, j \in I$.
- Nondegenerate symmetric bilinear form (·, ·) on h defined by
 (h_i, h) = ε_i⁻¹α_i(h) for h ∈ h, i ∈ I, induced form on h* given by
 (α_i, α_j) = ε_ia_{ij} for i, j ∈ I.

For $r,s\in\mathbb{Z}_{\geq0}$ with $r\leq s$ we denote

$$[r]_q = \frac{q^r - q^{-r}}{q - q^{-1}}, \qquad [r]_q! = \prod_{i=1}^r [i]_q, \qquad \binom{s}{r}_q = \frac{[s]_q!}{[r]_q! [s - r]_q!}$$

Definition (Drinfeld-Jimbo quantum group)

Let A be a symmetrizable generalized Cartan matrix whose Kac-Moody algebra is g. Then $U_q(g)$ is the unital associative algebra over $\mathbb{C}(q)$ generated by $\{x_i^{\pm} | i \in I\} \cup \{k_h | h \in P^{\vee}\}$ subject to

$$k_{0} = 1, \qquad k_{h}k_{h'} = k_{h+h'}, \qquad k_{h}x_{i}^{\pm} = q^{\pm\alpha_{i}(h)}x_{i}^{\pm}k_{h},$$

$$[x_{i}^{+}, x_{j}^{-}] = \delta_{ij}\frac{k_{i}^{+} - k_{i}^{-}}{q_{i} - q_{i}^{-1}} \quad \text{for all } i, j \in I, \qquad \text{where } q_{i} = q^{\varepsilon_{i}}, \ k_{i}^{\pm} = k_{\pm h_{i}}^{\varepsilon_{i}},$$

$$\sum_{r=0}^{1-a_{ij}} (-1)^{r} \binom{1-a_{ij}}{r}_{q_{i}} (x_{i}^{\pm})^{1-a_{ij}-r} x_{j}^{\pm} (x_{i}^{\pm})^{r} = 0 \quad \text{for all} \quad i, j \in I.$$

Hopf algebra structure on $U_q(\mathfrak{g})$:

$$\begin{array}{ll} \Delta(x_i^+) = x_i^+ \otimes 1 + k_i^+ \otimes x_i^+, & \epsilon(x_i^+) = 0, & S(x_i^+) = -k_i^- x_i^+, \\ \Delta(x_i^-) = x_i^- \otimes k_i^- + 1 \otimes x_i^-, & \epsilon(x_i^-) = 0, & S(x_i^-) = -x_i^- k_i^+, \\ \Delta(k_h) = k_h \otimes k_h, & \epsilon(k_h) = 1, & S(k_h) = k_{-h}, \end{array}$$

Hopf subalgebra $U_q(\mathfrak{g}') = \langle x_i^{\pm}, k_i^{\pm} | i \in I \rangle.$

From now assume A to be of *affine* type: det(A)=0 and proper principal minors are positive.

Untwisted affine types:

$$\begin{split} \mathbf{A}_{n\geq 1}^{(1)} &= \widetilde{\mathbf{A}}_{n\geq 1}, \qquad \mathbf{B}_{n\geq 3}^{(1)} = \widetilde{\mathbf{B}}_{n\geq 3}, \qquad \mathbf{C}_{n\geq 2}^{(1)} = \widetilde{\mathbf{C}}_{n\geq 2}, \qquad \mathbf{D}_{n\geq 4}^{(1)} = \widetilde{\mathbf{D}}_{n\geq 4} \\ & \mathbf{E}_{6,7,8}^{(1)} = \widetilde{\mathbf{E}}_{6,7,8}, \qquad \mathbf{F}_{4}^{(1)} = \widetilde{\mathbf{F}}_{4}, \qquad \mathbf{G}_{2}^{(1)} = \widetilde{\mathbf{G}}_{2}. \end{split}$$

Twisted affine types (note that $A_3 \cong D_3$):

$$\begin{split} \mathbf{A}_{2n\geq 2}^{(2)} &= \widetilde{\mathrm{BC}}_{n\geq 1}, \qquad \mathbf{A}_{2n-1\geq 5}^{(2)} = \widetilde{\mathrm{B}}_{n\geq 3}^{\vee}, \qquad \mathbf{D}_{n+1\geq 3}^{(2)} = \widetilde{\mathrm{C}}_{n\geq 2}^{\vee}, \\ & \mathbf{E}_{6}^{(2)} = \widetilde{\mathrm{F}}_{4}^{\vee}, \qquad \mathbf{D}_{4}^{(3)} = \widetilde{\mathrm{G}}_{2}^{\vee}. \end{split}$$

Generalized Cartan matrices (KM algebras, Drinfeld-Jimbo quantum groups, ...) can be graphically enumerated by Dynkin diagrams (I, A). Standard labelling for affine diagrams: $I = \{0, ..., n\}$ so that $I \setminus \{0\}$ indexes corresponding objects of finite type.

Group of *diagram automorphisms*:

$$\operatorname{Aut}(A) = \{ \sigma : I \to I \text{ bijective } | a_{\sigma(i)\sigma(j)} = a_{ij} \text{ for all } i, j \in I \}.$$

Suppose $X \subset I$ is of finite type $(A_X := (a_{ii})_{i,i \in X}$ is of finite type). Then corresponding Weyl group W_X has longest element w_X (involution). $-w_X$ permutes $\Pi_X := \{\alpha_i | i \in X\}$, so induces involution on X.

g Rot

Group of *diagram automorphisms*:

 $\operatorname{Aut}(A) = \{ \sigma : I \to I \text{ bijective } | a_{\sigma(i)\sigma(j)} = a_{ij} \text{ for all } i, j \in I \}.$

Suppose $X \subset I$ is of finite type $(A_X := (a_{ij})_{i,j \in X}$ is of finite type). Then corresponding Weyl group W_X has longest element w_X (involution). $-w_X$ permutes $\Pi_X := \{\alpha_i | i \in X\}$, so induces involution on X.

Definition (Admissible pair)

Let $X \subset I$ be of finite type and $\tau \in Aut(A)$ be an involution. The pair (X, τ) is called *admissible* if

- 1. for all $i \in X$, $\alpha_i = \Theta(\alpha_i)$ where $\Theta := -w_X \circ \tau : \mathfrak{h}^* \to \mathfrak{h}^*$ (in particular, X is stable under τ);
- 2. for all $j \in I \setminus X$, $\tau(j) = j \implies \alpha_j(\rho_X^{\vee}) \in \mathbb{Z}$, where $\rho_X^{\vee} \in P_X^{\vee}$ is the half-sum of positive coroots.
- S. Kolb, Adv. Math. 267 (2014)
- V. Back-Valente, N. Bardy-Panse, H. Ben Massaoud, G. Rousseau, J. Algebra 171 (1995)

Satake diagrams enumerate admissible pairs.

Rotation

Classification

Generalizations

Examples

1. A of type
$$A_3^{(1)}$$
, $I = \{0, 1, 2, 3\}$
 $X = \{1, 3\}, \tau = id$
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.

2

2. A of type
$$A_3^{(1)}$$
, $I = \{0, 1, 2, 3\}$.
 $X = \{1, 2, 3\}, \tau = (13)$.
X is of type A_3 so
• $w_X = r_1 r_2 r_3 r_2 r_1 r_2$: $w_X(\alpha_i) = -\alpha_{4-i}$ for $i \in X$ • 0
• $\rho_X^{\vee} = \frac{3}{2} h_1 + 2h_2 + \frac{3}{2} h_3$.

Rotation

Classification

Generalizations

2

Examples

1. A of type
$$A_3^{(1)}$$
, $I = \{0, 1, 2, 3\}$
 $X = \{1, 3\}, \tau = id$
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.
(X, τ) is admissible since
 $\alpha_{\tau(i)} = -w_X(\alpha_i)$ for $i \in \{1, 3\}$ and
 $\alpha_j(\rho_X^{\vee}) = \frac{1}{2}a_{1j} + \frac{1}{2}a_{3j} = -1$ ($j \in \{0, 2\}$).
2. A of type $A_3^{(1)}$, $I = \{0, 1, 2, 3\}$.
 $X = \{1, 2, 3\}, \tau = (13)$.
X is of type A_3 so
• $w_X = r_1 r_2 r_3 r_2 r_1 r_2$: $w_X(\alpha_i) = -\alpha_{4-i}$ for $i \in X$ OC

Rotation

Generalizations

Examples

1. A of type
$$A_3^{(1)}$$
, $I = \{0, 1, 2, 3\}$
 $X = \{1, 3\}$, $\tau = id$
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.
 (X, τ) is admissible since
 $\alpha_{\tau(i)} = -w_X(\alpha_i)$ for $i \in \{1, 3\}$ and
 $\alpha_j(\rho_X^{\vee}) = \frac{1}{2}a_{1j} + \frac{1}{2}a_{3j} = -1$ $(j \in \{0, 2\})$.
2. A of type $A_3^{(1)}$, $I = \{0, 1, 2, 3\}$.
 $X = \{1, 2, 3\}$, $\tau = (13)$.
X is of type A_3 so
• $w_X = r_1 r_2 r_3 r_2 r_1 r_2$: $w_X(\alpha_i) = -\alpha_{4-i}$ for $i \in X$
• $\rho_X^{\vee} = \frac{3}{2}h_1 + 2h_2 + \frac{3}{2}h_3$.
 (X, τ) is admissible since $\alpha_{\tau(i)} = -w_X(\alpha_i)$ for
 $i \in \{1, 2, 3\}$ and $\alpha_0(\rho_X^{\vee}) = \frac{3}{2}a_{10} + \frac{3}{2}a_{30} = -3$.

Rotation

Classification

Generalizations

More examples

3. A of type
$$D_5^{(1)}$$
, $I = \{0, 1, 2, 3, 4, 5\}$
 $X = \{1, 3\}, \tau = (45)$
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X_1$
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.

4. A of type
$$B_4^{(1)}$$
, $I = \{0, 1, 2, 3, 4\}$
 $X = \{1, 3\}, \tau = id.$
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$,
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.

Rotation

More examples

3. A of type
$$D_5^{(1)}$$
, $I = \{0, 1, 2, 3, 4, 5\}$
 $X = \{1, 3\}$, $\tau = (45)$
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$,
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.
(X, τ) is admissible since $\alpha_{\tau(i)} = -w_X(\alpha_i) = \alpha_i$ for
 $i \in \{1, 3\}$ and $\alpha_2(\rho_X^{\vee}) = \frac{1}{2}a_{12} + \frac{1}{2}a_{32} = -1$.
4. A of type $B_4^{(1)}$, $I = \{0, 1, 2, 3, 4\}$
 $X = \{1, 3\}$, $\tau = id$.
X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$,
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.

Rotation

Generalizations

More examples

3. A of type
$$D_5^{(1)}$$
, $I = \{0, 1, 2, 3, 4, 5\}$
 $X = \{1, 3\}$, $\tau = (45)$
 X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$,
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.
 (X, τ) is admissible since $\alpha_{\tau(i)} = -w_X(\alpha_i) = \alpha_i$ for
 $i \in \{1, 3\}$ and $\alpha_2(\rho_X^{\vee}) = \frac{1}{2}a_{12} + \frac{1}{2}a_{32} = -1$.
4. A of type $B_4^{(1)}$, $I = \{0, 1, 2, 3, 4\}$
 $X = \{1, 3\}$, $\tau = id$.
 X is of type $A_1 \times A_1$ so
• $w_X = r_1 r_3$: $w_X(\alpha_i) = -\alpha_i$ for $i \in X$,
• $\rho_X^{\vee} = \frac{1}{2}h_1 + \frac{1}{2}h_3$.
As required, $\alpha_{\tau(i)} = -w_X(\alpha_i) = \alpha_i$ for $i \in \{1, 3\}$
and $\alpha_2(\rho_X^{\vee}) = \frac{1}{2}a_{12} + \frac{1}{2}a_{32} = -1$, but
 $\alpha_4(\rho_X^{\vee}) = \frac{1}{2}a_{34} = -\frac{1}{2}$. So (X, τ) is not admissible.

Let $\mathfrak{d} \in \{1, \frac{1}{2}, \frac{1}{4}\}$ as needed. Given $\boldsymbol{c} \in (\mathbb{C}(q^{\mathfrak{d}})^{\times})^{I \setminus X}$, $\boldsymbol{s} \in \mathbb{C}(q^{\mathfrak{d}})^{I \setminus X}$, the coideal subalgebra $B^{\boldsymbol{c}, \boldsymbol{s}} = B^{\boldsymbol{c}, \boldsymbol{s}}(X, \tau) \subset U_q(\mathfrak{g}')$ is generated by the elements

- x_i^{\pm}, k_i^{\pm} for $i \in X$;
- $k_{\mu} = \prod_{i \in I} k_i^{m_i}$ for those $\mu = \sum_{i \in I} m_i \alpha_i \in Q$ such that $\mu = \Theta(\mu)$; these are the elements $k_i^+ k_{\tau(i)}^-$ for $i \in I$ such that $i \neq \tau(i)$;
- $b_j = x_j^- + c_j \theta_q(x_j^- k_j^+) k_j^- + s_j k_j^-$ for $j \in I \setminus X$, with the "quantum involution"

$$\theta_q = \theta_q(X, \tau) := \operatorname{Ad}(s_{X, \tau}) \circ T_{w_X} \circ \operatorname{tw} \circ \tau$$

Call $B^{c,s}$ standard if $s_j = 0$ for all $j \in I \setminus X$.

Let $\mathfrak{d} \in \{1, \frac{1}{2}, \frac{1}{4}\}$ as needed. Given $\boldsymbol{c} \in (\mathbb{C}(q^{\mathfrak{d}})^{\times})^{I \setminus X}$, $\boldsymbol{s} \in \mathbb{C}(q^{\mathfrak{d}})^{I \setminus X}$, the coideal subalgebra $B^{\boldsymbol{c}, \boldsymbol{s}} = B^{\boldsymbol{c}, \boldsymbol{s}}(X, \tau) \subset U_q(\mathfrak{g}')$ is generated by the elements

- x_i^{\pm}, k_i^{\pm} for $i \in X$;
- $k_{\mu} = \prod_{i \in I} k_i^{m_i}$ for those $\mu = \sum_{i \in I} m_i \alpha_i \in Q$ such that $\mu = \Theta(\mu)$; these are the elements $k_i^+ k_{\tau(i)}^-$ for $i \in I$ such that $i \neq \tau(i)$;
- $b_j = x_j^- + c_j \theta_q(x_j^- k_j^+) k_j^- + s_j k_j^-$ for $j \in I \setminus X$, with the "quantum involution"

$$\theta_{q} = \theta_{q}(X, \tau) := \mathrm{Ad}(s_{X, \tau}) \circ T_{w_{X}} \circ \mathrm{tw} \circ \tau$$

Call $B^{c,s}$ standard if $s_j = 0$ for all $j \in I \setminus X$.

 $B^{c,s}$ is quantum analogon (of enveloping algebra) of certain fixed-point subalgebra $\mathfrak{t}' \subset \mathfrak{g}'$ if $c \in \mathcal{C}$, $s \in S$ for suitable $\mathcal{C} \subset (\mathbb{C}(q^{\mathfrak{d}})^{\times})^{I \setminus X}$, $\mathcal{S} \subset \mathbb{C}(q^{\mathfrak{d}})^{I \setminus X}$. $B^{c,s}$ is called a *QSP* (quantum symmetric pair) algebra.

g Rotation

Given admissible pair (X, τ) , define

$$\begin{split} I_{\text{pair}} &= \{(j,\tau(j)) \in (I \setminus X)^2 | j < \tau(j), (\alpha_j, \Theta(\alpha_j)) \neq 0\} \\ &= \{(j,\tau(j)) \in (I \setminus X)^2 | j < \tau(j) \text{ and } (a_{j\tau(j)} \neq 0 \text{ or } \exists i \in X : a_{ij} \neq 0)\}, \\ I_{\text{ns}} &= \{j \in I \setminus X | j = \tau(j) \text{ and } \forall i \in X : a_{ij} = 0\}, \\ I_{\text{nse}} &= \{j \in I_{\text{ns}} | \forall i \in I_{\text{ns}} : a_{ij} \in 2\mathbb{Z}\} \end{split}$$

and families of tuples

$$\mathcal{C} = \{ \boldsymbol{c} \in (\mathbb{C}(q)^{ imes})^{I \setminus X} | c_j \neq c_{\tau(j)} \text{ and } j < \tau(j) \implies (j, \tau(j)) \in I_{\text{pair}} \},\ \mathcal{S} = \{ \boldsymbol{s} \in \mathbb{C}(q)^{I \setminus X} | s_j \neq 0 \implies j \in I_{\text{nse}} \},$$

Examples (orbits corresponding to I_{pair} and I_{nse} in red):

Hopf algebra automorphisms

For convenience, write

$$\widehat{U}_q := \begin{cases} U_{q^{1/2}}(\mathfrak{g}') & \text{if } \mathfrak{g} = \widehat{\mathfrak{so}}_{2n+1}, \\ U_q(\mathfrak{g}') & \text{if } \mathfrak{g} = \widehat{\mathfrak{sl}}_{n+1}, \widehat{\mathfrak{so}}_{2n}, \widehat{\mathfrak{sp}}_{2n}. \end{cases}$$

Hopf algebra automorphisms

For convenience, write

$$\widehat{U}_q := \begin{cases} U_{q^{1/2}}(\mathfrak{g}') & \text{if } \mathfrak{g} = \widehat{\mathfrak{so}}_{2n+1}, \\ U_q(\mathfrak{g}') & \text{if } \mathfrak{g} = \widehat{\mathfrak{sl}}_{n+1}, \widehat{\mathfrak{so}}_{2n}, \widehat{\mathfrak{sp}}_{2n}. \end{cases}$$

Note that $\operatorname{Aut}(A) < \operatorname{Aut}_{\operatorname{Hopf}}(\widehat{U}_q)$ by means of $\sigma(x_i^{\pm}) = x_{\sigma(i)}^{\pm}, \sigma(k_i^{\pm}) = k_{\sigma(i)}^{\pm}$ for $i \in I$.

Define $(\widehat{U}_q)_{\beta} := \{ u \in \widehat{U}_q \, | \, k_i^+ u k_i^- = q^{(\alpha_i,\beta)} u \}$ for all $\beta \in Q$. For $s \in \widetilde{H}_q := \operatorname{Hom}(Q, \mathbb{C}(q^{\mathfrak{d}})^{\times})$ define $\operatorname{Ad}(s) \in \operatorname{Aut}_{\operatorname{Hopf}}(\widehat{U}_q)$ by

$$\operatorname{Ad}(s)(a) = s(eta)a \qquad ext{ for all } a \in (\widehat{U}_q)_eta ext{ and } eta \in Q.$$

In fact, $\operatorname{Aut}_{\operatorname{Hopf}}(\widehat{U}_q) = \operatorname{Ad}(\widetilde{H}_q) \rtimes \operatorname{Aut}(A)$.

Hopf algebra automorphisms

For convenience, write

$$\widehat{U}_q := \begin{cases} U_{q^{1/2}}(\mathfrak{g}') & \text{if } \mathfrak{g} = \widehat{\mathfrak{so}}_{2n+1}, \\ U_q(\mathfrak{g}') & \text{if } \mathfrak{g} = \widehat{\mathfrak{sl}}_{n+1}, \widehat{\mathfrak{so}}_{2n}, \widehat{\mathfrak{sp}}_{2n}. \end{cases}$$

Note that $\operatorname{Aut}(A) < \operatorname{Aut}_{\operatorname{Hopf}}(\widehat{U}_q)$ by means of $\sigma(x_i^{\pm}) = x_{\sigma(i)}^{\pm}, \sigma(k_i^{\pm}) = k_{\sigma(i)}^{\pm}$ for $i \in I$.

Define
$$(\widehat{U}_q)_{\beta} := \{ u \in \widehat{U}_q \, | \, k_i^+ u k_i^- = q^{(\alpha_i, \beta)} u \}$$
 for all $\beta \in Q$. For
 $s \in \widetilde{H}_q := \operatorname{Hom}(Q, \mathbb{C}(q^{\mathfrak{d}})^{\times})$ define $\operatorname{Ad}(s) \in \operatorname{Aut}_{\operatorname{Hopf}}(\widehat{U}_q)$ by

$$\mathrm{Ad}(s)(a)=s(eta)a\qquad$$
 for all $a\in (\widehat{U}_q)_eta$ and $eta\in Q.$

In fact, $\operatorname{Aut}_{\operatorname{Hopf}}(\widehat{U}_q) = \operatorname{Ad}(\widetilde{H}_q) \rtimes \operatorname{Aut}(A)$.

Let $\Sigma \leq \operatorname{Aut}_{\operatorname{Hopf}}(\mathcal{A})$ for a Hopf algebra \mathcal{A} . Two coideal subalgebras $\mathcal{B}, \mathcal{B}' \subseteq \mathcal{A}$ are called Σ -equivalent if there exists $\sigma \in \Sigma$ such that $\sigma(\mathcal{B}) = \mathcal{B}'$; if $\Sigma = \operatorname{Aut}_{\operatorname{Hopf}}(\mathcal{A})$ we simply call them equivalent.

Lemma

Suppose $Z(u) \in \text{End}(\mathbb{C}^N)(u)$ satisfies $[R(u/v), Z(u) \otimes Z(v)] = 0$. If K(u) satisfies

$$R_{21}(u/v)K_1(u)R(uv)K_2(v) = K_2(v)R_{21}(uv)K_1(u)R(u/v)$$

then for any $\eta \in \mathbb{C}^{\times}$, $K^{Z}(u) := Z(\eta/u)^{-1}K(u)Z(\eta u)$ satisfies

$$R_{21}(u/v)K_1^Z(u)R(uv)K_2^Z(v) = K_2^Z(v)R_{21}(uv)K_1^Z(u)R(u/v).$$

Similarly for twisted RE, provided we take $\widetilde{K}(u) := Z(\eta/u)^{t}K(u)Z(\eta u)$.

1 Affine quantum groups and coideal subalgebras

2 Ad(\widetilde{H}_q)-equivalence and dressing

3 Aut(A)-equivalence and rotation

4 Classification

Fix adm. pair (X, τ) . Choose $I^* \subset I \setminus X$ so that it intersects all τ -orbits in singletons, say

$$I^* := \{i \in I \setminus X \mid i \le \tau(i)\}.$$

Let $\overline{\mathcal{C}}, \overline{\mathcal{S}}$ be algebraic closures of \mathcal{C}, \mathcal{S} .

Fix adm. pair (X, τ) . Choose $I^* \subset I \setminus X$ so that it intersects all τ -orbits in singletons, say

$$I^* := \{i \in I \setminus X \mid i \leq \tau(i)\}.$$

Let $\overline{C}, \overline{S}$ be algebraic closures of C, S. The following generalizes S. Kolb, Adv. Math. **267** (2014), Prop. 9.2 (1) :

Proposition

Let
$$\boldsymbol{c} \in \overline{\mathcal{C}}$$
, $\boldsymbol{s} \in \overline{\mathcal{S}}$ and $\boldsymbol{\gamma} \in (\overline{\mathbb{C}(q^{\mathfrak{d}})}^{\times})^{I^*}$. There exist $x_{\boldsymbol{\gamma}, \boldsymbol{c}} \in \widetilde{H}_q$, $\boldsymbol{c}' \in \overline{\mathcal{C}}$
and $\boldsymbol{s}' \in \overline{\mathcal{S}}$ such that $B_{\boldsymbol{c}', \boldsymbol{s}'} = \operatorname{Ad}(x_{\boldsymbol{\gamma}, \boldsymbol{c}})(B_{\boldsymbol{c}, \boldsymbol{s}})$ and $c'_j = \gamma_j$ for all $j \in I^*$.

Fix adm. pair (X, τ) . Choose $I^* \subset I \setminus X$ so that it intersects all τ -orbits in singletons, say

$$I^* := \{i \in I \setminus X \mid i \leq \tau(i)\}.$$

Let $\overline{C}, \overline{S}$ be algebraic closures of C, S. The following generalizes S. Kolb, Adv. Math. **267** (2014), Prop. 9.2 (1) :

Proposition

Let
$$\mathbf{c} \in \overline{\mathcal{C}}$$
, $\mathbf{s} \in \overline{\mathcal{S}}$ and $\gamma \in (\overline{\mathbb{C}(q^{\mathfrak{d}})}^{\times})^{I^*}$. There exist $x_{\gamma, \mathbf{c}} \in \widetilde{H}_q$, $\mathbf{c}' \in \overline{\mathcal{C}}$
and $\mathbf{s}' \in \overline{\mathcal{S}}$ such that $B_{\mathbf{c}', \mathbf{s}'} = \operatorname{Ad}(x_{\gamma, \mathbf{c}})(B_{\mathbf{c}, \mathbf{s}})$ and $c'_j = \gamma_j$ for all $j \in I^*$.

Remark

Imposing $c'_j = \gamma_j$ for $j \in I^*$ fixes all entries of \boldsymbol{c}' and \boldsymbol{s}' except those $c'_{\tau(j)}$ where $(j, \tau(j)) \in I_{\text{pair}}$ and those s'_j where $j \in I_{\text{nse}}$.

Recall representation T of $U_q(=U_q(\mathfrak{sl}_N), U_q(\mathfrak{so}_N), U_q(\mathfrak{sp}_N))$ and its extension $T_u: \widehat{U}_q \to \operatorname{End}(\mathbb{C}_q^N)[u, u^{-1}]$, where $\mathbb{C}_q^N = \mathbb{C}^N \otimes \mathbb{C}(q^{\mathfrak{d}})$. For example, for $\widehat{U}_q = U_q(\widehat{\mathfrak{sl}}_{N=n+1})$, write E_{ij} for the matrix $(\delta_{ik}\delta_{jl})_{1 \leq k,l \leq N}$ and set

 $T_u(x_i^+) = E_{i,i+1}, \quad T_u(x_i^-) = E_{i+1,i}, \quad T_u(k_i^{\pm}) = \sum_{j=1}^N q^{\pm(\delta_{ij} - \delta_{i+1,j})} E_{jj}$ for $1 \le i < N$ and

 $T_u(x_0^+) = u E_{N1}, \quad T_u(x_0^-) = u^{-1} E_{1N}, \quad T_u(k_0^\pm) = \sum_{j=1}^N q^{\pm(\delta_{jN} - \delta_{j0})} E_{jj}.$

Recall representation T of $U_q(=U_q(\mathfrak{sl}_N), U_q(\mathfrak{so}_N), U_q(\mathfrak{sp}_N))$ and its extension $T_u : \widehat{U}_q \to \operatorname{End}(\mathbb{C}_q^N)[u, u^{-1}]$, where $\mathbb{C}_q^N = \mathbb{C}^N \otimes \mathbb{C}(q^{\mathfrak{d}})$. For example, for $\widehat{U}_q = U_q(\widehat{\mathfrak{sl}}_{N=n+1})$, write E_{ij} for the matrix $(\delta_{ik}\delta_{jl})_{1 \leq k,l \leq N}$ and set

 $T_u(x_i^+) = E_{i,i+1}, \quad T_u(x_i^-) = E_{i+1,i}, \quad T_u(k_i^{\pm}) = \sum_{j=1}^N q^{\pm(\delta_{ij} - \delta_{i+1,j})} E_{jj}$ for $1 \le i < N$ and

 $T_u(x_0^+) = u E_{N1}, \quad T_u(x_0^-) = u^{-1} E_{1N}, \quad T_u(k_0^\pm) = \sum_{j=1}^N q^{\pm(\delta_{jN} - \delta_{j0})} E_{jj}.$

Let $\omega \in (\mathbb{C}(q^{\mathfrak{d}})^{\times})^N$ if $\mathfrak{g}_N = \mathfrak{sl}_N$ and $\omega \in (\mathbb{C}(q^{\mathfrak{d}})^{\times})^n$ otherwise.

Proposition

Let ω be as above and let $\eta \in \mathbb{C}(q^{\mathfrak{d}})^{\times}$. There exists $y_{\omega,\eta} \in \widetilde{H}_q$ and a diagonal matrix $G(\omega) \in \operatorname{End}(\mathbb{C}_q^N)$ such that

 $G(\omega) T_{\eta u}(a) = T_u(\mathrm{Ad}(y_{\omega,\eta})(a)) G(\omega) \qquad \text{for all } a \in U_q(\widehat{\mathfrak{g}}_N).$

Corollary

Given
$$\omega$$
 as above, $K_{\omega}(u) := G(\omega)^{-1}K(u)G(\omega)$ satisfies

$$\mathcal{K}_{oldsymbol{\omega}}(u)\mathcal{T}_{\eta u}(b)=\mathcal{T}_{\eta / u}(b)\mathcal{K}_{oldsymbol{\omega}}(u) \qquad ext{for all } b\in \mathcal{B}_{oldsymbol{c},oldsymbol{s}}$$

precisely if

$$K(u)T_u(b) = T_{1/u}(b)K(u)$$
 for all $b \in \operatorname{Ad}(y_{\omega,\eta})(B_{\boldsymbol{c},\boldsymbol{s}}).$

It is always possible to choose ω such that $x_{\gamma,c} = y_{\omega,\eta}$ (recall $c'_j = \gamma_j$ for $j \in I^*$). Then the second intertwining equation above simplifies:

$$K(u)T_u(b) = T_{1/u}(b)K(u)$$
 for $b \in B_{\boldsymbol{c}',\boldsymbol{s}'}$.

K(u) is called the *bare* K-matrix and $G(\omega)^{-1}K(u)G(\omega)$ the *dressed* K-matrix. K(u) only depends on $|I_{\text{pair}}| + |I_{\text{nse}}|$ free parameters (namely, those $c'_{\tau(j)}$ where $(j, \tau(j)) \in I_{\text{pair}}$ and those s'_j where $j \in I_{\text{nse}}$).

- (2) $Ad(H_a)$ -equivalence and dressing
- 3 Aut(A)-equivalence and rotation

If (X, τ) is an admissible pair and if $\sigma \in Aut(A)$, then it can be verified $(X^{\sigma}, \tau^{\sigma})$ is an admissible pair, where

$$X^{\sigma} = \sigma(X), \qquad \tau^{\sigma} = \sigma \circ \tau \circ \sigma^{-1}.$$

If (X, τ) is an admissible pair and if $\sigma \in Aut(A)$, then it can be verified $(X^{\sigma}, \tau^{\sigma})$ is an admissible pair, where

$$X^{\sigma} = \sigma(X), \qquad au^{\sigma} = \sigma \circ au \circ \sigma^{-1}.$$

Let (X, τ) be an admissible pair and let $\sigma \in Aut(A)$. Given $c \in C$ and $s \in S$, we have

$$\sigma(B_{\boldsymbol{c},\boldsymbol{s}}(\boldsymbol{X},\tau)) = B_{\sigma(\boldsymbol{c}),\sigma(\boldsymbol{s})}(\boldsymbol{X}^{\sigma},\tau^{\sigma}),$$

where $\sigma(\mathbf{c}) \in \sigma(\mathcal{C})$ is determined by $(\sigma(\mathbf{c}))_{\sigma(i)} = c_i$ for $i \in I \setminus X$ (and likewise for \mathbf{s}).

 $\sigma \in \operatorname{Aut}(A)$ is called a symmetry of T_u if $\exists Z^{\sigma}(u) \in \operatorname{End}(\mathbb{C}_q^N)(u)$ such that

$$Z^{\sigma}(u) \, {\mathcal T}_u(\sigma({\mathsf a})) = {\mathcal T}_u({\mathsf a}) Z^{\sigma}(u) \qquad ext{for all } {\mathsf a} \in \widehat{U}_q$$

Symmetries of T_u form subgroup $\Sigma(A) < \operatorname{Aut}(A)$.

Type $A_{n\geq 2}^{(1)}$: "reflections" in the dihedral group $\operatorname{Aut}(A) \cong D_N$ (N = n + 1) are not symmetries of T_u : instead we have " σ -skewed self-duality" of T_u : $\exists C \in \operatorname{End}(\mathbb{C}_q^N)$ such that

$$CT_u(\sigma(a)) = \left(T_{(-q)^N u}(S(a))\right)^{\mathrm{t}} C$$
 for all $a \in U_q(\widehat{\mathfrak{g}}_N)$,

where $\sigma = \prod_{i=1}^{\lfloor \frac{N}{2} \rfloor} (i, N-i) = (1n)(2, n-1) \cdots$.

Type $A_{n\geq 2}^{(1)}$: "reflections" in the dihedral group $\operatorname{Aut}(A) \cong D_N$ (N = n + 1) are not symmetries of T_u : instead we have " σ -skewed self-duality" of T_u : $\exists C \in \operatorname{End}(\mathbb{C}_q^N)$ such that

$$CT_u(\sigma(a)) = \left(T_{(-q)^N u}(S(a))\right)^{\mathrm{t}} C$$
 for all $a \in U_q(\widehat{\mathfrak{g}}_N)$,

where
$$\sigma = \prod_{i=1}^{\lfloor \frac{N}{2} \rfloor} (i, N-i) = (1n)(2, n-1) \cdots$$
.

Lemma

Suppose A is of type $A_{n\geq 2}^{(1)}$. If $(X', \tau') = (X^{\sigma}, \tau^{\sigma})$ for some $\sigma \in Aut(A)$ then there exists $\tilde{\sigma} \in \Sigma(A)$ such that $(X', \tau') = (X^{\tilde{\sigma}}, \tau^{\tilde{\sigma}})$.

Type $A_{n\geq 2}^{(1)}$: "reflections" in the dihedral group $\operatorname{Aut}(A) \cong D_N$ (N = n + 1) are not symmetries of T_u : instead we have " σ -skewed self-duality" of T_u : $\exists C \in \operatorname{End}(\mathbb{C}_q^N)$ such that

$$CT_u(\sigma(a)) = \left(T_{(-q)^N u}(S(a))\right)^{\mathrm{t}} C$$
 for all $a \in U_q(\widehat{\mathfrak{g}}_N)$,

where
$$\sigma = \prod_{i=1}^{\lfloor \frac{N}{2} \rfloor} (i, N-i) = (1n)(2, n-1) \cdots$$

Lemma

Suppose A is of type $A_{n\geq 2}^{(1)}$. If $(X', \tau') = (X^{\sigma}, \tau^{\sigma})$ for some $\sigma \in Aut(A)$ then there exists $\tilde{\sigma} \in \Sigma(A)$ such that $(X', \tau') = (X^{\tilde{\sigma}}, \tau^{\tilde{\sigma}})$.

For A of type $A_{n\geq 1}^{(1)}$ and $\sigma = (012...n)$ we can take

$$Z(u)^{\sigma} = \sum_{1 \leq i < N} E_{i,i+1} + u E_{N1}.$$

Proposition

Let (X, τ) be an admissible pair and let $\sigma \in \Sigma(A)$. If

$${\mathcal K}(u) {\mathcal T}_{\eta u}(b) = {\mathcal T}_{\eta/u}(b) {\mathcal K}(u) \qquad ext{for all } b \in {\mathcal B}_{oldsymbol{c},{oldsymbol{s}}}$$

then $K^{\sigma}(u) := Z^{\sigma}(\frac{\eta}{u})^{-1}K(u)Z^{\sigma}(\eta u)$ satisfies

 $\mathcal{K}^{\sigma}(u)\mathcal{T}_{\eta u}(b) = \mathcal{T}_{\eta/u}(b)\mathcal{K}^{\sigma}(u) \qquad ext{for all } b \in \sigma(B_{m{c},m{s}}).$

Example

The bare K-matrix $K(u) = q^{-\frac{1}{2}}E_{21} - q^{\frac{1}{2}}E_{12} + q^{-\frac{1}{2}}E_{43} - q^{\frac{1}{2}}E_{34}$ solves the boundary intertwining equation for the coideal subalgebra given by ${}^{0} \bigoplus_{3}^{1} {}^{2}$. The bare K-matrix associated to ${}^{0} \bigoplus_{3}^{1} {}^{2}$ is given by $K^{\sigma}(u) = Z^{\sigma}(1/u)^{t}K(u)Z^{\sigma}(u) = q^{-\frac{1}{2}}E_{32} - q^{\frac{1}{2}}E_{23} + q^{-\frac{1}{2}}u^{-1}E_{14} - q^{\frac{1}{2}}uE_{41}.$ 1 Affine quantum groups and coideal subalgebras

- **2** Ad(\widetilde{H}_q)-equivalence and dressing
- 3 Aut(A)-equivalence and rotation

5 Generalizations

Auxiliary terminology

Let $\tau : I \to I$ be a diagram involution. Let $Y \subset I$ be stable under τ . Y is called *lateral w.r.t.* τ if it is one of the following types:

• There are ≤ 2 subsets of *I* lateral w.r.t. τ , denoted Y_1 and Y_2 .

Types of admissible pairs:

- (X, τ) is said to be of *identity type* if τ fixes I minus any subsets of type D_2 . Two subtypes:
 - (X, τ) is said to be of *plain type* if $I \setminus X$ is connected.
 - (X, τ) is said to be of *alternating type* if all $j \in I \setminus X$ with ≥ 2 neighbours in I have ≥ 2 neighbours in X.
- (X, τ) is said to be of *parallel type* if τ has at least one hinge. This is possible in types $A_{n>1}^{(1)}$, $C_{n>2}^{(1)}$, $D_{n>4}^{(1)}$ (also $D_{n+1>3}^{(2)}$).

Types of admissible pairs:

- (X, τ) is said to be of *identity type* if τ fixes I minus any subsets of type D₂. Two subtypes:
 - (X, τ) is said to be of *plain type* if $I \setminus X$ is connected.
 - (X, τ) is said to be of alternating type if all j ∈ I\X with ≥ 2 neighbours in I have ≥ 2 neighbours in X.
- (X, τ) is said to be of *parallel type* if τ has at least one hinge. This is possible in types $A_{n\geq 1}^{(1)}$, $C_{n\geq 2}^{(1)}$, $D_{n\geq 4}^{(1)}$ (also $D_{n+1\geq 3}^{(2)}$).

A component of X is a subset $X' \subseteq X$ such that $a_{ij} = 0$ for all $i \in X'$, $j \in X \setminus X'$. General decomposition of X into components:

$$X = X_1 \cup X_{\mathrm{alt}} \cup X_2,$$

where

- either $X_i = \emptyset$ or $Y_i \subset X_i$ (i = 1, 2) and
- X_{alt} is of type $A_1^{\times t}$ (with t = 0 unless (X, τ) is of alternating type).

Recall: the pair (X, τ) with $X \subset I$ of finite type and $\tau \in Aut(A)$ an involution is admissible if:

1. for all
$$i \in X$$
, $\alpha_{\tau(i)} = -w_X(\alpha_i)$;

2. for all
$$j \in I \setminus X$$
, $\alpha_j(\rho_X^{\vee}) \in \mathbb{Z}$ if $\tau(j) = j$.

Recall: the pair (X, τ) with $X \subset I$ of finite type and $\tau \in Aut(A)$ an involution is admissible if:

1. for all
$$i \in X$$
, $\alpha_{\tau(i)} = -w_X(\alpha_i)$;

2. for all
$$j \in I \setminus X$$
, $\alpha_j(\rho_X^{\vee}) \in \mathbb{Z}$ if $\tau(j) = j$.

From condition 1. it follows that

- if a component of X is of type D_{t≥2} then it contains an even number of τ-orbits;
- if (X, τ) is of parallel type, each connected component of X is of type A_{t≥1}, symmetrically arranged around a hinge.

Recall: the pair (X, τ) with $X \subset I$ of finite type and $\tau \in Aut(A)$ an involution is admissible if:

1. for all $i \in X$, $\alpha_{\tau(i)} = -w_X(\alpha_i)$;

2. for all
$$j \in I \setminus X$$
, $\alpha_j(\rho_X^{\vee}) \in \mathbb{Z}$ if $\tau(j) = j$.

From condition 1. it follows that

- if a component of X is of type D_{t≥2} then it contains an even number of τ-orbits;
- if (X, τ) is of parallel type, each connected component of X is of type A_{t≥1}, symmetrically arranged around a hinge.

If (X, τ) is of identity type, then condition 2. implies the following:

- The components of X are *either* of type B_t and/or D_t , or of type A_1 and/or C_t . In the latter case each node outside X neighbouring ≥ 2 nodes in I must neighbour 2 nodes in X.

Aff	fine quantum groups and	coideal subalgebras	Dressing	Rotation	Classification	Generalizatio	ns
	Plain ((1) Alte	rnating (2)	Parallel	(3) Exc	ceptional (4	4)
	A						
	В						
	C						
	D						

Dressing Rotation

Quasistandard QSP algebras

Define $I_{\rm qs}$ as consisting of those elements of $I_{\rm nse}$ of the following type:

Quasistandard QSP algebras

Define $\textit{I}_{\rm qs}$ as consisting of those elements of $\textit{I}_{\rm nse}$ of the following type:

Definition

A QSP algebra $B^{c,s}$ is called *quasistandard* if $s_j \neq 0 \implies j \in I_{qs}$.

Three types of quasistandard QSP algebras:

- 1. QSP algebras which are "standard by nature", i.e. $I_{\rm nse}=\emptyset$;
- 2. Nonstandard QSP algebras which have been "standardized" ($s_j = 0$ forced for all $j \in I \setminus X$);
- 3. QSP algebras for which $I_{qs} \neq \emptyset$.

Three types of quasistandard QSP algebras:

- 1. QSP algebras which are "standard by nature", i.e. $\textit{I}_{nse} = \emptyset;$
- 2. Nonstandard QSP algebras which have been "standardized" ($s_j = 0$ forced for all $j \in I \setminus X$);
- 3. QSP algebras for which $I_{qs} \neq \emptyset$.

Nice property of quasistandard QSP algebras: corresponding K-matrices are of "generalized cross-form", i.e. given standard basis $\{v_1, \ldots, v_N\}$ of \mathbb{C}^N , there exists involution ψ on $\{1, \ldots, N\}$ such that

$$K(u)v_i \in \mathbb{C}v_i \oplus \mathbb{C}v_{\psi(i)}$$
 for all $i \in \{1, \dots, N\}$.

- More precisely, nondiagonal nonzero entries of such K-matrices are on at most two antidiagonals.
- Forcing $s_j = 0$ for such K-matrices does not cause off-diagonal entries to vanish.

Dressing Rotation

General formula

For the untwisted cases, the bare K-matrices are of the form

$$K(u) = \mathrm{Id} + \frac{u - u^{-1}}{k_1(u)} \Big(D_1(u) + \frac{D_2(u)}{k_2(u)} \Big)$$

where $k_1(u)$ and $k_2(u)$ are given by

A.3, BCD.1, CD.2:
$$k_1(u) = \lambda \mu - u$$
, $k_2(u) = \lambda^{-1} + (\mu u)^{-1}$,
CD.3: $k_1(u) = \mu^{-1} - \mu u$, $k_2(u) = \lambda + (\lambda u)^{-1}$,

and the matrices $D_1(u)$ and $D_2(u)$ are defined as follows...

$$\begin{aligned} \text{A.3:} \quad D_{1}(u) &= \sum_{s < i \le N} E_{ii}, \\ D_{2}(u) &= \sum_{1 \le i \le r} \left(\lambda E_{ii} + \lambda^{-1} E_{s-i+1,s-i+1} + E_{i,s-i+1} + E_{s-i+1,i} \right), \\ \text{C.1:} \quad D_{1}(u) &= 0, \\ D_{2}(u) &= \sum_{1 \le i \le n} \left(\lambda E_{-i,-i} + \lambda^{-1} E_{ii} + E_{-i,i} + E_{i,-i} \right), \\ \text{D.2:} \quad D_{1}(u) &= \delta_{o_{1},1} E_{nn} \\ D_{2}(u) &= \delta_{o_{1},1} (\lambda - \mu^{-1} u) E_{-n,-n} + \delta_{o_{2},1} (\lambda + \lambda^{-1}) E_{-1,-1} + \\ &+ \sum_{o_{2} < i < \overline{o_{1}}} \left(\lambda E_{-i,-i} + \lambda^{-1} E_{ii} + \epsilon_{i} (E_{i,-i+\epsilon_{i}} + E_{-i+\epsilon_{i},i}) \right), \end{aligned}$$

where $\lambda, \mu \in \mathbb{C}^{\times}$ are free parameters, $\epsilon_i = (-1)^{i+o_2}$, $r = (N + o_1 + o_2)/2 - p_1 - p_2 + 1$ and $s = N - o_1 - 2p_1$.

BD.1:
$$D_1(u) = \sum_{\bar{r} \le i \le n} (\lambda \mu u E_{-i,-i} + E_{ii}),$$

 $D_2(u) = \sum_{\bar{s} \le i < \bar{r}} (\lambda E_{-i,-i} + \lambda^{-1} E_{ii} + E_{-i,i} + E_{i,-i}),$
C.2: $D_1(u) = \sum_{\bar{r} \le i \le n} (\lambda \mu u E_{-i,-i} + E_{ii}),$
 $D_2(u) = \sum_{\bar{s} \le i < \bar{r}} (\lambda E_{-i,-i} + \lambda^{-1} E_{ii} + \epsilon_i (E_{-i-\epsilon_i,i} + E_{i,-i-\epsilon_i})),$

where
$$\lambda = q^{N/2-s}$$
, $\mu = q^{-r}$, $\epsilon_i = (-1)^{\overline{i}-r}$ and $(r,s) = (o_1 + p_1, n - o_2 - p_2)$.

-

$$\begin{aligned} \text{CD.3:} \quad D_1(u) &= \sum_{1 \le i \le n} \mu E_{ii}, \\ D_2(u) &= \sum_{\overline{r} \le i \le n} \left((\lambda \mu)^{-1} E_{-i,-i} + \lambda \mu E_{-\overline{\imath},-\overline{\imath}} - E_{-i,-\overline{\imath}} - E_{-\overline{\imath},i} + \right. \\ &- u^{-1} \left(\lambda \mu^{-1} E_{ii} + \lambda^{-1} \mu E_{\overline{\imath\imath}} - E_{i\overline{\imath}} - E_{\overline{\imath}i} \right) \right), \end{aligned}$$

where $\lambda = q^{-n/2+r}$, $\mu \in \mathbb{C}^{\times}$ is a free parameter and r = (n - o)/2 - p.

Additional properties of K-matrices

• Assuming irreducibility of $T_u|_{B_{c,s}}$, one can derive "unitarity" $K(u)K(u^{-1}) = (\text{scalar})\text{Id.}$

Additional properties of K-matrices

- Assuming irreducibility of $T_u|_{B_{c,s}}$, one can derive "unitarity" $K(u)K(u^{-1}) = (\text{scalar})\text{Id.}$
- Similarly, if $T_{\pm 1}|_{B_{c,s}}$ is irreducible, one can derive "regularity" $K(\pm 1) = (\text{scalar})\text{Id.}$

Additional properties of K-matrices

- Assuming irreducibility of $T_u|_{B_{c,s}}$, one can derive "unitarity" $K(u)K(u^{-1}) = (\text{scalar})\text{Id.}$
- Similarly, if $T_{\pm 1}|_{B_{c,s}}$ is irreducible, one can derive "regularity" $K(\pm 1) = (\text{scalar})\text{Id.}$
- $\hat{R}(u) = PR(u)$ satisfies Hecke-type identity:

$$\left(\hat{R}(u) - f_1(u)\mathrm{Id}\right)\left(\hat{R}(u) - f_2(u)\mathrm{Id}\right)\left(\hat{R}(u) - f_3(u)\mathrm{Id}\right) = 0$$

for some $f_i(u) \in \mathbb{C}(q^{\mathfrak{d}})^{\times}(u)$. For all quasistandard K-matrices we obtain similar identities, of degree ≤ 4 .

Call (X, τ) restrictable if τ(0) = 0 ∉ X. Then (X, τ|_{1,...,n}) is an admissible pair w.r.t. the Cartan matrix A_{{1,...,n} of finite type. In this case K^{fin} := lim_{u→0} K(u) solves the finite refl. eqn.

$$R_{21}^{\mathrm{fin}} \mathcal{K}_1^{\mathrm{fin}} \mathcal{R}^{\mathrm{fin}} \mathcal{K}_2^{\mathrm{fin}} = \mathcal{K}_2^{\mathrm{fin}} \mathcal{R}_{21}^{\mathrm{fin}} \mathcal{K}_1^{\mathrm{fin}} \mathcal{R}^{\mathrm{fin}}$$

where $R^{\text{fin}} = \lim_{u \to 0} R(u)$. Moreover we always get an *affinization identity*, i.e. there exists $d^{\pm}(u) \in \mathbb{C}(q^{\mathfrak{d}})(u)$:

$${\cal K}(u)=rac{d_+(u){\cal K}^{
m fin}+d_-(u)({\cal K}^{
m fin})^{-1}}{d_+(u)+d_-(u)}$$

and the Hecke-type identity is of degree \leq 2.

- 2 $Ad(H_{\alpha})$ -equivalence and dressing
- 3 Aut(A)-equivalence and rotation

• Non-quasistandard cases. E.g. $(B_n^{(1)})_{0;n-2}^{id} = {}^{0} \underbrace{}_{1} \underbrace{}^{2 3} \stackrel{n-1}{}^{n-1} e^{n}$ gives

$$\mathcal{K}(u) = \mathrm{Id} + \frac{u - u^{-1}}{k(u)} \sum_{-1 \leq i \leq 1} k_i(u) D_i(u)$$

with a third-order Hecke relation.

- q-Onsager cases
- "quartic" admissible pairs