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Abstract

Observations of sunspots on the surface of the Sun have opened up investiga-
tions into the evolution of the solar magnetic field. It is now generally accepted
that the Sun’s magnetic field is maintained by a hydromagnetic dynamo. The
main aim of this project was to model the dynamo process mathematically.
We first derived a nonlinear system of partial differential equations (PDEs) for
the magnetic field and the associated velocity perturbation. We then consid-
ered Fourier series expansions for the field components to reduce the model to
a system of ordinary differential equations (ODEs). This enabled us to search
for the critical value of the ‘dynamo number’, the key parameter for ensuring
dynamo action occurs. We continued by solving the PDE model numerically
and observed results that shared features with solar observations. The critical
dynamo number also agreed with our analytical dynamo number. In order to
replicate more of these features, particularly modulation, the two parameters
in the model were varied and modulation was successfully observed.
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1 Introduction

1.1 Features of the Sun

Since the 16th century, when heliocentrism started to gain popularitya, mankind has
generally believed that the Sun is at the centre of the solar system. It is no wonder then
that scientists have been interested in the activity that occurs within and on the surface
of the star that is crucial to our existence. Following the invention of the telescope, we
have been able to directly observe the incidence of sunspots, which are cooler, darker
areas of the Sun’s surface attributed to regions of strong magnetic fields. The emergence
of these sunspots follows a cycle with a period of approximately eleven years, and it has
been conjectured that the cycle is maintained by a hydromagnetic dynamo. We have
also observed convection in the form of granulation on the surface of the Sun, as shown
in Figure 1. The lighter areas represent convective upflows, whilst the dark, thin lines
represent convective downflows. This convection plays an important role in the dynamo.

Figure 1: Granulation on the surface of the Sun indicating small-scale convection.
Taken from http://solarscience.msfc.nasa.gov

Much like the Earth, the Sun’s interior is made up of different layers (Figure 2). In the
centre is the core, which is responsible for the production of nuclear energy via the fusion
of hydrogen to form helium. In the radiative zone, the energy generated in the core is
transported outwards by radiation, before reaching the convection zone, where convective
motions take control and transport the energy to the surface (Tobias, 2002). There is
also a layer between the convective and radiative zones known as the tachocline which is
believed to be where the magnetic field is created (Spiegel & Zahn, 1992). The tachocline
will be discussed further in Section 2.

ahttp://www.universetoday.com/33113/heliocentric-model/
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Figure 2: The solar interior. Energy is transported radially outwards due to radiation
before convective motions take over at approximately 0.7R�. Taken from

http://tuttidentro.files.wordpress.com

An aspect of the Sun which is key to understanding the solar dynamo is differential
rotation. Through helioseismology, which is the study of acoustic wave oscillations in
the Sun, it has been shown (for example, by Schou et al. (1998)) that the Sun rotates
with different angular velocities at different latitudes; at the equator, the rotation rate is
higher than that of the poles. This is the case throughout the convection zone, though
it appears that the radiative zone rotates as a solid body. Figure 3 is a cross-section of
the Sun which shows the rotation rate at different latitudes and at different depths. The
dashed line is the location of the tachocline, and radially below this is the radiative zone,
which appears to rotate at approximately the same rate throughout. It is not clear why
this is true, but it may be due to the internal magnetic field which could enforce rigid
body rotation.

Figure 3: Differential rotation in the Sun. Rotation rate is higher at the equator than at
the poles. The frequency is measured in nHz and the dashed line represents the base of

the convection zone. Taken from Schou et al. (1998)
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1.2 Observations

As mentioned in Section 1.1, the occurrence of sunspots has been investigated over the
past few centuries. Figure 4 is the so-called ‘butterfly diagram’, showing the latitudinal
position of sunspots over time for the last 130 years. It appears that sunspots occur on
a cycle of approximately 11 years, a cycle which is now known as ‘the solar cycle’ and
first noticed in 1843 by Samuel Heinrich Schwabe (Hoyt & Schatten, 1997). At the start
of the cycle, sunspots begin to appear at latitudes of ±30°, then the emergence positions
migrate towards the equator over the next 11 years. Furthermore, the leading spots in
the northern hemisphere have an opposite polarity to those in the southern hemisphere.
At the end of the cycle, the field reverses and the polarities are flipped for the next cycle
(Hale, 1924).

Figure 4: Butterfly diagram showing equatorward migration of sunspots. Taken from
http://solarscience.msfc.nasa.gov

We can also use the sunspot number to investigate solar magnetic activity. Figure 5 is an
example of a plot of sunspot number versus time. The sunspot number seems largely un-
predictable, but what is striking is the lack of sunspots between 1650–1700. This wasn’t
a period of fewer records or lack of interest in the Sun, but a genuine phenomenon where
magnetic activity was at a minimum. This period of magnetic inactivity is known as the
‘Maunder Minimum’ (Eddy, 1976). Moreover, as the Maunder Minimum came to an end,
sunspots were only observed in the southern hemisphere, until that cycle finished and the
sunspots returned to occupying both hemispheres non-preferentially.

In order to examine magnetic activity that occurred thousands of years ago, we can
analyse proxy data to see if the solar cycle has been following the same 11 year pattern,
or indeed if any other grand minima like the Maunder Minimum have occurred. The
interaction of cosmic ray flux entering the earth with the solar magnetic field results
in the production of 10Be and 14C, which can be found in polar icecaps and tree rings
respectively. The abundances of these can therefore be used to deduce solar magnetic
activity over the past few millennia. It was found that the abundances are anti-correlated
with magnetic activity, and that grand minima have in fact occurred before on multiple
occasions, with a mean period of approximately 200 years (Beer, 2000). In addition,
during the Maunder Minimum the magnetic activity persisted but at a decreased level
and with a shorter cycle (Beer et al., 1998).
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Figure 5: Sunspot number over time. The Maunder Minimum was a period of decreased
magnetic activity. Taken from http://solarscience.msfc.nasa.gov

2 Basics of the Dynamo

Now we investigate how the dynamo process works. We start by recognising that the
Sun’s magnetic field is made up of two components, namely the toroidal (azimuthal) field
and the poloidal (meridional) field. The dynamo process is then based around the regen-
eration of the two components of the field, and in fact it turns out that one is produced
from the other. Figure 6 is an illustrative representation of the dynamo cycle described
below.

Firstly we consider the poloidal field under the effect of differential rotation, which was
discussed in Section 1.1. The rotation with higher frequency at the equator stretches the
field azimuthally to create a toroidal field. This is known as the ω-effect. The converse
to this, however, is more complicated. Parker (1955a) suggested that the toroidal field is
stretched by convective upwellings then twisted by the Coriolis effect to form small-scale
poloidal loops. These loops then come together to form a large-scale poloidal field. This
is known as the α-effect. The α-effect has since been constructed mathematically using
‘mean-field electrodynamics’, which will be shown in Section 3.

We now need to explain whereabouts in the Sun this process is occurring. The effects of
differential rotation and convection, which are used to produce the toroidal and poloidal
components of the magnetic field respectively, are both observed in the convective zone
of the solar interior. However, regions of high magnetic flux are less dense than their
surroundings and hence become buoyant (Parker, 1955b), meaning they would rise to
the surface on a shorter timescale than the cycle of 11 years which we observe from the
butterfly diagrams. Furthermore, the diffusion rate in the turbulent convection zone may
be too strong for field to be generated. Instead, turbulent pumping sends the magnetic
flux to the tachocline at the base of the convection zone (Tobias et al., 1998), where
the effect of differential rotation is at its strongest and the turbulent diffusion effect is
smaller. The poloidal field is stretched into toroidal field, and this is transported back to
the convection zone by magnetic buoyancy and diffusion, where it is in turn deformed by
the α-effect to produce poloidal field. The poloidal field is carried down to the tachocline
again and the cycle continues. Only the strongest magnetic field will be carried to the
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surface to form sunspots. It seems sensible therefore to place the dynamo at the base of
the convection zone.

Figure 6: A sketch outlining the dynamo process. Taken from Bushby & Mason (2004)

3 Deriving a Model

3.1 The Induction Equation

After discussing key features of the Sun and the dynamo process, we can now derive
equations to model the Sun’s magnetic activity. We start by deriving the induction
equation from the pre-Maxwell equations:

∇×B = µ0j, (3.1)

∇ ·B = 0, (3.2)

∇× E = −∂B
∂t
, (3.3)

and Ohm’s Law in a moving medium,

j = σ (E + u×B) , (3.4)

where µ0 and σ are constants.

From Ohm’s Law,

∇× j = σ (∇× E +∇× (u×B)) (3.5)

= σ

(
−∂B
∂t

+∇× (u×B)

)
. (3.6)
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Also we have

∇× (∇×B) = µ0 (∇× j) , (3.7)

and so we can use the identity ∇× (∇×A) = ∇ (∇ ·A)−∇2A (see Section 9) to get

∇× (∇×B) = −∇2B, (3.8)

since ∇ ·B = 0.

Putting this together, we have:

− 1

µ0σ
∇2B = −∂B

∂t
+∇× (u×B) (3.9)

⇒ ∂B

∂t
= ∇× (u×B) + η∇2B, (3.10)

where η =
1

µ0σ
is constant.

This is the induction equation.

3.2 The Mean-Field Dynamo Equation

Now we can decompose B and u into mean and fluctuating parts, with 〈.〉 representing
the averaging operator:

B = B0 + B′, (3.11)

u = u0 + u′, (3.12)

where B0 = 〈B〉, u0 = 〈u〉, 〈B′〉 = 〈u′〉 = 0.

Then

∂

∂t
(B0 + B′) = ∇× ((u0 + u′)× (B0 + B′)) + η∇2 (B0 + B′) (3.13)

= ∇× ((u0 ×B0) + (u0 ×B′) + (u′ ×B0) + (u′ ×B′))

+ η∇2 (B0 + B′) . (3.14)

Taking the average of this, we get:

∂B0

∂t
= ∇× (u0 ×B0) +∇× (u0 × 〈B′〉) +∇× (〈u′〉 ×B0)

+∇× 〈u′ ×B′〉+ η∇2B0 (3.15)

= ∇× (u0 ×B0) +∇× 〈u′ ×B′〉+ η∇2B0. (3.16)

This is an evolution equation for the mean magnetic field.

Subtracting this from Equation 3.10, we obtain:

∂B′

∂t
= ∇× ((u0 ×B′) + (u′ ×B0) + (u′ ×B′)− 〈u′ ×B′〉) + η∇2B′. (3.17)
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If the flow is prescribed, this implies that B′ is linearly related to B0, i.e. 〈u′ ×B′〉 is
linearly related to B0. Therefore we can assume a relation of the form

〈u′ ×B′〉i = αijB0j + βijk
∂B0j

∂xk
+ higher order terms. (3.18)

We consider the case of homogeneous isotropic turbulence, so we can write

αij = αδij, (3.19)

βijk = βεijk, (3.20)

then

〈u′ ×B′〉i = αδijB0j + βεijk
∂B0j

∂xk
+ . . . (3.21)

= αB0i − βεikj
∂B0k

∂xj
+ . . . (3.22)

= αB0i − [∇×B0]i + . . . (3.23)

Hence
〈u′ ×B′〉 ≈ αB0 − β∇×B0. (3.24)

We can substitute this into Equation 3.16 to obtain:

∂B0

∂t
= ∇× (u0 ×B0) +∇× (αB0)−∇× (β∇×B0) + η∇2B0. (3.25)

Now we use the identity ∇× (φA) = φ∇×A+(∇φ)×A, where φ (x) is a scalar function
(see Section 9):

∇× (β∇×B0) = β∇× (∇×B0) + (∇β)× (∇×B0) (3.26)

= β
(
∇ (∇ ·B0)−∇2B0

)
+ (∇β)× (∇×B0) (3.27)

= −β∇2B0 + (∇β)× (∇×B0) , (3.28)

since

∇ ·B = 0⇒ 〈∇ ·B〉 = 0

⇒ ∇ · 〈B〉 = 0

⇒ ∇ ·B0 = 0,

so

∂B0

∂t
= ∇× (u0 ×B0) +∇× (αB0) + (η + β)∇2B0 − (∇β)× (∇×B0) . (3.29)

This is the mean-field dynamo equation. The αB0 term represents the α-effect, and β is
the turbulent diffusivity which enhances the magnetic diffusivity.
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3.3 Cartesian Model

We can write the magnetic field as

B0 = B (x, z, t) ŷ +∇× (A (x, z, t) ŷ) , (3.30)

where B is the toroidal component and A is the vector potential of the poloidal component
of the field. We flatten out a thin shell at the base of the convection zone in order to use
Cartesian coordinates, where z is in the radial direction, x runs from pole to pole and
y is in the azimuthal direction. We assume axis symmetry so the magnetic field is not
dependent on y. We also represent a shear flow:

u0 = V (x, z) ŷ. (3.31)

For simplicity we consider β to be a constant, and let η + β = ηT . Also α ≡ α (x, z).
Then we substitute these into Equation 3.29:

∂

∂t
(Bŷ +∇× Aŷ) = ∇× (V ŷ × (Bŷ +∇× Aŷ))

+∇× (α (Bŷ +∇× Aŷ)) + ηT∇2 (Bŷ +∇× Aŷ) (3.32)

= ∇× (V ŷ ×Bŷ) +∇× (V ŷ × (∇× Aŷ))

+∇× (αBŷ) +∇× (α∇× Aŷ) + ηT∇2Bŷ

+∇×
(
ηT∇2Aŷ

)
. (3.33)

Since ŷ × ŷ = 0, we can see that

∇× (V ŷ ×Bŷ) = 0. (3.34)

Using vector calculus, it can also be shown that

∇× (V ŷ × (∇× Aŷ)) =

(
∂A

∂x

∂V

∂z
− ∂A

∂z

∂V

∂x

)
ŷ. (3.35)

This term is more dominant than the ∇× (α∇× Aŷ) · ŷ term in the ŷ direction, so we
can remove the latter. This is known as the αω-approximation.

We also have:

∇× ∂Aŷ

∂t
= − ∂

2A

∂z∂t
x̂ +

∂2A

∂x∂t
ẑ, (3.36)

∇× (αBŷ) = − ∂

∂z
(αB) x̂ +

∂

∂x
(αB) ẑ, (3.37)

∇×
(
ηT∇2Aŷ

)
= − ∂

∂z

(
ηT∇2A

)
x̂ +

∂

∂x

(
ηT∇2A

)
ẑ. (3.38)

These give us three equations in the x̂, ŷ and ẑ directions respectively:

∂

∂z

(
∂A

∂t

)
=

∂

∂z

(
αB + ηT∇2A

)
, (3.39)

∂B

∂t
=
∂A

∂x

∂V

∂z
− ∂A

∂z

∂V

∂x
+ ηT∇2B, (3.40)

∂

∂x

(
∂A

∂t

)
=

∂

∂x

(
αB + ηT∇2A

)
. (3.41)
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After integrating Equations (3.39) and (3.41) with respect to z and excluding the func-
tions of time which arise from this without loss of generality, we obtain equations for the
poloidal and toroidal components respectively:

∂A

∂t
= αB + ηT∇2A, (3.42)

∂B

∂t
=
∂A

∂x

∂V

∂z
− ∂A

∂z

∂V

∂x
+ ηT∇2B. (3.43)

3.4 Linear Theory

First we follow the work of Parker (1955a) and seek z-independent solutions of the form:

A = Âeσt+ikx, (3.44)

B = B̂eσt+ikx, (3.45)

where σ is a complex growth rate and k is a real wavenumber. Substituting these into
the above equations, and letting α and ∂V

∂z
≡ V ′ be a constant, we obtain two equations

for the growth rate:

σÂ = αB̂ − ηTk2Â, (3.46)

σB̂ = ikV ′Â− ηTk2B̂. (3.47)

These can be represented in matrix form:(
σ + ηTk

2 −α
−ikV ′ σ + ηTk

2

)(
Â

B̂

)
=

(
0
0

)
. (3.48)

If this equation is to hold then the determinant must equal zero, i.e.,(
σ + ηTk

2
)2 − αikV ′ = 0 (3.49)

⇒ σ + ηTk
2 = ±

√
αikV ′, (3.50)

and noting that
√
i = 1√

2
(1 + i), we can rearrange to get our final expression for the

growth rate:

σ = −ηTk2
(

1± (1 + i)
√
D
)
, (3.51)

where D =
αV ′

2η2Tk
3

is the so-called dynamo number.

For dynamo action to take place, we require the real part of σ to be greater than zero,

so dynamo action will only occur when |D| > 1. Note that ηTk
2 ∼ 1

τη
, where τη is the

ohmic decay time. We also see that the imaginary part of σ is non-zero, so we would
expect oscillatory solutions at onset.

3.5 Introducing Nonlinearity

Now following the method of Tobias (1996), let

u0 = v (x, z) ŷ + v′ (x, z, t) ŷ, (3.52)
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where v′ is the fluctuating part of u0, and re-introduce z-dependence to A and B. Then
v′ obeys the Navier-Stokes equation:

ρ

(
∂

∂t
v′ŷ + (v′ŷ · ∇) v′ŷ

)
= [−∇p]y + [j×B0]y + ρν∇2v′ŷ + [F]y . (3.53)

Firstly we see that (v′ŷ · ∇) v′ŷ = 0, since v′ŷ does not depend on y. Similarly, we assume
that p does not depend on y, so [−∇p]y = 0. The forces contained in F, including gravity
and turbulent stresses, determine the background velocity field and not the evolution of
the magnetically-induced velocity perturbation which we are investigating here, so we
can ignore it.

From Equation 3.1, we know that

j×B0 =
1

µ0

(∇×B0)×B0. (3.54)

This nonlinear term represents the Lorentz force. Using vector calculus, we obtain:

[(∇×B0)×B0]y =
∂A

∂x

∂B

∂z
− ∂A

∂z

∂B

∂x
. (3.55)

Then our equation for v′ in the ŷ-direction is:

∂v′

∂t
=

1

ρµ0

(
∂A

∂x

∂B

∂z
− ∂A

∂z

∂B

∂x

)
+ ν∇2v′. (3.56)

3.6 Dimensionless Equations

We now have three equations which we can make dimensionless:

∂A

∂t
= αB + ηT∇2A, (3.57)

∂B

∂t
=
∂A

∂x

∂

∂z
(v + v′)− ∂A

∂z

∂

∂x
(v + v′) + ηT∇2B, (3.58)

∂v′

∂t
=

1

ρµ0

(
∂A

∂x

∂B

∂z
− ∂A

∂z

∂B

∂x

)
+ ν∇2v′. (3.59)

We do this by introducing the following dimensionless variables:

x ∼ lx̂, ∇ ∼ 1

l
∇̂, ∇2 ∼ 1

l2
∇̂2, ηT ∼ η0η̂,

ν ∼ ν0ν̂, v ∼ v0v̂, v′ ∼ v0v̂
′, α ∼ α0α̂ (x, z) ,

t ∼ l2

η0
t̂,

∂

∂t
∼ η0
l2
∂

∂t̂
, B ∼ B0B̂, A ∼ lB0Â. (3.60)

Then our equations become:

∂Â

∂t̂
= Rαα̂B̂ + η̂∇̂2Â, (3.61)

∂B̂

∂t̂
= Rω

(
∂Â

∂x̂

∂

∂ẑ
(v̂ + v̂′)− ∂Â

∂ẑ

∂

∂x̂
(v̂ + v̂′)

)
+ η̂∇̂2B̂, (3.62)

∂v̂′

∂t̂
=

lB2
0

ρµ0v0η0

(
∂Â

∂x̂

∂B̂

∂ẑ
− ∂Â

∂ẑ

∂B̂

∂x̂

)
+ Pmν̂∇̂2v̂′, (3.63)
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where Rα =
α0l

η0
, Rω =

lv0
η0

and Pm =
ν0
η0

are dimensionless constants.

Now let Â ∼ RαA
′:

∂A′

∂t̂
= α̂B̂ + η̂∇̂2A′, (3.64)

∂B̂

∂t̂
= D

(
∂A′

∂x̂

∂

∂ẑ
(v̂ + v̂′)− ∂A′

∂ẑ

∂

∂x̂
(v̂ + v̂′)

)
+ η̂∇̂2B̂, (3.65)

∂v̂′

∂t̂
= Rα

lB2
0

ρµ0v0η0

(
∂A′

∂x̂

∂B̂

∂ẑ
− ∂A′

∂ẑ

∂B̂

∂x̂

)
+ Pmν̂∇̂2v̂′, (3.66)

where D = RαRω.

We let

Λ =
lB2

0

ρµ0v0η0
, (3.67)

then
A′ ∼ |RαΛ|−

1
2A∗, B̂ ∼ |RαΛ|−

1
2B∗, (3.68)

so
∂v̂′

∂t̂
= sign (RαΛ)

(
∂A∗
∂x̂

∂B∗
∂ẑ
− ∂A∗

∂ẑ

∂B∗
∂x̂

)
+ Pmν̂∇̂2v̂′. (3.69)

But we note that

RαΛ =
α0

v0
· l

2B2
0

ρµ0η20
, (3.70)

so the sign of RαΛ is the same as the sign of
α0

v0
. Furthermore,

D =
α0l

2v0
η20

, (3.71)

so the sign of D is also the same as the sign of
α0

v0
. Hence our three final dimensionless

equations (removing symbols denoting dimensionless variables, and letting η = ν = 1 for
simplicity) are:

∂A

∂t
= αB +∇2A, (3.72)

∂B

∂t
= D

(
∂A

∂x

∂

∂z
(v + v′)− ∂A

∂z

∂

∂x
(v + v′)

)
+∇2B, (3.73)

∂v′

∂t
= sign (D)

(
∂A

∂x

∂B

∂z
− ∂A

∂z

∂B

∂x

)
+ Pm∇2v′. (3.74)

4 Reduction to One Spatial Dimension

We now divert from work done in previous papers to start using original methods to
solve these equations. Initially we will reduce these equations to one spatial dimension
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by considering the following forms of A, B and v′:

A ∼ Â (x, t) sin (πz) , (4.1)

B ∼ B̂ (x, t) sin (πz) , (4.2)

v′ ∼ v̂′ (x, t) sin (2πz) , (4.3)

where 0 ≤ z ≤ 1. This ensures that A, B and v′ vanish at z = 0 and z = 1, a plausible
assumption for a dynamo that is localised around the base of the convection zone. v′ is
written in terms of sin (2πz) to account for the fact that the Lorentz force is quadratic
and will produce a term involving sin (πz) cos (πz) which is proportional to sin (2πz).

Also α ≡ α (x), and v ≡ v (z) such that
∂v

∂z
is constant.

Then from Equation 3.72, we get:

∂

∂t

(
Âsin (πz)

)
= αB̂sin (πz) +

∂2

∂x2

(
Âsin (πz)

)
+

∂2

∂z2

(
Âsin (πz)

)
= αB̂sin (πz) +

∂2Â

∂x2
sin (πz)− π2Âsin (πz) . (4.4)

Then projecting onto the relevant Fourier mode, the equation for Â is:

∂Â

∂t
= αB̂ +

∂2Â

∂x2
− π2Â. (4.5)

Similarly from Equation 3.73 we get:

∂

∂t

(
B̂sin (πz)

)
= D

(
∂

∂x

(
Âsin (πz)

) ∂

∂z

(
v + v̂′sin (2πz)

)
− ∂

∂z

(
Âsin (πz)

) ∂

∂x

(
v + v̂′sin (2πz)

))
+

∂2

∂x2

(
B̂sin (πz)

)
+

∂2

∂z2

(
B̂sin (πz)

)
= D

(
∂Â

∂x
sin (πz)

∂v

∂z
+
∂Â

∂x
sin (πz) 2πv̂′cos (2πz)

− πÂcos (πz)
∂v̂′

∂x
sin (2πz)

)
+
∂2B̂

∂x2
sin (πz)

− π2B̂sin (πz) . (4.6)

Thus

∂B̂

∂t
= D

(
∂Â

∂x

∂v

∂z
− πv̂′∂Â

∂x
− π

2
Â
∂v̂′

∂x

)
+
∂2B̂

∂x2
− π2B̂, (4.7)

since
sin (3πz) + sin (πz) = 2sin (2πz) cos (πz) ,

and
sin (3πz)− sin (πz) = 2sin (πz) cos (2πz) .
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Finally, from Equation 3.74 we obtain:

∂

∂t
(v̂′sin (2πz)) = sign (D)

(
∂

∂x

(
Âsin (πz)

) ∂

∂z

(
B̂sin (πz)

)
− ∂

∂z

(
Âsin (πz)

) ∂

∂x

(
B̂sin (πz)

))
+ Pm

(
∂2

∂x2

(
v̂′sin (2πz)

)
+

∂2

∂x2

(
v̂′sin (2πz)

))
= sign (D)

(
∂Â

∂x
sin (πz) B̂πcos (πz)− πÂcos (πz)

∂B̂

∂x
sin (πz)

)
+ Pm

(
∂2v̂′

∂x2
sin (2πz)− 4π2v̂′sin (2πz)

)
. (4.8)

So
∂v̂′

∂t
= sign (D)

(
π

2
B̂
∂Â

∂x
− π

2
Â
∂B̂

∂x

)
+ Pm

(
∂2v̂′

∂x2
− 4π2v̂′

)
, (4.9)

since
sin (2πz) = 2sin (πz) cos (πz) .

Hence, after reverting back to using A, B and v′, the final three equations which form a
model for the solar dynamo are:

∂A

∂t
= αB +

∂2A

∂x2
− π2A, (4.10)

∂B

∂t
= D

(
∂A

∂x

∂v

∂z
− πv′∂A

∂x
− π

2
A
∂v

∂x

′)
+
∂2B

∂x2
− π2B, (4.11)

∂v′

∂t
= sign (D)

π

2

(
B
∂A

∂x
− A∂B

∂x

)
+ Pm

(
∂2v′

∂x2
− 4π2v′

)
. (4.12)

These can be solved numerically.

5 Reduction to ODE Model

Following an approach similar to that described by Bushby (2003) we express A, B and
v′ as Fourier sine series:

A (x, t) =
N∑
n=1

An (t) sin
(nπx
L

)
, (5.1)

B (x, t) =
N∑
n=1

Bn (t) sin
(nπx
L

)
, (5.2)

v′ (x, t) =
N∑
n=1

v′n (t) sin
(nπx
L

)
. (5.3)
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This means that the system can be reduced to set of ordinary differential equations which
can be solved numerically and potentially even analytically. Sine series are chosen so that
A, B and v′ vanish at x = 0 and x = L. Initially we focus on N = 2 modes. Whilst
this ensures easier calculation, a more realistic expansion is likely to involve more modes,
since adding modes in a Fourier series induces convergence to a more accurate solution.

For simplicity we set
∂v

∂z
to be equal to unity. We also set α (x) = cos

(πx
L

)
so that the

α-effect is strongest at the poles and vanishes at the equator, mimicking the α-effect on
the Sun. Substituting these series into Equation 4.10 we obtain:

∂A

∂t
=
∂A1

∂t
sin
(πx
L

)
+
∂A2

∂t
sin

(
2πx

L

)
= cos

(πx
L

)(
B1sin

(πx
L

)
+B2sin

(
2πx

L

))
− π2

L2
A1sin

(πx
L

)
− 4π2

L2
A2sin

(
2πx

L

)
− π2

(
A1sin

(πx
L

)
+ A2sin

(
2πx

L

))
. (5.4)

Integrating this over the first Fourier mode, we get

dA1

dt
=

1

2
B2 − π2

(
1 +

1

L2

)
A1, (5.5)

and integrating over the second mode produces

dA2

dt
=

1

2
B1 − π2

(
1 +

4

L2

)
A2. (5.6)

Then we can insert the Fourier expansions into Equation 4.11 to obtain:

∂B

∂t
= D

((
π

L
A1cos

(πx
L

)
+

2π

L
A2cos

(
2πx

L

))
− π2

L
v′1A1sin

(πx
L

)
cos
(πx
L

)
− 2π2

L
v′1A2sin

(πx
L

)
cos

(
2πx

L

)
− π2

L
v′2A1sin

(
2πx

L

)
cos
(πx
L

)
− 2π2

L
v′2A2sin

(
2πx

L

)
cos

(
2πx

L

)
− π2

2L
A1v

′
1sin

(πx
L

)
cos
(πx
L

)
− π2

L
A1v

′
2sin

(πx
L

)
cos

(
2πx

L

)
− π2

2L
A2v

′
1sin

(
2πx

L

)
cos
(πx
L

)
− π2

L
A2v

′
2sin

(
2πx

L

)
cos

(
2πx

L

))
−
(
π2

L2
B1sin

(πx
L

)
+

4π2

L2
B2sin

(
2πx

L

))
− π2

(
B1sin

(πx
L

)
+B2sin

(
2πx

L

))
. (5.7)

Integrating over the first Fourier mode gives

dB1

dt
= D

(
− 8

3L
A2 +

3π2

4L
v′1A2

)
− π2

(
1 +

1

L2

)
B1, (5.8)
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where we have used ∫ L

0

sin
(πx
L

)
cos

(
2πx

L

)
dx = −2L

3π
,

and integrating over the second mode gives

dB2

dt
= D

(
8

3L
A1 −

3π2

4L
v′1A1

)
− π2

(
1 +

4

L2

)
B2, (5.9)

where we have used ∫ L

0

sin

(
2πx

L

)
cos
(πx
L

)
dx =

4L

3π
.

Finally, we insert the expansions into Equation 4.12:

∂v′

∂t
= sign (D)

(
π2

2L
B1A1sin

(πx
L

)
cos
(πx
L

)
+
π2

L
B1A2sin

(πx
L

)
cos

(
2πx

L

)
+
π2

2L
B2A1sin

(
2πx

L

)
cos
(πx
L

)
+
π2

L
B2A2sin

(
2πx

L

)
cos

(
2πx

L

)
− π2

2L
A1B1sin

(πx
L

)
cos
(πx
L

)
− π2

L
A1B2sin

(πx
L

)
cos

(
2πx

L

)
− π2

2L
A2B1sin

(
2πx

L

)
cos
(πx
L

)
− π2

L
A2B2sin

(
2πx

L

)
cos

(
2πx

L

))
+ Pm

(
− π2

L2
v′1sin

(πx
L

)
− 4π2

L2
v′2sin

(
2πx

L

)
− 4π2

(
v′1sin

(πx
L

)
+ v′2sin

(
2πx

L

)))
. (5.10)

We integrate over the first Fourier mode to obtain:

dv′1
dt

= sign (D)
3π2

4L
(A1B2 − A2B1)− Pmπ2

(
4 +

1

L2

)
v′1, (5.11)

and we integrate over the second Fourier mode to obtain:

dv′2
dt

= −4Pmπ
2

(
1 +

1

L2

)
v′2. (5.12)

Hence the six equations that form our ODE model are:

dA1

dt
=

1

2
B2 − π2

(
1 +

1

L2

)
A1, (5.13)

dA2

dt
=

1

2
B1 − π2

(
1 +

4

L2

)
A2, (5.14)

dB1

dt
= D

(
− 8

3L
A2 +

3π2

4L
v′1A2

)
− π2

(
1 +

1

L2

)
B1, (5.15)

dB2

dt
= D

(
8

3L
A1 −

3π2

4L
v′1A1

)
− π2

(
1 +

4

L2

)
B2, (5.16)

dv′1
dt

= sign (D)
3π2

4L
(A1B2 − A2B1)− Pmπ2

(
4 +

1

L2

)
v′1, (5.17)

dv′2
dt

= −4Pmπ
2

(
1 +

1

L2

)
v′2. (5.18)
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We note that Equation 5.18 is dependent on v′2 only, so this decouples from the rest of
the system and we can remove this from consideration. Furthermore, the solution to the
equation is

v′2 = Ke−4Pmπ2(1+ 1
L2 )t, (5.19)

where K is a constant, and this decays over time.

We now seek a fixed state, i.e., where
d

dt
= 0. We see that the trivial case is A1 =

A2 = B1 = B2 = v′1 = 0. We perturb the state by assuming the following forms:

A1 = Â1, A2 = Â2, B1 = B̂1, B2 = B̂2, v′1 = v̂1
′, (5.20)

where .̂ denotes a small perturbation. We substitute these into our ODE model and
linearise the system by removing any nonlinear terms. This leaves us with the following
equations:

dÂ1

dt
=

1

2
B̂2 − π2

(
1 +

1

L2

)
Â1, (5.21)

dÂ2

dt
=

1

2
B̂1 − π2

(
1 +

4

L2

)
Â2, (5.22)

dB̂1

dt
= −8D

3L
Â2 − π2

(
1 +

1

L2

)
B̂1, (5.23)

dB̂2

dt
=

8D

3L
Â1 − π2

(
1 +

4

L2

)
B̂2, (5.24)

dv̂1
′

dt
= −Pmπ2

(
4 +

1

L2

)
v̂1
′. (5.25)

Again we note that Equation 5.25 is dependent on v̂1
′ only, so this also decouples from

the system. It has a similar decaying solution to v′2 in Equation 5.19.

This leaves us with two coupled systems: one involving A1 and B2, and one involv-
ing A2 and B1. Since B2 is anti-symmetric about the equator and A1 is symmetric, we
call this a ‘dipolar mode’. The other system is the converse of this, and we call this a
‘quadrupolar mode’. Initially we shall consider the former:

dÂ1

dt
=

1

2
B̂2 − π2

(
1 +

1

L2

)
Â1, (5.26)

dB̂2

dt
=

8D

3L
Â1 − π2

(
1 +

4

L2

)
B̂2. (5.27)

We let
Â1 = A1e

st, (5.28)

and
B̂2 = B2e

st, (5.29)

where s ∈ C. Then we proceed with the same method as in Section 3.4, by substituting
these forms of Â1 and B̂2 into Equations 5.26 and 5.27, and representing the system as a
matrix equation: (

s+ π2
(
1 + 1

L2

)
−1

2

−8D
3L

s+ π2
(
1 + 4

L2

))(A1

B2

)
=

(
0
0

)
. (5.30)
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For this equation to hold then the determinant must equal zero, i.e.,

0 =

(
s+ π2

(
1 +

1

L2

))(
s+ π2

(
1 +

4

L2

))
− 4D

3L
(5.31)

⇒ s = −π2

(
1 +

5

2L2

)
±
√

4D

3L
+

9

4L4
, (5.32)

The state is unstable when s > 0, so the critical dynamo number occurs when s = 0:

Dcrit =
3π4L

4

(
1 +

5

2L2

)2

− 27

16L3
. (5.33)

If we let L = 10, then
Dcrit = 767.55. (5.34)

If we repeat the calculation on the quadrupolar system, we obtain a value of

Dcrit = −767.55. (5.35)

In order to test the validity of this solution, we can solve Equations 5.13 - 5.17 numerically
using a second-order Adams-Bashforth time-stepping method in Matlab (see Section 6).
We let L = 10 and Pm = 1. We set initial conditions of Bn = 1 and An = v′n = 0
(n = 1, 2), though it turns out the results are insensitive to the choice of initial values.
By plotting the solutions for B1 arising from the usage of D = −768.5 (Figure 7) and
D = −767 (Figure 8), we see that dynamo action occurs for values of |D| > 767.55, as
expected. Hence the numerics agree with our analytic solution.

In Figure 9 we observe the solutions for D = −900. The dipolar mode decays for negative
dynamo numbers as expected, whilst the quadrupolar mode evolves into a steady solu-
tion. If we were to plot the poloidal potentials An for the same dynamo number, we would
observe the modes behaving the opposite way to their respective toroidal counterparts.
Using a positive dynamo number would have the opposite effect.

Figure 7: Magnetic field strength over time for D = −768.5. Field strength increasing
corresponds to dynamo action occurring
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Figure 8: Magnetic field strength over time for D = −767. Field strength decreasing
corresponds to dynamo action failing

Figure 9: Magnetic field strength over time for D = −900. B1 evolves into a steady
mode whilst B2 decays

We can now begin to add more modes to the Fourier expansions of A, B and v′, and
repeat the steps above to find the critical dynamo number for each system. As mentioned
above, adding more modes should produce more accurate solutions, and hence a more
accurate critical dynamo number. Furthermore, in the two-mode case we only find steady
modes at onset when we are actually seeking oscillatory dynamo action. To achieve this
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we set s = iω, where ω > 0 and ω ∈ R. Performing the calculations becomes analytically
more complex for N > 3, so we can create a program in Matlab which calculates the
matrix of linearised coefficients, and solves the characteristic polynomial for D. We let
L = 10 throughout, and restrict D to negative values (see Section 7). Table 1 shows the
critical dynamo numbers for increasing values of N in the dipolar system, as well as the
frequency ω.

N Dcrit ω
4 -237.26 4.08
6 -303.25 5.94
8 -364.94 7.33

Table 1: Critical dynamo numbers for the oscillatory modes for increasing N . The value
of Dcrit could be converging as more modes are added

It appears that the critical dynamo number starts to slowly converge as we increase the
number of modes in the Fourier series. It seems reasonable to predict that the value of
convergence will be somewhere in the range of 400-450. The values for ω suggest a rapid
frequency of oscillation, though the frequency could also be converging with Dcrit. With
more time, and better computing power, this could be investigated further.

A possible explanation for this slow convergence lies in the fact that our shear is not

dependent on x. This means that we are in effect representing terms like cos
(nπx
L

)
(n ∈ Z) as a Fourier sine series in the ODE model, which could lead to slow convergence.

6 Numerical Method

We now use a second-order Adams-Bashforth time-stepping method in Fortran to solve
Equations 4.10 - 4.12 numerically. This is of the form:

ui+1 = ui +
δt

2
(3fi − fi−1) , (6.1)

where
∂uj
∂t

= fj (u1 (x, t) , . . . , uJ (x, t) , x, t) , j = 1, . . . , J is the set of J coupled partial

differential equations and δt is the time-step. To express the spatial derivatives, we use
second-order centred-difference approximations:

∂ui
∂x

=
ui+1 − ui−1

2δx
, (6.2)

∂2ui
∂x2

=
ui+1 − 2ui + ui−1

δx2
, (6.3)

where δx is the grid size. In this case we have n = 500 grid points and 106 time-steps in
order to satisfy the stability condition (Press et al., 1992):

δt ≤ Kδx2, (6.4)

where K is a constant.
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We discretise the model onto a 1D mesh: 0 ≤ x ≤ 10. The upper value is chosen so
that the strip of the convection zone we are modelling over is suitably rectangular. We
set boundary conditions of A = B = v′ = 0 at x = 0 and x = 10. Initially we let
D = −500. We will vary some of these parameters in Section 7.

After solving the equations and plotting the solutions in Matlab, we obtain the con-
tour plot for the toroidal field shown in Figure 10. The light and dark bands represent
opposite magnetic polarities, and we see that these reverse after each cycle. Furthermore,
the polarity is anti-symmetric about the equator (x = 5), which is what we observe on
the Sun. Another key feature is the migration of magnetic field (and therefore sunspot
emergence) towards the equator, which is what we see in the butterfly diagram in Figure
4.

Figure 10: Contour plot of the toroidal field against position and time for Pm = 1,
D = −500. Light and dark areas represent opposite polarities. The field migrates

towards the equator over time, mimicking the butterfly diagram

It appears that our simplified, idealised model has replicated many features we observe
in the solar magnetic cycle, but has not included modulation in both amplitude and
polarity that were discussed in Section 1.2. In Section 7 we will look at how altering
the parameters in the model can satisfy these features, particularly periods of minimum
activity such as the Maunder Minimum, and the exclusive occupation of the magnetic
field to a single hemisphere after this period.
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We will also look at the magnetic and kinetic energies for different values of D and
Pm. The magnetic energy is given by the following expression:

EB =

∫
V

B2

2
dV. (6.5)

Since B ∼ B (x, t) sin (πz), with 0 ≤ z ≤ 1, 0 ≤ x ≤ L, the integral becomes:

EB =
1

2

∫ L

0

∫ 1

0

B2 (x, t) sin2 (πz) dzdx. (6.6)

Now ∫ 1

0

sin2 (πz) dz =
1

2

∫ 1

0

1− cos (2πz) dz

=
1

2

[
z − 1

2π
sin (2πz)

]1
0

=
1

2
, (6.7)

so
1

2

∫
V

B2 dV =
1

4

∫ L

0

B2 (x, t) dx. (6.8)

We can estimate this integral computationally using the Trapezium Rule:

EB ≈
δx

8

(
B2 (1) +B2 (n) + 2

n−1∑
i=2

B2 (i)

)
, (6.9)

where n is the number of grid points. We maintain consistency by setting n = 500.

Similarly v′ ∼ v′ (x, t) sin (2πz), so we can define the kinetic energy as:

Ev′ ≈
δx

8

(
v′2 (1) + v′2 (500) + 2

499∑
i=2

v′2 (i)

)
. (6.10)

Now using Matlab we can plot the energy change over time.

7 Parameter Survey

In this section we look at how varying parameters in the model affects numerical results.
We consider the effect of varying both the dynamo number D, and the Magnetic Prandtl
number Pm, which is the ratio of viscosity and magnetic diffusivity.

We begin by trying to find the critical value of D for this model. If D > 0 then we
observe migration away from the equator (Figure 11), so we restrict D to negative values
only. By increasing the number of time units and then using a method of interval bisection
by gradually decreasing and increasing the upper and lower bounds of |D| respectively,
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we observe that dynamo action occurs at a critical value of Dcrit ≈ −394.8. For values
of |D| smaller than |Dcrit|, the magnetic field appears to decay over time. In Section 5
we predicted −450 . Dcrit . −400, so our analytical work seems robust. If we were to
add more Fourier modes, we would expect the critical dynamo number to converge to a
value of Dcrit ≈ −394.8. Based on the eight-mode expansion, this seems plausible.

Figure 11: Contour plot of the toroidal field for Pm = 1, D = 1000. The field migrates
away from the equator over time

By setting Pm = 1, we can vary D to see how it contributes to modulation. For D = −500,
we observe the same anti-symmetric pattern seen in Figure 10. This is a dipolar mode
(see Section 5), so the parity of the mode is consistent with the system we found a critical
dynamo number for. In a dipolar mode, the poloidal potential is symmetric about the
equator. In a quadrupolar mode the poloidal potential is equatorially anti-symmetric.
Solutions with no clear symmetry are known as ‘mixed-parity modes’ (Tobias, 1997).
This is comparable to the results in Section 5 where we obtained two coupled systems;
one was dipolar and the other was quadrupolar at onset.

At D = −1000, the solutions are mixed-parity modes (Figure 12), with slight modu-
lation in the magnetic field strength over time. This modulation in amplitude is more
evident if we look at the magnetic energy oscillations in Figure 13. The units of energy are
dimensionless. Whilst the oscillations seem periodic with a few occasional irregularities,
the amplitude also oscillates. If we were to extend the butterfly diagram over a longer
time period, we would expect to see lighter and darker regions, corresponding to stronger
and weaker magnetic field. This modulation is also apparent in the kinetic energy (Figure
14), where we see a periodic oscillatory pattern with an oscillating amplitude.
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Figure 12: Contour plot of the toroidal field for Pm = 1, D = −1000. There is evidence
of symmetry modulation

Figure 13: Magnetic energy oscillations for Pm = 1, D = −1000. Slight modulation in
the oscillations is observed, whilst there is an overall variation in amplitude

If we decrease D to be −2000, we observe a nearly quadrupolar mode in Figure 15,
except here the positions where the fields in the two hemispheres meet, i.e., the equator,
is slightly inconsistent over time. For a quadrupolar mode we would expect this position
to be at x = 5, but in this case the central position seems oscillatory. This is due to
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modulation of parity, which occurs because of the interaction of dipolar and quadrupolar
modes.

Figure 14: Kinetic energy oscillations for Pm = 1, D = −1000. As with the magnetic
energy, the amplitude also oscillates

Figure 15: Contour plot of the toroidal field for Pm = 1, D = −2000. This mode is
almost quadrupolar, with a slight parity modulation
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Now we look at the plots for Pm = 0.1. The Prandtl number affects the timescale of
response of velocity perturbations, so decreasing it may lead to modulation of parity and
amplitude (Tobias, 1997). For D = −500, we again observe a dipolar mode, as in Figure
10. However if we now decrease the dynamo number to −1000, the parity becomes
mixed, although almost quadrupolar, and we start to see some periods of strong and
weak toroidal field (Figure 16). The energy oscillations become more chaotic (Figure 17),
although we can still infer that there is some sort of quasi-periodicity since the envelope
of the wave oscillates and consecutive peaks alternate between high and low energy. In
fact the amplitude of the ‘small’ peaks also seems to oscillate. This is easier to see for
the kinetic energy in Figure 18. A fast Fourier transform (FFT) of the signal shows
three peaks, representing three different frequencies that are present within the signal,
enforcing our beliefs of multi-periodicity. Based on this information, we can confidently
say that this value of Pm accommodates modulation of both amplitude and parity.

Figure 16: Contour plot of the toroidal field for Pm = 0.1, D = −1000. Strong
modulation in amplitude is observed, whilst the parity is almost quadrupolar

At D = −2000, Figure 19 shows that the solutions are not only symmetric about the
equator, but also periodic. There is also a stable equatorial position about x = 5 in
contrast to what was observed in Figure 15. This is what we would expect from a
quadrupolar mode.
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Figure 17: Magnetic energy oscillations for Pm = 0.1, D = −1000. There is strong
amplitude modulation, supporting the butterfly diagram

Figure 18: Kinetic energy oscillations for Pm = 0.1, D = −1000. Again, modulation of
amplitude is present

Finally we let Pm = 0.01 and return to D = −500. In like fashion to higher values of
Pm, a dipolar mode is observed in Figure 20, but this time there are periods of lower
field strength in the northern hemisphere, indicating potential periods of grand minima,
though this could just be due to initial transients.
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Figure 19: Contour plot of the toroidal field for Pm = 0.1, D = −2000. The mode is
quadrupolar

Figure 20: Contour plot of the toroidal field for Pm = 0.01, D = −500. Almost identical
to the plot for Pm = 1, except there is a little modulation in the northern hemisphere
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If we set D = −1000 (Figure 21), we observe a mixed-parity mode, though in this
case it is close to being dipolar. The solutions appear to be quasi-periodic, and we see
strongly varying toroidal field strength. The more notable of these periods are those of low
activity, because they can be compared directly to periods like the Maunder Minimum.
The key difference in this case is that there is no clear evidence of a cycle occupying
a single hemisphere after a minimum. Modulation is again supported by the plots for
the magnetic and kinetic energies (Figures 22 and 23 respectively), except this time we
decrease the timescale to fully observe the extent of this modulation. Both plots show
seemingly unpredictable amplitudes, though the peaks occur at almost regular intervals.

Figure 21: Contour plot of the toroidal field for Pm = 0.01, D = −1000. It is a dipolar
mode with periods of varying magnetic field strength

At D = −2000, the mode seems to be quadrupolar (Figure 24), and again we see periods
of high and low magnetic activity. It could be suggested that decreasing D from −500 to
−2000 shifts the field from a dipolar to quadrupolar mode, and decreasing the Magnetic
Prandtl number introduces modulation of amplitude. With more time available, these
suggestions could be explored further.

It also appears that the frequency decreases as the Magnetic Prandtl number decreases.
Decreasing Pm corresponds to decreasing the viscous diffusion rate, which allows for a
greater velocity perturbation. This perturbation then hinders the dynamo and its as-
sociated oscillations, including magnetic and kinetic energy, so the frequencies of these
oscillations decrease.
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Figure 22: Magnetic energy oscillations for Pm = 0.01, D = −1000. Strong modulation
in amplitude is evident; oscillations have become very irregular

Figure 23: Kinetic energy oscillations for Pm = 0.01, D = −1000. Strong modulation is
also observed

By considering the average energy over time, we can see how decreasing Pm for given
values of D affects the average amplitude of the oscillations. Figure 25 shows the trend of
average magnetic energy for different values of the dynamo number, given five calculated
values of average energy from increasing values of the Magnetic Prandtl number. For each
value of D the average energy decreases as Pm decreases. This is to be expected, as we
know decreasing Pm increases the velocity perturbation. This in turn inhibits magnetic
activity, so the magnetic energy is lower.
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Figure 24: Contour plot of the toroidal field for Pm = 0.01, D = −2000. The field is
almost quadrupolar, and there is also amplitude modulation

Figure 25: Average magnetic energy for increasing Pm. Values were calculated at
Pm = 0.01, 0.05, 0.1, 0.5, 1. There is a positive correlation for each value of D
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Figure 26 shows the equivalent plot for the average kinetic energy. In this case the energy
increases sharply for low values of Pm, before reaching a certain value of Pm and then
decreasing as the parameter is increased. However it isn’t entirely clear why this pattern
occurs. We would expect the energy to decrease throughout, since increasing Pm would
increase viscosity, inhibiting the growth of momentum and kinetic energy. However at
very small values of the Prandtl number, the kinetic energy growth will depend solely on
the magnetic fields generated by the dynamo. This is easier to understand by looking at
Equation 4.12. A small value of Pm would mean the generated velocity field relies on the
nonlinear term relating to the Lorentz force. Increasing Pm would then include a new
source from existing velocity field which would contribute to the overall kinetic energy.
Eventually the Prandtl number would be increased to a value where viscosity would start
to have an effect as discussed above.

Figure 26: Average kinetic energy for increasing Pm. For each value of D there is an
initial increase in energy before settling to a downward trend

This parameter sweep has investigated the effect of parameters on both modulation and
energy. We have found values of D which produce both dipolar and quadrupolar modes,
as well as modes of mixed-parity. Combinations of high values of |D| and low values of
Pm have generated solutions which include modulation in amplitude, showing periods of
low and high magnetic activity. The value of Pm = 0.01 in particular provided strongly
modulated energy oscillations.

8 Conclusions and Future Work

We set out with the aim of producing a mathematical model for the solar dynamo which
would replicate observations discussed in Section 1.2. By making various simplifying as-
sumptions and setting justifiable forms of the magnetic and velocity field components,
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we were able to construct a dimensionless nonlinear PDE model which could be solved
numerically.

We then reduced this model to a system of ODEs by considering Fourier sine series
expansions. The ODE model separated into two coupled equations and, starting with
N = 2 modes and adding an extra mode each time, we were able to calculate the critical
dynamo number for the system. We hoped that the value of Dcrit would converge quickly,
but even after eight modes had been included the rate of convergence was still slow. This
may be attributed to the functional dependence of the shear. Furthermore, every time a
mode was added the matrix entries took longer to compute and the characteristic poly-
nomial took longer to solve. In order for the converged value of Dcrit to be found, a lot
more time and potentially a better computer would have been required. This is still an
area of interest and could be looked into in future work.

We returned to the PDE model and, noting that we required D < 0 to ensure equator-
ward migration of magnetic field, found a value of Dcrit ≈ −394.8, which was qualitatively
consistent with the prediction made in Section 5. The plot of the results (Figure 10) in-
cluded features observed on the Sun, such as equatorward migration and anti-symmetry
in polarity about the equator. However it didn’t include modulation in either amplitude
or symmetry which are both observed on the Sun, particularly during and after periods
of grand minima. The remainder of the project was dedicated to varying the parameters
D and Pm in order to account for this modulation.

Values of Pm = 1, 0.1, 0.01 and D = −500,−1000,−2000 were applied, and their effects
on both the butterfly diagram and magnetic and kinetic energy plots were analysed. We
found that decreasing the dynamo number seemed to shift the field from a dipolar to an
almost quadrupolar mode, with the intermediate values producing mixed-parity modes,
accounting for modulation of symmetry. Decreasing the Magnetic Prandtl number in-
troduced amplitude modulation, which was easier seen in the energy plots, particularly
for Pm = 0.01, where strong modulation was observed. We also investigated the effect of
the Prandtl number on average energy, and found that generally the average magnetic
energy decreases and the average kinetic energy increases as Pm decreases. This was not
always the case, however, and future research could involve giving Pm and D a much
larger range of values to extract the overall effect these parameters have on the model.
In order to produce a more accurate model for the solar dynamo, the parameters should
be fixed to obtain the desired features of the solar magnetic field.

Another possibility for future progress is performing centre manifold reductions on the
system (following a similar method to Bushby (2003)) to reduce it to a system of just two
ODEs, which could be solved analytically. The oscillatory case could also be reduced,
producing a system of four equations to be solved either numerically or analytically
and compared to the solutions from Section 5, though the complexity of the algebra is
currently unclear. Given the ever-increasing modern-day computing power and the un-
derstanding of the importance of studying the Sun’s magnetic field, the future of solar
dynamo research appears to be very promising, with endless possibilities for direction.
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9 Appendix

In Sections 3.1 and 3.2 we used two identities from vector calculus. This appendix shows
the proofs of these identities using suffix notation.

a) We have

[∇× (∇×A)]i = εijk
∂

∂xj
[∇×A]k (9.1)

= εijk
∂

∂xj
εkpq

∂

∂xp
Aq (9.2)

= εkijεkpq
∂

∂xj

∂

∂xp
Aq (9.3)

= (δipδjq − δiqδjp)
∂

∂xj

∂

∂xp
Aq (9.4)

=
∂

∂xj
δip

∂

∂xp
δjqAq −

∂

∂xj
δjp

∂

∂xp
δiqAq (9.5)

=
∂

∂xj

∂

∂xi
Aj −

∂

∂xj

∂

∂xj
Ai (9.6)

=
∂

∂xi

(
∂Aj
∂xj

)
− ∂2

∂xj∂xj
Ai (9.7)

=
[
∇ (∇ ·A)−∇2A

]
i
. (9.8)

Hence ∇× (∇×A) = ∇ (∇ ·A)−∇2A as required.

b) We have

[∇× (φA)]i = εijk
∂

∂xj
(φAk) (9.9)

= φεijk
∂Ak
∂xj

+ εijk

(
∂φ

∂xj

)
Ak (9.10)

= φ [∇×A]i + [(∇φ)×A]i . (9.11)

Hence ∇× (φA) = φ∇×A + (∇φ)×A as required.
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